
Ann. Geophys., 27, 781–796, 2009
www.ann-geophys.net/27/781/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Annales
Geophysicae

The ECOMA 2007 campaign: rocket observations and numerical
modelling of aerosol particle charging and plasma depletion in a
PMSE/NLC layer

A. Brattli 1, Ø. Lie-Svendsen1, K. Svenes1, U.-P. Hoppe1, I. Strelnikova2, M. Rapp2, R. Latteck2, and M. Friedrich 3

1Norwegian Defence Research Establishment (FFI), P.O. Box 25, 2027 Kjeller, Norway
2Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany
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Abstract. The ECOMA series of rocket payloads use a set of
aerosol particle, plasma, and optical instruments to study the
properties of aerosol particles and their interaction with the
ambient plasma environment in the polar mesopause region.
In August 2007 the ECOMA-3 payload was launched into
a region with Polar Mesosphere Summer Echoes (PMSE)
and noctilucent clouds (NLC). An electron depletion was de-
tected in a broad region between 83 and 88 km, coincident
with enhanced density of negatively charged aerosol parti-
cles. We also find evidence for positive ion depletion in the
same region. Charge neutrality requires that a population
of positively charged particles smaller than 2 nm and with a
density of at least 2×108 m−3 must also have been present in
the layer, undetected by the instruments. A numerical model
for the charging of aerosol particles and their interaction with
the ambient plasma is used to analyse the results, showing
that high aerosol particle densities are required in order to
explain the observed ion density depletion. The model also
shows that a very high photoionisation rate is required for the
particles smaller than 2 nm to become positively charged, in-
dicating that these may have a lower work function than pure
water ice.
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1 Introduction

The Earth is continuously bombarded with sub-millimetre
meteors at an average global flux estimated between 10 and
100 tons/day (Love and Brownlee, 1993; Gabrielli et al.,
2004). The smaller meteors ablate in the mesosphere and
create “smoke” particles (Hunten et al., 1980) with a radius
of some nanometres through re-condensation and coagula-
tion. These particles are believed to be essential for many
middle atmosphere processes. In particular, the formation
of ice particles in the middle atmosphere, which form noc-
tilucent clouds (NLC) and cause polar mesosphere summer
echoes (PMSE), requires condensation nuclei to be present
on which water ice may form, because the water vapour pres-
sure is too small to allow homogeneous nucleation. Smoke
particles of meteoric origin are believed to be the most likely
condensation nuclei. Additionally, ablation of meteors pro-
vides the source material for metal layers that sporadically
form in the D-region of the ionosphere (Plane, 1991; McNeil
et al., 1998).

A consequence of the presence of aerosol particles in the
mesopause region is that one can often observe depletions
or “bite-outs” in the electron density. This is because the
aerosol particles act as “electron scavengers” – electrons col-
lide with and adhere to aerosol particles. The aerosol parti-
cles also scavenge ions, but to a much smaller degree due to
the much smaller thermal speed of the ions compared to the
electrons. The net result is that the aerosol particles become
(on average) negatively charged; more electrons than ions get
stuck on the aerosol particles, causing an electron depletion,
or (if the aerosol density is high enough) a “bite-out,” where
practically all electrons adhere to the aerosol particles.
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Fig. 1. Top deck (front) of the ECOMA payloads. The instruments
used in this analysis have yellow labels. The ECOMA instrument
measures charged aerosol particles (>2 nm), the PIP (Positive Ion
Probe) measures positive ion density, while the Faraday instrument
measures absolute electron density by Faraday rotation.

The ECOMA project (Existence and Charge state Of Me-
teoric smoke particles in the middle Atmosphere) aims to
measure in-situ the number densities of both charged and un-
charged aerosol particles in the mesosphere and lower ther-
mosphere. The data analysed in this paper are from the
ECOMA summer campaign in 2007, when a rocket payload
was launched into conditions with NLC and PMSE in order
to examine the number density and charge state of the aerosol
particles.

A companion paper (Rapp et al., 2009) provides an
overview of the ECOMA project as well as a detailed presen-
tation of the aerosol particle measurements. Here we shall fo-
cus on the electron and ion density measurements. By having
a full set of complementary instruments measuring densities
of electrons, ions, and charged aerosol particles separately,
the payload is designed to keep track of all charge carriers.
In addition, we employ a numerical model for the interaction
between aerosol particles and the ambient plasma to interpret
the measurements.

2 Experimental results

2.1 The rocket payload

The ECOMA payloads carry a set of instruments to mea-
sure and collect samples of charged and uncharged species
of aerosol particles in the MLT (Mesosphere/Lower Ther-
mosphere) region, as well as instruments to measure plasma
and neutral gas densities. The instruments included in the
2007 campaign were: The ECOMA instrument, whose DC
channel measured the net aerosol charge density for particles
>2 nm; a positively biased (+2.5 V relative to the payload)
electron probe (EP); a negatively biased (−2.5 V relative to

the payload) positive ion probe (PIP) surrounded by a grid at
payload potential; a combined sensor for neutrals and elec-
trons (CONE) for measuring densities of neutrals and elec-
trons; a swept Langmuir probe (Cold Plasma Probe; CPP)
for determining the payload potential; two Pirani gauges, to
roughly determine neutral density; an instrument for measur-
ing electron density using Faraday rotation and differential
absorption (Faraday); a particle sampler collecting aerosol
and meteoritic smoke particles (MAGIC); and a photome-
ter for measuring backscattered light from noctilucent cloud
(NLC) particles. For a more detailed description of the in-
struments, seeRapp et al.(2009).

Figure1 shows the instrument configuration at the front of
the payload. The photometer is located in a section below the
front deck, and the CPP and CONE instruments are located
in the aft of the payload, becoming exposed to the ambient
plasma after payload separation. In this analysis, we will use
results from the ECOMA, PIP, and Faraday instruments, and
the neutral gas temperature derived from the density profile
from the CONE instrument is used to convert the PIP current
to ion density. Data from the EP is not used in this analysis,
since the instrument had too low sensitivity to make usable
measurements in the region of interest.

The 2 nm detection threshold of the ECOMA instrument is
caused by aerodynamic effects; simulations show that parti-
cles smaller than 2–3 nm follow the neutral gas flow and are
not detected by the instrument (Horányi et al., 1999). If the
aerosol particles consist of ice, these simulations show that
they will evaporate partially (or completely if they are small)
as they enter the compressed region behind the shock front.
This, combined with the lower mass density of ice particles,
implies that the rejection radius may be larger than 2 nm for
ice particles. In the following we shall for simplicity refer to
this as the 2 nm detection limit, although it should be kept in
mind that 2 nm is a lower bound only.

2.2 Measurements

The ECOMA-3 payload was launched from Andøya
Rocket Range (69◦17′ N, 16◦01′ E) on 3 August 2007 at
23:22:00 UT. The payload was launched into conditions with
PMSE (measured by the 50 MHz ALWIN radar and EISCAT
VHF) and NLC (measured by lidar), and reached an apogee
of 126.7 km.

Figure2 shows an overview of the measurements used in
this analysis. Two PMSE layers were detected by the radar,
at 82–84 km and at 86–88 km. The PMSE started as a sin-
gle layer, but split up and weakened before the ECOMA-3
payload was launched. The photometer detected NLC be-
tween 82.8 and 87.2 km on upleg, and between 84.7 and
86 km on downleg (Megner et al., 2009). Additionally, NLC
were detected between 81 and 84 km by the Alomar RMR
Lidar (Baumgarten et al., 2009). The distance between the
lidar measurement volume and the rocket trajectory (upleg)
was 2 km at NLC heights. Unfortunately, lidar measurements
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Fig. 2. Left panel: Radar echo, as measured by the ALWIN radar (50 MHz) at the time of launch. The rocket was launched during conditions
with PMSE and NLC. Middle panel: Measured electron and ion densities. Between 85 and 87 km the electron density is below the detection
limit of the Faraday instrument, approximately indicated by the dotted, red curve. Right panel: Net negative charge density carried by aerosol
particles>2 nm.

were made impossible from 14 min before launch due to tro-
pospheric clouds.

The middle panel shows the electron and ion densities for
the upleg part of the flight, as measured by the Faraday and
PIP instruments. The ion density measured by PIP is nor-
malised to the electron density at 92 km, assumingne=ni
at this altitude and above. The electron density is reduced
between about 83 and 87 km, and increases sharply with al-
titude around 88 km. Between about 85 and 87 km, both the
phase change and differential absorption measured by the
Faraday instrument are below the detection limit. Hence
the electron biteout may have been much deeper than the
∼1×108 m−3 upper limit indicated in the panel. This is sup-
ported by observations from the MASS rocket flown 30 min
before ECOMA-3 (Robertson et al., 2009): it flew through a
similar structure, and the electric field measurements of that
flight cannot be explained without a much deeper electron
biteout (Robertson, private communication). The positive
ion density sharply drops below the instrument noise level at
85 km, and stays below the noise level up to about 87.5 km,
above which it rises sharply together with the electron den-
sity.

The right panel of Fig.2 shows the charge density (in units
of the elementary chargee) carried by aerosols larger than
2 nm, as measured by the DC channel of the ECOMA instru-
ment. The net aerosol charge was negative. The instrument

measured a broad layer, extending approximately from 83
to 87.5 km, of increased aerosol particle density, consistent
with both the radar measurements of PMSE and with the de-
creased electron density in the same region.

The middle panel of Fig.2 shows that the PIP measure-
ment was quite noisy below 87 km. Before launch, the PIP
electrometer measured electronic noise with an amplitude of
approximately 0.1 nA, as seen in the left panel of Fig.3. We
see the same noise during flight, while the nose cone is on,
just a few seconds before the nosecone was jettisoned and the
instruments in the front of the payload were exposed to the
plasma (second panel from the left). In the altitude region
with ion biteout, PIP measured noise only, with the same
0.1 nA noise fluctuations around a mean value of zero (third
panel). At∼86 km, 0.1 nA corresponds to a positive ion den-
sity of 2×108 m−3, effectively making this the lowest ion
density we can detect. On downleg, during reentry, we again
measured the same amount of electronics noise (rightmost
panel). Thus we conclude that∼0.1 nA is the lowest current
from PIP that represents a measurable positive ion density,
and we call this our noise floor.

The decrease in electron density is coincident with the in-
creased aerosol particle density shown between 83 and 88 km
in Fig. 2. Such an electron depletion is commonly observed
in PMSE layers, being caused by free electrons attaching
to the aerosol particles. The slightly enhanced positive ion
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Fig. 3. The current measured by the PIP at different times before
and during the flight. The red line is a running mean over∼1 spin
period.

density between 83 and 85 km is also expected in a region
with aerosol particles. Attachment of electrons on aerosol
particles leads to a reduction in the electron-ion recombina-
tion rate and hence an increase in the ion density. The re-
duced electron density would lead to an increase in the pay-
load potential relative to the plasma, and therefore a reduced
ion current to PIP. Since PIP actually measured an increase in
the ion current at 83 km, this increase must have been due to
an actual increase in the ion density, and not due to a change
in the payload potential.

What is unexpected, however, is the decrease in positive
ion density seen by the PIP between 85 and 87 km. Unfor-
tunately, the low sensitivity (high noise level) of the probe,
which is clearly visible in Fig.2, implies that we do not
know how strong the reduction is, only that there is a fairly
pronounced reduction by at least a factor two in the ion den-
sity at approximately 85 km, dipping below the noise level,
and an even larger increase in density as the rocket passed
87.5 km.

We do not know whether the electrons displayed similarly
sharp density gradients; the Faraday measurement has a res-
olution of about 1 km, essentially limited by the rocket spin
period, and the EP instrument (which did have high time
resolution) did not make any useful measurements in the re-
gion of interest. The sharp increase in ion density at 87.5 km
agrees well with the top of the aerosol particle layer as seen
by the ECOMA instrument. However, at the bottom of the
ion density depletion, at 85 km, no significant change in the
aerosol charge density is seen.

We note from Fig.2 that at, e.g., 86 km, in the middle of
the plasma depletion region, the total negative charge den-
sity measured by the ECOMA and Faraday instruments is
4−5×108 em−3, while the positive density measured by PIP
is not more than 2×108 em−3. Requiring that the plasma

must be quasi neutral, a positive charge density of at least
2×108 em−3 is then “missing”. This implies either that at
least one of these measurements is not correct, or that most of
the positive charge carriers went undetected by all the instru-
ments. In the latter case these must have been (net) positively
charged particles smaller than 2 nm (the detection threshold
of the ECOMA instrument). At the same time, these posi-
tively charged particles cannot be too small, as they would
otherwise be detected by the PIP. For heavy particles the
cross section for being collected is close to the geometric
cross section of the inner PIP collector, which has a radius of
3.8 mm. For light ions the collection cross section is close
to the cross section of the outer grid, which has a radius
of 20 mm. Hence the density of heavy, positively charged
particles must be about 30 times the positive ion density
in order for these two species to contribute equally to the
PIP measurement. A similar result is obtained if the pay-
load charging as measured with the CPP instrument, about
−2 V relative to the plasma at 85 km, is taken into account.
With the chosen collector voltage, the cross section becomes
small for particles heavier than about 100–200mu (mu is the
atomic mass constant; AMU). Unless more than 90% of the
positive charge is carried by heavier particles, the measured
PIP current therefore represents particles lighter than roughly
200mu. Hence the undetected particles, that are needed to
ensure charge neutrality, must be positively charged “smoke”
particles smaller than the threshold of 2 nm for the ECOMA
instrument (assuming spherical ice particles with a mass den-
sity of 900 kg m−3, 2 nm corresponds to a mass of 2×104mu)
and heavier than the PIP “threshold” of 100–200mu. If the
smoke particles consist mainly of ice which may (partially)
evaporate in the shock region around the probe, this former
threshold may be higher. Henceforth, we will refer to parti-
cles<2 nm as “smoke” particles, although we make no dis-
tinction or assumptions regarding their origin or chemical
composition.

It could be argued that high-velocity collisions between
the PIP and ice particles could produce spurious negative
charges that could reduce the measured ion current, but we
find this unlikely. Since the inner electrode of the PIP is at
−4.5 V relative to the surrounding plasma (the outer PIP grid
is at−2 V, and the potential difference between the outer grid
and the inner electrode is−2.5 V), negatively charged parti-
cles such as electrons and negative ions would be rejected
by the negative potential of the probe; such particles would
have to be quite heavy to cross this potential barrier. Further-
more, for heavy negatively charged particles the contribution
to a current to the inner electrode would be limited by the
(small) cross-section of the inner electrode. Additionally, the
probability that a relatively heavy negatively charged parti-
cle would hit the inner probe in a high-velocity collision and
deposit an electron on a negatively charged surface is very
small. We therefore dismiss this scenario as highly unlikely.
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3 Numerical modelling

3.1 The model

The numerical model (seeLie-Svendsen et al., 2003) solves
the coupled, time-dependent fluid continuity and momentum
equations for an arbitrary number of ions and (neutral and
charged) aerosol particles, in addition to electrons, in one
spatial dimension. Collisions are assumed to be sufficiently
frequent to keep all species at the neutral air temperatureT ,
which is measured with the CONE instrument. Hence we do
not solve the energy equation.

For a speciess the continuity equation reads

∂ns

∂t
+
∂(nsus)

∂z
= Qs − Ls, (1)

wheret andz denote time and altitude, respectively,ns and
us are the density and vertical flow speed, andQs andLs
contain the rates for production and loss of particles.

For the light, positive ions, denoted by subscripti, the loss
rate is

Li = ni

(
α(z)ne +

∑
a,Z

ψi,Z na,Z

)
, (2)

whereψi,Z is the rate coefficient for attachment of positive
ions by aerosol particles (subscripta) and Z denotes the
aerosol particle charge. Hence the last term is the loss rate
of positive ions caused by attachment by all aerosol species
a and charge statesZ. As will be explained below, we shall
consider at most two speciesa, which are only distinguished
by different radius and mass, while we include the number
of charge states that are necessary (large particles may con-
tain several negative charges). In the first models presented,
only one aerosol species is assumed and the sum in Eq. (2)
reduces to a sum over charge statesZ only.

We include only one species of positive ions, with den-
sity ni . The electron-ion recombination rate coefficientα
is strongly dependent on the kind of positive ion. We
therefore consider two cases. In the first case we as-
sume that the positive ion composition changes in the 80–
90 km altitude region. Below 82 km we choose a constant
α=7×10−12 m3 s−1 (Rapp and L̈ubken, 2001), correspond-
ing to (H3O)+(H2O)3 water cluster ions; between 82 and
88 km α decreases linearly with altitude, and above 88 km
it is constant atα=αm≡6×10−13 m3 s−1, corresponding to
NO+ ions. In the following this altitude dependentα is de-
notedαc. In the second case we use the NO+ valueαm ev-
erywhere. The densityni thus represents the total (cluster
plus molecular) ion density. The production rate for light
ions (and electrons),Qi(z), is chosen such that the observed
electron (and ion) density in the absence of aerosol particles,
n0(z), is reproduced in the steady state, whence

Qi(z) = αn2
0. (3)

n0 is specified below.

For aerosol particles of chargeZ (in units ofe) the source
and loss rates are written

Qa,Z = ψe,Z+1nena,Z+1 + ψi,Z−1nina,Z−1 + Iana,Z−1 (4)

La,Z = na,Z(ψe,Z ne + ψi,Z ni)+ Iana,Z, (5)

whereIa is the photoionisation rate.
We use the rate coefficients for attachment of electrons

and positive ions by aerosol particles derived byNatanson
(1960) (and reviewed byRapp(2000)), except that for attrac-
tive interactions we have included the induced dipole force
as newly derived byRobertson and Sternovsky(2008). For
electrons the attachment rates are

ψe,0 = πr2
ace

1 +

√
e2

8ε0kT ra

 (6)

ψe,Z>0 = πr2
ace

1+CZ

√
e2

16ε0kT ra
+DZ

|Z|e2

4πε0kT ra

 (7)

ψe,Z<0 = πr2
aγ

2ce

exp

[
−

|Z|e2

4πε0kT raγ

(
1 −

1

2γ (γ 2 − 1)|Z|

)]
,(8)

wherek is Boltzmann’s constant;ε0 the permittivity of vac-
uum (SI units are used throughout);ra the aerosol particle ra-
dius; ce≡

√
8kT /(πme) is the mean thermal electron speed;

γ is given byNatanson(1960), ranging from 1.62 for|Z|=1
to 1.22 for|Z|=7; andCZ andDZ are given in Table 1 of
Robertson and Sternovsky(2008). The inclusion of the in-
duced dipole force in the attractive case increases the attach-
ment rate by approximately a factor 2 for smallra andZ=1,
compared with the originalNatansonexpression (which only
accounts for the Coulomb force). The corresponding positive
ion attachment ratesψi,0, ψi,Z>0, andψi,Z<0 are obtained
from Eqs. (6), (8), and (7), respectively, replacingce with
ci≡

√
8kT /(πmi). We use the NO+ massmi=30mu in all

cases. Since the attachment rates are proportional tom
−1/2
i ,

this leads to a modest error in the rate coefficients for the
cluster ions in the lower part of the computational domain
for the cases with an altitude-dependentα=αc. The electron
density is given by the charge neutrality requirement, and
hence we do not need explicit expressions for the electron
production and loss rates.

We do not include production and loss of aerosol parti-
cles by ice particle condensation, coagulation or evaporation.
Hence the total number of aerosol particles will be conserved
during the time integration of the model; only the charge and
altitude distribution will change.

Turning to the momentum equation for each species, we
only consider time scales at which inertial effects (accelera-
tion) may be neglected, in which case the momentum (equals
force balance) equation may be written
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Table 1. Summary of model parameters used in the figures, where
ra is the aerosol particle radius andα is the electron-ion recombi-
nation rate coefficient.

Figure no. Smoke particles? ra[nm] α

4 No 2 αm
5 No 50 αc
6 Yes 50 αc
7 Yes 10 αm
8 Yes 50 αm

∂Ps

∂z
+ nsmsg − nsZseE =

−nsmsνsus +ms
∑
t

(ntutRts − nsusRst ). (9)

HerePs=nskT is the pressure of speciess; msg is the grav-
itational force;Zse the particle charge andE is the electric
field; andνs is the momentum transfer collision frequency
for collisions with the neutral atmosphere. We neglect up-
draft of the neutral atmosphere. The collision frequencies are
obtained fromHill and Bowhill (1977) for positive ions and
from Schunk(1977) for aerosol particles (assuming hard-
sphere interactions), using the measured neutral air density
(and derived temperature) from the CONE instrument. The
last term in Eq. (9) contains the aerosol particle momentum
transfer caused by ionisation and attachment of ions and elec-
trons, where the sum extends over the “adjoining” charge
statesZs±1, andRst is the rate of transfer from speciess
to t .

We require a quasi-neutral plasma with no currents. Hence

ne =

∑
s

Zsns (10)

ue =
1

ne

∑
s

Zsnsus, (11)

where the sums are over all species, except electrons. The
electric field is then obtained from the electron momentum
equation, and to a very good approximation

E = −
kT

e

1

ne

∂ne

∂z
. (12)

We use data from the DC channel of the ECOMA particle
instrument as aerosol particle density input to the model. In
this study we are not concerned with the small-scale den-
sity variations. We therefore use the ECOMA data with the
resolution reduced to approximately 50 m. At these scales
ambipolar diffusion, for which the electric field is critical, is
of little importance. For small particles we could have ne-
glected vertical transport altogether, and just solved the con-
tinuity equation without the flux divergence term. For the
larger NLC-size particles that we shall also consider, gravity

becomes important, and they may fall too fast to reach com-
plete ionisation equilibrium. However, it turns out that the
resulting gravitational settling does not have a large impact
on particle densities, and assuming ionisation equilibrium is
a fairly good approximation even for the heaviest particles
we consider. When the model is started far from steady state,
the last term in Eq. (9) also contributes significantly to the
force balance (although the term has a small impact on the
steady state solution).

All model calculations are started with an assumed ini-
tial aerosol particle density profile, with all particles being
neutral at the start of the calculation. Electrons and ions are
initially in ionisation equilibrium with theα andQi speci-
fied above. The model is run until a (quasi-) steady state has
been reached, typically in 104 s or less of model time. The
upper and lower boundaries are at 80 and 90 km, sufficiently
far away that the structures we focus on are not affected by
boundary conditions on this time scale, only by the initial
particle density distribution.

We assume an initial electron and ion densityn0(z) that
equals the Faraday electron density below 82 km and above
88 km. Between 82 and 88 km the observed electron den-
sity is depleted, which we attribute to the presence of aerosol
particles. We therefore assume that, had aerosol particles
not been present, the electron and ion density would have
increased monotonically in this region. For simplicity we
choose log(n0(z)) to increase linearly with altitude between
82 and 88 km. With the altitude-dependent recombination
rate,α=αc, Eq. (3) then leads to an electron-ion production
rateQi≈106 m−3 s−1 at 80 km, 7×106 m−3 s−1 at 88 km,
and then increasing rapidly to 1.4×108 at 90 km in order to
reproduce the rapidly increasing plasma density above the
particle layer. With the low recombination rate,α=αm, the
production rate near the lower boundary of the model is re-
duced by an order of magnitude, toQi≈8×104 m−3 s−1 at
80 km. At t=0 (when aerosol particles are neutral) we set
ne(z)=ni(z)=n0(z).

3.2 Model results

Our aim is to identify conditions that can produce the plasma
and particle densities seen in Fig.2, and in particular the pos-
itive ion density depletion.Rapp and L̈ubken(2001) carried
out an extensive parameter study of aerosol particle charging
effects on the plasma. They found that an ion density de-
pletion can be achieved if the recombination rateα is small
(corresponding to molecular ions) or if the aerosol particle
number density and radius are both sufficiently large. As our
model is very similar to theirs, this conclusion still applies.

The two main model parameters that are to be varied below
are the particle sizera and the recombination rate coefficient
α, as summarized in Table1. We shall present five different
models, shown in Figs.4–8. In Fig. 4, small (2 nm) particles
and a lowα=αm is assumed, while in Fig.5 large (50 nm)
particles and a highα=αc are assumed. In Figs.6–8 smoke
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particles are added. In Fig.6, 50 nm particles are assumed
with a highα=αc, while in Fig.7 10 nm particles and a low
α=αm are assumed. Finally, in Fig.8 both large (50 nm)
particles and a lowα=αm are assumed.

3.2.1 Without smoke particles

As remarked in Sect.2.2, charge neutrality requires that, if
all measurements are correct, an undetected population of
light, positively charged smoke particles<2 nm must have
been present. Before we include smoke particles, we con-
sider the simpler case of just one population of aerosol parti-
cles≥2 nm, which would be detected by the ECOMA instru-
ment. Since the model enforces strict charge neutrality, the
model in this case obviously cannot reproduce all the charged
particle measurements. The goal is to show under which con-
ditions the ion density depletion can be reproduced, without
the complexity added by a population of smoke particles.

As indicated above, an ion density depletion can be ob-
tained if the recombination coefficientα is small, or with a
large number of large aerosol particles. We first consider the
case of a small recombination coefficient, settingα=αm. The
aerosol particles are assumed to be of a single size,ra=2 nm,
at the detection threshold of the ECOMA DC instrument.
Since NLC were observed during the rocket flight, we know
that much larger particles must have been present. However,
in this first model case we want to show the effect if small
particles are the dominant charge carriers. We include the
charge states fromZ=−2 toZ=1 in the model, a range suf-
ficient for small particles.

When choosing the aerosol particle number density
needed as input to the model, it would be natural to use the
actual measurements from the ECOMA instrument shown in
Fig. 2, converting the charge density to number density as-
suming that all particles carry a single negative charge. If we
do that, the model calculations show that essentially all par-
ticles acquire a single negative charge, as expected (as men-
tioned, the model calculation starts with all particles being
neutral). However, the electron and ion measurements are
not reproduced: The electron density is slightly reduced rel-
ative ton0, but is still almost 109 m−3 in the region where
the Faraday instrument measures a complete biteout. More-
over, the ion density is not reduced at all, showing instead
a small increase relative ton0. In this case, the reduction
in the electron-ion recombination rate caused by electron at-
tachment on aerosol particles is as important for the ion den-
sity as ion attachment on aerosol particles, and the two effects
nearly cancel.

For such small particles to produce a sizeable change in
ne andni , a much higher aerosol density is required, and to
reproduce the observed reduction inni the aerosol particle
density has to be approximately 100 times the charge density
measurement from the ECOMA instrument. Figure4 shows
the resulting densities when the measurement from the DC
channel of the ECOMA instrument has been multiplied by a

factor 100 everywhere. Although the total particle density is
now very large, 1010

−1011 m−3, most of the particles remain
neutral and the density of positively and negatively charged
particles are almost equal in the particle layer. Hence the
modelled aerosol particle charge density,

nDC ≡

∑
s,rs>2 nm

Zsns, (13)

which is the quantity measured by the DC channel of the
ECOMA instrument, is actually somewhat lower than the
measured charge density, despite the very large aerosol par-
ticle density assumed. The large particle density leads to a
strong electron biteout below approximately 88 km, and al-
most to the required reduction in ion density between 85 and
87 km, where the ion density depletion was observed.

The model in Fig.4 includes photoionisation of aerosol
particles (given byIa). Without photoionisation the elec-
tron density would be of order 106 m−3 or less inside the
whole particle layer while the ion density at e.g. 86 km in-
creases slightly to 5×108 m−3, which exceeds the PIP mea-
surement (the extremely low electron density leads to re-
duced electron-ion recombination and hence an increased ion
density).

Although the modelled ion density fits the measured ion
density in the upper part of the layer (>85 km), the modelled
density is much too low in the bottom part of the layer. Re-
call, however, that we arbitrarily increased the aerosol par-
ticle density by a factor 100 everywhere; the lowni in the
lower part of the layer could easily be increased by choosing
a smaller aerosol particle density in that region. Also, the
calculatednDC is too low compared with observations. As
emphasised in Sect.2.2, a model that requires charge neu-
trality cannot reproduce all of the measured particle densities
without smoke particles; we will need an additional species
that has gone undetected by the instruments. However, the
main point is that, with a combination of a very high aerosol
particle density, of order 1011 m−3, and a low electron-ion
recombination rate, applicable to NO+ ions, small particles
may produce the required reduction in the positive ion den-
sity.

If we had used the larger value of the recombination coef-
ficient,α=αc, in the model of Fig.4, but otherwise the same
input parameters, we would obtain a higher ion density, close
to the unperturbedn0. The result that increasing the recom-
bination rateα leads to an increase in the ion density, is coun-
terintuitive. By itself an increase inα causes a decrease inni
since ionisation equilibrium requires a constantQi=Li , and
from Eq. (2) an increasedα must then be accompanied by
a decreasedni (and possiblyne). However, it is the undis-
turbed densityn0 that is kept constant whenα is increased,
and from Eq. (3) Qi is then increased proportionally toα.
For smallα the second term in Eq. (2) may dominate, while
for largeα it will become negligible. Whereas the first term
in Eq. (2) leads to an increasedni when aerosol particles are
present (becausene is reduced by aerosol attachment), the
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Fig. 4. Modelled and observed electron, ion, and aerosol particle densities. The model assumesα=αm=6×10−13 m3 s−1, n0 as the initial
electron and ion density (thin dotted line),ra=2 nm,Ia=10−3 s−1, and an aerosol particle density which is 100 times the charge density
measurement from the DC channel of the ECOMA instrument (assuming all particles haveZ=−1). nDC is the modelled aerosol particle
charge density defined by (13).

second term – ion attachment by aerosol particles – leads to
a decrease inni when the aerosol particle densityna,Z is in-
creased. Hence the relative importance of the two terms in
Eq. (2) determines whether the ion density will increase or
decrease in response to an increase in aerosol particle den-
sity. A sufficiently low recombination rate makes the second
term dominant, causing a decrease in ion density.

Since the attachment rate is proportional tor2
a , it increases

rapidly with increasing particle size. The large total surface
area of NLC-sized particles implies that a reduction in posi-
tive ion density can be achieved with a more modest aerosol
particle density than assumed for the calculations using only
2 nm-sized aerosol particles, and without choosing a small
value for the recombination rate coefficientα. The onboard
photometer detected NLC with particle size of order 40 nm
on both up- and downleg (Megner et al., 2009). Both the
photometer and the ECOMA instrument detected particles in
a broad region between 83 and 88 km.

In the model solution shown in Fig.5 we illustrate
the effect of large particles by assuming a single parti-
cle radius of 50 nm throughout the layer measured by the
ECOMA instrument, and the high recombination rate coef-
ficient α=αc(z). The figure shows that the required reduc-
tion in ni can be achieved with an aerosol particle density
that is “only” 10 times higher than the charge density mea-
surement of the DC channel of the ECOMA instrument –

max(na,Z)=1.4×1010 m−3. (The chosen large aerosol parti-
cle photoionisation rateIa=0.3 s−1 prevents a deep electron
biteout; reducing insteadIa to 10−2 s−1, ne would be less
than 107 m−3 in the particle layer, whileni does not change
much.) Since this model leads to comparable, and low, elec-
tron and ion densities in the particle layer, consistent with the
measurements, the charge neutrality enforced by the model
implies that the average charge of the aerosol particles (ex-
pressed throughnDC) must also be close to zero.

Assuming particles with 20 nm radius – the approximate
lower limit of NLC particles – a result similar to that shown
in Fig.5 is obtained if the aerosol particle density is increased
by another factor of 3 (max(na,Z)≈4×1010 m−3).

3.2.2 With smoke particles

If the model is to satisfy all charged particle measurements,
charge neutrality requires a population of small (<2 nm),
positively charged smoke particles to be present. Small, posi-
tive NLC particles>2 nm would be detected by the ECOMA
instrument. Particles<2 nm are too small to be consid-
ered NLC particles, so we refer to them as “smoke” parti-
cles. Since these cannot be detected by the DC channel of
the ECOMA instrument, we have no direct, observational
constraint on their number density and altitude distribution.
We therefore assume an additional population ofra=1.5 nm
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Fig. 5. Model results assumingα=αc, ra=50 nm,Ia=0.3 s−1, charge statesZ=−5 throughZ=3, and an aerosol particle density which is
10 times the charge density measurement of the ECOMA instrument.

particles, with a Gaussian density distribution with altitude
centred at 85 km, inside the aerosol particle layer (as seen by
the ECOMA instrument), and with a Gaussian width (defined
as where the density is reduced by a factor exp(−1) from its
maximum value) of 4 km. Since large particles or a reduced
value forα (and hence lowerQi from Eq. (3)) may both lead
to a reduction inni , we consider both scenarios.

In Fig. 6 large (50 nm) particles andα=αc(z) (represent-
ing a varying mixture of cluster and molecular ions) are as-
sumed. The chosen parameters indicate approximately what
is required to reproduce all observations: At∼85 km the
positive ion density is reduced below the PIP instrument de-
tection threshold, the electron density is comparable to the
Faraday measurement, while the aerosol particle charge den-
sity nDC (which, from Eq. (13), only counts particles with
ra>2 nm) agrees approximately with what was measured by
the ECOMA instrument. Note that in this model, too, the
density of NLC particles is very large,∼1010 m−3, which
is required to produce a sufficiently lowni . The density
of NLC-sized particles is also much larger than the density
of small smoke particles; we need a large number of large
particles in order to reduceni , although most of those parti-
cles will remain neutral, while we need a smaller number of
small particles to contain the “missing” positive charge. A
density of order 1010 m−3 for such large particles implies an
extremely high water mixing ratio. Assuming the particles
are solid ice with a density of order 103 kg/m3, it translates

into a mixing ratio of more than 103 ppmv, orders of mag-
nitude larger than the water vapour mixing ratio observed in
the mesopause region (see Sect.4).

The same charged particle observations can also be ap-
proximately reproduced in a quite different scenario, assum-
ing that the ion depletion occurs in a region dominated by
molecular ions, and hence with a much lower electron-ion
recombination coefficient. Figure7 shows that in this case,
even 10 nm particles can produce the required reduction in
ni assuming a maximum aerosol particle density of not more
than about 1010 m−3, the same particle density as in the
50 nm case of Fig.6. 10 nm particles with this density im-
plies a water mixing ratio of order 10 ppmv.

In both cases shown in Figs.6 and7, the smoke particles
have only a small impact on electrons and ions, as seen by
comparing Figs.5 and6. The “role” of the smoke particles
in both scenarios is, through the very high photoionisation
rate, to release electrons that in turn attach to the larger parti-
cles detected by the ECOMA instrument, causing a negative
charge density to be measured by ECOMA. Without pho-
toionisation the modelled ECOMA densitynDC would be-
come negative, implying that the ECOMA instrument should
have measured a positive current.

Finally, the aerosol density required to produce the ion
depletion can be further reduced by assuming both large
particles and a reducedα. Figure 8 shows that with an
aerosol particle size of 50 nm andα=αm, an aerosol density
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Fig. 6. The same model as in Fig.5, except that we have added “smoke” particles withra=1.5 nm, a Gaussian altitude distribution with a
peak density of 109 m−3 at 85 km, and a smoke particle photoionisation rateIa=10−2 s−1.

Fig. 7. Model with the samera=1.5 nm smoke distribution as in Fig.6, and in additionra=10 nm particles with 10 times the density
measured by the ECOMA instrument (assuming all particles haveZ=−1). A recombination coefficientα=αm is used, andIa=10−2 s−1

and 3×10−2 s−1 for the 1.5 and 10 nm particles, respectively.
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Fig. 8. Model with α=αm and two aerosol particle populations, one withra=50 nm and the same density as measured by the ECOMA
instrument (assuming singly negatively charged particles), and a smoke population withra=1.5 nm and the same density as in Fig.6.
Ia=0.1 and 0.01 s−1 for the 50 and 1.5 nm particles, respectively.

of approximately 5×108 m−3 is sufficient to produce the re-
quired reduction inni around 86 km. This size and density
corresponds to a water mixing ratio of order 50 ppmv.

Although we initially assumed a particle density for the
50 nm particles equal to the measurement by the ECOMA
instrument, assuming that all particles carried a single neg-
ative charge, the solution in Fig.8 shows that the density
of Z=−1 particles is significantly lower than this assumed
value. A significant number ofZ=−2 particles compensates
for this, so thatnDC is still in approximate agreement with
the measurement made by the ECOMA instrument.

4 Discussion

A reduction in positive ion density inside a PMSE/NLC layer
is quite unusual; in fact, we are aware of only three published
measurements (Pedersen et al., 1970; Balsiger et al., 1996;
Blix , 1999). A rocket launched from Andøya in June 1966
detected a depletion in both electron and ion densities in a
thin layer in the mesopause region (Pedersen et al., 1970).
The ion depletion was attributed to a wake effect, although
they also detected a notable decrease in the positive ion cur-
rent from the front grid, which is difficult to attribute to a
wake effect. The MASS rocket also detected a reduction in
positive ion density between 86 and 88 km, indicating that
it may have flown through the same layer as the ECOMA-3
rocket (Robertson et al., 2009).

Fig. 9. Electron biteout measured during the SCALE campaign in
1993 (Blix , 1999). The left panel shows PMSE as measured by the
EISCAT VHF (224 MHz) radar. The middle panel shows the cur-
rents to the electron probe,IEP, and the positive ion probe,IPIP
(IPIP has been scaled with a factor of 50 for presentation purposes).
The right panel shows the neutral temperature, as measured by the
CONE instrument on downleg.

In Fig. 9 we show the ion density depletion detected in
1993 as part of the SCALE (SCAttering Layer Experiment)
campaign (Blix , 1999). The payload was launched on 1
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August 1993 at 01:46:00 UT during conditions with PMSE,
as measured by the EISCAT VHF radar (224 MHz) 125 km
from the rocket trajectory. A photometer on board the pay-
load also measured NLC in the same altitude range (approx-
imately 84.5–85.5 km) as the on-board plasma probes de-
tected an electron biteout and a reduction in ion density. The
left panel of Fig.9 shows the PMSE, as measured by the
224 MHz EISCAT VHF radar. The middle panel shows the
measurements from the outer grid of the CONE instrument,
measuring electron density, and from the PIP instrument in
the front of the payload. Between 84.5 and 86 km there is
a deep electron biteout, with no measurable amount of elec-
trons for ≈1 km, except for a very thin layer (∼100 m) at
85.4 km. Colocated with the electron biteout there is a re-
duction in the positive ion density. The right panel of Fig.9
shows the neutral gas temperature, as measured by the CONE
instrument on downleg. The mesopause, with its temperature
minimum of 110 K, is at roughly 85 km. The location of the
temperature minimum fits well with NLC being observed at
these altitudes.

Given that most rocket payloads do not carry both electron
and ion current probes, ion density depletions in mesopause
particle layers may actually be more common than these few
observations indicate.

This is also supported byHavnes et al.(2007). Modelling
the PMSE overshoot effect (Havnes et al., 2003; Havnes,
2004), they get both electron and ion depletions when us-
ing ground-based, high-power HF transmitters to artificially
heat the electrons in aerosol layers containing PMSE-sized
particles.

Although models withα=αc are able to reproduce the
measurements of the ECOMA instrument, and particularly
the reduction inni , assuming large particles, the aerosol par-
ticle density has to be very high, of order 1010 m−3 (Fig. 6),
implying a water mixing ratio of more than 103 ppmv for
50 nm particles. Observations indicate water vapour mix-
ing ratios in the mesopause region of order 1–2 ppmv (e.g.
Bevilacqua et al., 1983; Seele and Hartogh, 1999). Con-
versely, for 50 nm particles, 1 ppmv translates into an ice par-
ticle density of only about 107 m−3, which is much too small
to have any discernible effect on neither the positive ion nor
the electron density, a result also obtained byReid (1990).
Also the model calculation byBalsiger et al.(1996) show
that a mixing ratio of 1 ppmv leads to a small increase in the
positive ion density, not a large decrease as observed, when
the particles are assumed to be of NLC size.

The positive ion density is determined by the balance be-
tween the production rateQi and electron-ion recombination
and ion attachment to aerosol particles. The attachment rate
per unit volume is proportional to the total area of the parti-
cles in that volume. Keeping the water mixing ratio (in the
ice phase),w, fixed and assuming that all particles have the
same radiusra , the attachment rate is

ψi,Zna,Z ∝
w

ρa

1

ra
, (14)

whereρa is the particle mass density, showing that sharing
the available moisture between many small particles max-
imises the surface area. However, because the rate only
varies as the inverse first power of the particle radius, de-
creasing the particle size from 50 to 1 nm “only” gives a 50-
fold increase in surface area. Maintaining the aerosol sur-
face area of Fig.6 in that case,w would still be 10–20 times
higher than observed values. Moreover, the aerosol particle
density would then be of order 1013 m−3. The aerosol par-
ticle density is limited by the number of available conden-
sation nuclei. Although the density of smoke particles, as-
sumed to be the condensation nuclei, is uncertain, model cal-
culations seem to preclude densities higher than 1011 m−3,
even for sub-nm particles (e.g.Hunten et al., 1980; Megner
et al., 2008).

Another alternative to reconcile water vapour measure-
ments with model requirements, is that the mesospheric ice
particles are not solid, spherical ice particles with a mass
density similar to water ice at 1 atm pressure, as we have as-
sumed, but rather very “fluffy” particles with a much larger
ratio of the particle surface area to mass. For this effect to
explain the measured ion density depletion, the particle sur-
face area would have to be at least of order 100 times larger
than the area of a spherical particle with the same mass. One
could also imagine that the particles were only covered with
a thin surface layer of ice on top of a core of, e.g., silicate
material. This possibility seems unlikely, though, since we
must then have a high number density of large (tens of nm)
smoke particles on which water vapour condenses.

The reduction inni is more easily achieved by reducing
the recombination rateα to the value applicable to NO+,
α=αm, in which case even 2 nm particles (albeit with a very
high number density) could produce the measured reduction
in ni (Fig. 4). The water mixing ratio, being not more than
10 ppmv even in the 10 nm case of Fig.7, is in approximate
agreement with water vapour measurements. And with a
combination of large particles and a small value forα the
reduction inni can be achieved with even lower aerosol par-
ticle densities; Fig.8 shows that a particle density of order
5×108 m−3 is sufficient (although it still leads to a water
mixing ratio of order 50 ppmv).

The high required density of NLC-sized particles, partic-
ularly with α=αc, also exceeds lidar measurements of typi-
cal NLC number densities, which are not much higher than
1×108 m−3 (Baumgarten and Fiedler, 2008).

Unfortunately we have no information about the ion
species present in the particle layer. The rocket described
by Balsiger et al.(1996), however, carried an ion mass spec-
trometer. It showed unequivocally that where the reduction in
ion density occurred, around 83–84 km and 82.5–86 km dur-
ing ascent and descent, respectively, the dominant ions were
definitely water cluster ions – O+2 and NO+ only appeared
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above 85 km, and the transition from water cluster to molec-
ular ions occurred at 89 km. They detected approximately a
factor 100 reduction inni inside the NLC layer, while the
reduction seen in Fig.2 is at least a factor 2. HenceBal-
siger et al.detected a very strong reduction in the positive
ion density in a region where our chosen large value,α=αc,
corresponding to water cluster ions, should be applicable. If
their measurement of ion composition is also relevant to the
ECOMA-3 flight, our recombination rateα is probably rather
too small than too large, as we have assumed that the transi-
tion to molecular ions takes place gradually between 82 and
88 km, implying that in the particle layer around 86 km the
rate is already reduced to about 1/3 of the value assumed for
water cluster ions. This is corroborated by the MASS rocket
observations, where a ledge in the aerosol particle measure-
ments indicate that the transition occurred at 88 km (Robert-
son et al., 2009). Based on many rocket flights,Friedrich and
Torkar (1988) find that at the low temperatures of the sum-
mer mesopause the transition from cluster to molecular ions
occurs at neutral densities of 1−2×1020 m−3, which, based
on the CONE measurement, corresponds to an altitude range
of approximately 85–86.5 km during the ECOMA-3 flight.
Hence it is probable that the transition occurred in the middle
of the particle layer, which adds uncertainty to the interpre-
tation of the measurements.

Another uncertainty in our model is the electron-ion pro-
duction rateQi . It was chosen based on our guess for
the undisturbed electron and ion density in absence of
aerosol particles (the dotted line in the left-hand panel of
Fig. 4). At e.g., 86 km the assumed undisturbed density is
n0=1.7×109 m−3, approximately a factor 10 larger than the
density measured byBalsiger et al.(1996) just below the
ion density depletion. Withα=αc(z) we then deduce a pro-
duction rate at this altitudeQi≈7×106 m−3 s−1, close to the
value assumed byReid (1990) but about 300 times larger
than the value assumed byBalsiger et al.. In the models using
α=αm (corresponding to NO+ ions),Qi≈2×106 m−3 s−1.
In our case the particle layer extends over almost 5 km and
the choice of an undisturbed density is therefore not unam-
biguous. Had we chosen smaller values forn0, Qi would
be smaller, and a reduction in ion density could be achieved
with a smaller aerosol particle density than we had to assume
above. However, if we insist on a monotonically increasing
plasma density with altitude in the absence of aerosol parti-
cles,n0 cannot be reduced by a large factor and we shall still
need a large number of aerosol particles.

The values forQi we get when using the larger value of
α=αc seem reasonable for the daytime mesopause region at
a time of weak (or no) electron precipitation, while the val-
ues resulting fromα=αm are too small to be compatible with
a sunlit atmosphere (Reid, 1990; Rapp and L̈ubken, 2001).
The solar zenith angle at the time of launch was 92◦. It is
therefore conceivable that a smaller value forQi is accept-
able. On the other hand, the fact that a significant number of
positively charged smoke particles must have been present

indicates that UV radiation was still present at the altitude of
the particle layer.

Riometer data indicate that there must have been some
electron precipitation at the time of the rocket flight, and that
above the electron biteout region, at least, the electron-ion
production rateQi was definitely higher than accounted for
by UV radiation alone. This is another indication (but no
proof) that the larger values forQi , consistent with a high
α∼αc, are appropriate.

In the models of Figs.6, 7, and8 we had to use a very
large photoionisation rate for the 1.5 nm smoke particles,
Ia=10−2 s−1, to produce the positively charged particles re-
quired by the measurements. A smaller photoionisation rate
would lead to smoke particles with a net negative charge. The
large smoke particle photoionisation rate required indicates
that these may have a different chemical composition with
a lower work function than the large ice particles, which is
consistent with the assumption that meteor smoke has differ-
ent properties than ice.

Photoemission from Na adsorbed on ice films has been
studied in the laboratory, showing that even a tiny amount
of Na is sufficient to dramatically reduce the photoemission
threshold (Vondrak et al., 2006). The same study also found
that the photoionisation rate of an Na atom adsorbed on an
ice particle in the mesosphere would be about 0.1 s−1, indi-
cating that our required smoke particle photoionisation rate
is not totally unrealistic if these particles contain Na. Lidar
observations using the ALOMAR Na lidar at Andøya, show
a complete absence of free Na atoms below about 87 km at
the time of launch (B. Williams, personal communication,
2007). Many years of Na lidar measurements at this latitude
have shown that the Na layer in August extends from 85 km
to 100 km, except in the presence of PMSE or NLC (von
Zahn et al., 1988; Kurzawa and von Zahn, 1990; Hansen and
Hoppe, 1996; She et al., 2006; Thayer and Pan, 2006). Gard-
ner et al.(2005) have also demonstrated the rapid uptake of
Na on NLC and PMSE particles, in this case at high southern
latitudes in summer.

The influx of Na into the mesopause region by mete-
ors is at least 1.6×107 Na atoms/(s m2) (Kane and Gard-
ner, 1993). This continuous influx can on average sup-
ply one new Na atom to each of the approximately 3×1012

aerosol particles/m2 observed (see Fig.2, right panel, assum-
ing singly charged aerosols) every 2×105 s, or every 55 h.
This compares well with the typical transport time of NLC
particles poleward of 69◦ N of 36 h (Berger and von Zahn,
2007).

This argument, why high photoionisation rates are needed,
assumes that the attachment rates for electrons and ions by
aerosol particles (Eqs.6–8) are also applicable to smoke par-
ticles. However, such particles are so small that they may
be rather regarded as very large molecules for which these
analytical expressions may not be appropriate. If the elec-
tron attachment rate is suppressed for very small particles,
this could hypothetically explain why they charge positively
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without needing a low work function. On the other hand, we
do note that for the 1.5 nm smoke particles that we have as-
sumed, Eq. (6) yieldsψe,0≈6×10−12 m3 s−1, which is quite
similar to the electron-ion recombination rate coefficientα

for water cluster ions, indicating that Eq. (6) may not be en-
tirely unrealistic for small particles, and may even underesti-
mate the attachment rate.

The plasma and aerosol particle measurements presented
here show a layer of large (ra>2 nm) particles carrying a
net negative charge, and positively charged, small (ra<2 nm)
particles that were not detected but must have been present
to account for the missing positive charge. The MASS rocket
launched 30 min before ECOMA-3 provided direct evidence
for these positively charged particles: The MASS instrument
is a mass analyzer capable of measuring positive and negative
aerosol particles separately, sorting them into bins of vary-
ing particle size. On upleg the rocket flew through a layer
containing both NLC and PMSE. In the particle layer par-
ticles larger than 3 nm were negatively charged (no positive
charges were seen above 3 nm), particles between 1 and 2 nm
were about evenly split between positively and negatively
charged particles, while particles smaller than 1 nm were
mostly positively charged (Robertson et al., 2009). Robert-
son et al.(2009) suggested another explanation than a high
photoionisation rate for the presence of positively charged
particles, namely that these were ice particles that had grown
on positive ions as condensation nuclei. Because of the re-
duced electron density the particles had not been neutralised
(or become negatively charged) by the time the rocket made
its measurement.

The modelled aerosol particle densities of, e.g., Figs.5,
7, and8 illustrate the need for a particle instrument that can
distinguish between the various charge states and preferably
also measure the density of neutral particles. When aerosol
particle densities are higher than the undisturbed electron and
ion density in the absence of aerosol particles (i.e. the pro-
files used as initial conditions for the model), most of the
aerosol particles will remain neutral, and of those that do
become charged the number of positively charged and neg-
atively charged particles can be comparable. Hence a cur-
rent measurement, such as made with the DC channel of the
ECOMA instrument, will be “blind” to the actual number
of aerosol particles present. Similarly, if particles are large
the number of particles carrying more than one elementary
charge may be significant. Under such circumstances we ob-
viously cannot obtain the density by simply assuming that
each particle carries a single negative (or positive) charge.
Such an assumption is only valid if the aerosol particle den-
sity is much lower than the ambient plasma density (in which
case the impact of aerosol particles on the ambient plasma
is small) and the particles are small. Even in that case one
would have to assume that either electron attachment or parti-
cle photoionisation dominates, lest the densities of positively
and negatively charged particles become comparable.

5 Conclusions

The aerosol particle instrument on the ECOMA-3 flight of
August 2007 detected a layer of particles larger than approx-
imately 2 nm carrying a net negative charge. The simulta-
neous electron density measurement by Faraday rotation and
positive ion measurement by the PIP showed a reduction of
both the electron and positive ion density in the particle layer,
located approximately between 83 and 87 km. Between 85
and 87 km the phase change was below the detection limit
of the Faraday instrument, which is consistent with a nearly
complete electron biteout in this region. The net charge car-
ried by electrons and ions was too small to match the negative
aerosol charge density. Charge neutrality of the plasma there-
fore requires that positively charged, small (.2 nm) particles
must have gone undetected by all the charged particle instru-
ments. This is supported by observations from the MASS
rocket, launched 30 min before ECOMA-3, detecting posi-
tively charged particles smaller than about 1 nm (Robertson
et al., 2009). Assuming these “smoke” particles to carry a
single charge, their density must be at least 2×108 m−3.

We have used a numerical model, accounting for the
charging of aerosol particles and interaction between aerosol
particles and the ambient plasma, to study under what condi-
tions both the reduction in positive ion density and positively
charged smoke particles can be expected.

A reduction in positive ion density can only be achieved
under somewhat “extreme” conditions, supporting observa-
tions showing that this is an unusual phenomenon. The ion
density depends most sensitively on the electron-ion recom-
bination coefficient, which in turn depends sensitively on
the ion composition, and the number density and size of the
aerosol particles. Since the ECOMA-3 rocket did not carry
an ion mass spectrometer, the ion composition is not known.
With a rate coefficient corresponding to a mixture of water
cluster and molecular ions, the required density depletion can
only be achieved with a large number of NLC-sized parti-
cles. Assuming these particles to be solid ice with a mass
density comparable to ice at 1 atm pressure, their water con-
tent exceeds observed mesospheric water vapour mixing ra-
tios by orders of magnitude and the particle density is also
approximately a factor 10 higher than typical NLC values.
Assuming a recombination rate coefficient corresponding to
NO+, the ion depletion can be obtained assuming smaller
particles and/or lower number densities, and without exceed-
ing the observed water vapour mixing ratio by a large fac-
tor. If molecular ions were dominant in the particle layer, a
very small electron-ion production rate is required, which is
not compatible with a sunlit atmosphere or electron precipi-
tation.

The model calculations show that without photoionisation
the smoke particles would become negatively charged. A
very high photoionisation rate, of order 10−2 s−1 or higher, is
needed for the smoke particles to become positively charged,
as required by observations and charge neutrality. This
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indicates that these particles may have a different chemical
composition, with a lower work function, than the large ice
particles.
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