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Abstract. Before radar estimates of the raindrop size dis-
tribution (DSD) can be assimilated into numerical weather
prediction models, the DSD estimate must also include an
uncertainty estimate. Ensemble statistics are based on using
the same observations as inputs into several different mod-
els with the spread in the outputs providing an uncertainty
estimate. In this study, Doppler velocity spectra from col-
located vertically pointing profiling radars operating at 50
and 920 MHz were the input data for 42 different DSD re-
trieval models. The DSD retrieval models were perturbations
of seven different DSD models (including exponential and
gamma functions), two different inverse modeling method-
ologies (convolution or deconvolution), and three different
cost functions (two spectral and one moment cost functions).

Two rain events near Darwin, Australia, were analyzed in
this study producing 26 725 independent ensembles of mass-
weighted mean raindrop diameterDm and rain rateR. The
mean and the standard deviation (indicated by the symbols
〈x〉 andσ {x}) of Dm andR were estimated for each ensem-
ble. For small ranges of〈Dm〉 or 〈R〉, histograms ofσ {Dm}

and σ {R} were found to be asymmetric, which prevented
Gaussian statistics from being used to describe the uncer-
tainties. Therefore, 10, 50, and 90 percentiles ofσ {Dm} and
σ {R} were used to describe the uncertainties for small inter-
vals of 〈Dm〉 or 〈R〉. The smallestDm uncertainty occurred
for 〈Dm〉 between 0.8 and 1.8 mm with the 90th and 50th
percentiles being less than 0.15 and 0.11 mm, which corre-
spond to relative errors of less than 20% and 15%, respec-
tively. The uncertainty increased for smaller and larger〈Dm〉

values. The uncertainty ofR increased with〈R〉. While
the 90th percentile uncertainty approached 0.6 mm h−1 for
a 2 mm h−1 rain rate (30% relative error), the median uncer-
tainty was less than 0.15 mm h−1 at the same rain rate (less
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than 8% relative error). This study addresses retrieval error
and does not attempt to quantify absolute or representative-
ness errors.
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1 Introduction

The assimilation of radar precipitation estimates into numer-
ical weather prediction models is a very difficult task because
the numerical models require both the precipitation estimate
as well as the uncertainty of that estimate in order to blend the
observations with the model. Quantifying the precipitation
uncertainty from radar observations is also difficult because
the uncertainty results from four types of errors: measure-
ment, model, representativeness, and sampling (Bringi and
Chandrasekar, 2001). Measurement errors are due to the pre-
cision of the instrument. Model errors result from represent-
ing observations with idealized mathematical expressions.
Representativeness errors are due to time evolving changes
and spatial inhomogeneity of precipitation within the sample
volume during the observation dwell time. Sampling errors
result from changes in precipitation between successive ob-
servations.

This study focuses on quantifying the model errors of pre-
cipitation estimates retrieved from vertically pointing profil-
ing radars by using the concept of ensemble statistics. The
underlying principle of ensemble statistics is that the same
radar observations are the inputs into multiple models and
the range of output solutions determines the uncertainty of
the model estimate. When different observations are used as
inputs to the same models (for example, observations from
two different profiling radars), differences in the model es-
timates will be due in part to the representativeness of the
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input observations. By using the same inputs in every model,
differences in the output are due to assumptions about the
model precipitation physics and due to the numerical code
used in the retrieval process.

Vertically pointing profiling radars have been used for over
20 years to estimate the number and size of raindrops falling
directly overhead (Wakasugi et al., 1986). Three major mod-
eling factors determine how the radar observations are con-
verted into precipitation estimates. The first major factor is
the mathematical functional shape of the raindrop size dis-
tribution (DSD). Typically, there are more small raindrops
within a given volume than large raindrops, which leads to
the assumption that the shape of the DSD follows an ex-
ponential (Waldvogel, 1974) or a gamma function (Ulbrich,
1983). By assuming a particular shape of the DSD, errors
are added to the retrieved DSD because the unknown true
distribution of raindrops may not follow the assumed shape.
This study uses seven different DSD shape models previ-
ously discussed in the literature (Waldvogel 1974; Ulbrich,
1983; Marshall and Palmer, 1948; Illingworth and Black-
man, 2002; Zhang et al., 2003; Feingold and Levin, 1986).

The second major factor that contributes to the model error
of precipitation estimates retrieved from vertically pointing
profiling radars is the numerical inverse methodology that
converts the radar observations into raindrop size distribu-
tion estimates. If the DSD were known a priori, then the
radar observations can be uniquely determined using radar
scattering theory. This forward modeling maps the DSD into
the radar domain. However, converting radar observations
into the DSD domain is an inverse modeling problem and
there is not a unique mapping from a given radar observation
into a unique DSD. This study uses both the convolution and
deconvolution numerical inverse modeling methodologies to
estimate the DSD given a set of radar observations (Schafer
et al., 2002; Lucas et al., 2004).

The third major factor contributing to model error is the
cost function that objectively determines the “best” solution
when comparing the model with the observed radar obser-
vation. The most commonly used cost function involves the
sum of the squared difference between the model and obser-
vation. This cost function is also related to the chi-squared
(χ2) statistic. Another cost function involves the absolute
difference between the model and observation and is a better
cost function to remove the influence of outliers. This study
uses these two cost functions plus a third that compares the
first three moments of the modeled and observed radar data
and is a more efficient calculation than the first two cost func-
tions.

Using seven DSD models, two numerical inverse model-
ing methods, and three cost functions yields 42 DSD esti-
mates for each radar observation. These 42 DSD estimates
constitute one ensemble. The profiling radar observations
from collocated 50- and 920-MHz profilers near Darwin,
Australia, during two rain events are used in this study to
estimate the mean mass-weighted raindrop diameter and the

rain rate. The statistics of 26 725 independent ensembles are
analyzed to provide uncertainty estimates that can be applied
to each precipitation estimate.

This paper has the following format. The seven different
DSD models are discussed in Sect. 2. The forward model of
estimating the radar reflectivity-weighted Doppler velocity
spectra when given a raindrop size distribution is discussed
in Sect. 3. The inverse model methodologies are presented
in Sect. 4, followed by the discussion of the cost functions
in Sect. 5. The profiling radar observations are discussed
in Sect. 6. The ensemble statistics and conclusions are pre-
sented in Sects. 7 and 8.

2 DSD models

The number and size of raindrops within a unit volume
is described by the number concentration,N(D) [number
m−3 mm−1], also called the raindrop size distribution (DSD),
whereD is the spherical equivalent diameter of each raindrop
[mm]. Given the number concentration, several quantities
describing the precipitation can be estimated, including the
radar equivalent reflectivity factor,z [mm6 m−3]. Assuming
Rayleigh scattering,z is estimated using (Doviak and Zrnic,
1993)

z =

∞∫
0

N(D)D6dD. (1)

The reflectivity factor can be expressed in log units [dBZ]
using

Z = 10 log10(z). (2)

The rain rate,R [mm h−1], is estimated using

R =
6π

1000

∞∫
0

N(D)D3v(D)dD (3)

wherev(D) is the terminal fall speed of the raindrop ex-
pressed in m s−1, and leading constants scale the rain rate
so that it is expressed in mm h−1.

Another useful parameter used to describe the DSD is the
mass-weighted mean drop diameter which is estimated using

Dm =

∞∫
0

N(D)D4dD

∞∫
0

N(D)D3dD

. (4)

As can be seen from Eqs. (1) through (4), the DSD can be
described in detail usingN(D) or described in general using
Z, Dm, andR.

While it would be useful to haveN(D) estimates for ev-
ery raindrop diameter size, noise and measurement uncer-
tainty preventsN(D) from being estimated at each raindrop
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size. Therefore,N(D) is described using mathematical ex-
pressions that are functions of diameter, and the following
subsections describe the seven DSD models used in previous
work and in this study.

2.1 Gamma distribution

The work by Ulbrich (1983) described the DSD using a mod-
ified Gamma function of the form

N(D)=N0D
µ exp(−3D) =N0D

µ exp

(
−(4+µ)

D

Dm

)
(5)

whereN0 is the scaling parameter [number m−3 m−1−µ],
µ [unitless] is the shape parameter, and3 [mm−1] is the
slope parameter which is related to the mean diameter us-
ing 3=(4+µ)/Dm. While µ does influence the slope of
the distribution at large diameters,µ has a large influence
on the curvature of the distribution at small diameters. When
µ has negative values, the number concentration increases
as the diameter decreases, and mathematically (and non-
physically) has infinite number of drops with zero diameters.
Conversely, whenµ has positive values the number concen-
tration decreases as the diameter decreases, causing a down-
ward curvature of the number concentration at small raindrop
sizes.

2.2 Exponential distribution

The exponential distribution has been used in many studies
to describe the DSD before Ulbrich (1983) introduced the
Gamma distribution DSD model (Waldvogel, 1974). The ex-
ponential DSD is a special case of the Gamma distribution
DSD whenµ=0 and is expressed as

N(D) = N0 exp(−3D) = N0 exp

(
−4

D

Dm

)
. (6)

2.3 Marshall-Palmer distribution

In the seminal work by Marshall and Palmer (1948), the DSD
was described by the set of equations

NMP(D) = N0 MP exp(−3MPD) (7a)

N0 MP = 8000 (7b)

3MP = 4.1R−0.21 (7c)

where N0 MP is the Marshall-Palmer scale parameter and
3MP is the Marshall-Palmer slope parameter which is a func-
tion of rain rate. The Marshall-Palmer (MP) distribution is a
special set of the exponential distribution DSDs constrained
to have a fixed scale parameter (N0 MP=8000) and a slope
parameter dependent on the rain rate. The MP distribution
was developed using mid-latitude stratiform rain and it will
be shown in Sect. 7 that the MP distribution is not well suited
to describe the tropical rainfall data set used in this study.

2.4 Constantµ gamma distribution

As previously discussed, the value ofµ in the gamma dis-
tribution has a large influence on the shape of the DSD at
small raindrop sizes. The work by Illingworth and Blackman
(2002) suggests that radars that observe the raindrops within
the Rayleigh scattering regime can not resolve the small rain-
drops, and a fixed value of the shape parameter is appropri-
ate for describing the DSD when using weather radars. In
this study, retrievals are performed using the gamma distri-
bution (Eq. 5) withµ set to constant values of 2.5 and 5. A
constantµ reduces the Gamma function DSD (Eq. 5) to two
unknowns.

2.5 Constrained gamma distribution

The gamma distribution expressed in Eq. (5) consists of 3
different variables,N0, µ, andDm. The work by Zhang et
al. (2003) and Brandes et al. (2003) suggests that a mathe-
matical relationship exists betweenµ and3 in the gamma
distribution DSD model. While the particularµ−3 relation-
ship may be precipitation regime-dependent and more work
is needed to validate these relationships, this study uses the
Zhang et al. (2003)µ − 3 relationship of

3 = 0.0365µ2
+ 0.735µ + 1.935. (8)

Thisµ−3 relationship was converted into aµ−Dm relation-
ship using3=(4+µ)/Dm yielding

Dm =
4 + µ

0.0365µ2 + 0.735µ + 1.935
. (9)

2.6 Log-normal distribution

The raindrop size distribution has been described by Fein-
gold and Levin (1986) using a log-normal distribution of the
form

N(D) = Nt exp

[
− ln2

(
D

Dm

) (
2 ln2 σ

)]
(10)

where Nt is the total number of drops per unit volume
[count m−3] and σ describes the width of the distribution.
A unique feature of the log-normal distribution is thatN(D)

approaches zero as the raindrop diameter approaches zero.

3 Radar observations of DSD

Assuming a radar beam is pointing vertically and assuming
the raindrop size distribution is known and uniformly dis-
tributed throughout the radar pulse volume, radar backscat-
tering theory is used to construct two mathematical estimates
of the radar observations (see Doviak and Zrnic, 1993, for
details of the radar backscattering theory). The first mathe-
matical estimate is from an ideal radar that has infinitesimal
beamwidth and the raindrops are in a static atmosphere with-
out any vertical motion and without any turbulence. While
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this ideal radar and atmosphere does not exist, this mathe-
matical framework is useful to perform the coordinate trans-
formation from the number concentration’s raindrop diam-
eter domain to the radar’s raindrop fall-speed domain. The
second mathematical estimate includes the finite beamwidth
of a realistic radar along with the vertical motion and tur-
bulence of a realistic atmosphere. These three factors con-
tribute to spreading the returned power from each raindrop
into several different velocity channels. Both mathematical
estimates are discussed in more detail below.

3.1 Ideal radar

Assuming a perfect Doppler radar with infinitesimal
beamwidth observing a uniformly distributed raindrop size
distributionN(D) in a static atmosphere without any verti-
cal air motion and without any turbulent motion, the modeled
hydrometeor reflectivity-weighted Doppler spectral density,
Shydro(v) [mm6 m−3 (m s−1)−1], is uniquely related toN(D)

through the relation (Atlas et al., 1973)

Shydro(v) = N(D)D6dD/dv, (11)

wherev anddvare the velocity channels and velocity resolu-
tion of the Doppler velocity spectrum in units of m s−1. The
variablesD anddD are the raindrop diameters and diame-
ter resolutions corresponding tov anddv and have units of
mm. The units ofShydro(v) are reflectivity per velocity chan-
nel (mm6 m−3) (m s−1)−1 andShydro(v)has non-zero values
only in the velocity channels with corresponding raindrops.
While dvhas the same value for each velocity channel,dD is
variable and dependent on the diameterD. Through labora-
tory studies, the terminal fall speed of raindrops is expressed
as

vfall speed(D) = (9.65− 10.3 exp(−0.6D))

(
ρ

ρ0

)−0.4

, (12)

whereρ0 andρ represent the air densities at the ground and
the level of the observation aloft, respectively (Gunn and
Kinzer, 1949; Atlas et al., 1973).

3.2 Realistic radar

While Eqs. (11) and (12) describe the reflectivity-weighted
Doppler velocity spectral density for an ideal radar observ-
ing any possible raindrop size distributionN(D) in a static
atmosphere, finite radar beamwidth and atmospheric verti-
cal air motion and turbulence need to be added to the radar
forward model to better represent radar observations. Both
the finite radar beamwidth and atmospheric turbulence cause
the observed Doppler velocity spectrum to be spread over a
wider range of velocity channels. It is also important to in-
clude the shift in the Doppler velocity spectrum due to the
vertical air motion that shifts the raindrop terminal fall speed
to the observed Doppler velocity. The spreading and shifting

of Shydro(v) is accomplished by convolvingShydro(v) by the
spreading and shifting spectrum

Sair(v−ωDoppler, σair)=
1

√
2πσair

exp

[
−

(
v−ωDoppler

)2

2σ 2
air

]
,(13)

whereSair(v − ωDoppler, σair) is Gaussian shaped (Gossard,
1994),ωDoppler [m s−1] is the Doppler velocity of the ambi-
ent air motion defined with motions approaching the radar
as positive Doppler motions consistent with the 1842 work
by Christian Doppler (White, 1982), andσair [m s−1] repre-
sents the spreading of the spectrum. The leading fraction in
Eq. (13) normalizesSair(v−ωDoppler, σair) to unit area when
integrated over all velocities so that the spectral broadening
does not modify the total reflectivity ofShydro(v). The con-
volution of Shydro(v) by Sair(v−ωDoppler, σair) is expressed
mathematically as (Wakasuki et al., 1986)

Smodel(v)=Sair(v−ωDoppler, σair)⊗Shydro(v)+Noise, (14)

where the symbol⊗ represents the convolution function.
The last term in Eq. (14) is the random noise that is

radar dependent and must be added to every Doppler veloc-
ity channel of the Doppler spectrum. Equation (14) defines
the forward model of a realistic radar and produces a realis-
tic reflectivity-weighted Doppler velocity spectrum when the
raindrop size distributionN(D), the air motion Doppler ve-
locity ωDoppler, and the spectral broadeningσair are used as
inputs.

4 Numerical inverse model methodologies

While Eq. (14) constructs a modeled radar reflectivity
Doppler velocity spectrumSmodel(v), the goal of DSD re-
trievals is to estimate the raindrop size distributionN(D)

when the radar observes a Doppler velocity spectrum
Sobs(v). If the retrieved model spectrumSmodel(v) approx-
imatesSobs(v) by minimizing a cost function (described in
Sect. 5), thenN(D) can be estimated fromSmodel(v). One
difficulty with solving this inverse problem is accounting for
the convolution ofShydro(v) by the spreading and shifting
spectrumSair(v−ωDoppler, σair). Two methods have been dis-
cussed in the meteorological literature to account for the con-
volution operation. The oldest method uses stable convolu-
tion calculations to estimateSmodel(v) and the newest method
uses numerical deconvolution techniques to remove the in-
fluence of the spreading spectrum to estimateShydro(v). In
both methods,N(D) is adjusted until a cost function is min-
imized. Details of both methods are described below.

4.1 Convolution method

The convolution method uses the forward model described
by Eq. (14) to estimateSmodel(v) and iteratively adjusts
N(D) until a cost function betweenSmodel(v) and Sobs(v)
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is minimized. One advantage of this method is that calcu-
lating Smodel(v) is a stable numerical operation of the for-
ward model using the convolution operation. While each
forward model calculation is stable, it is possible without
proper numerical coding for the solution to converge to a lo-
cal minimum in the cost function and not the global mini-
mum. The potential of finding a local minimum versus find-
ing the global minimum is a trade-off between convergence
speed and searching the whole solution space. In this study,
the whole solution space is searched to find the global min-
imum to avoid the possibility of converging to a local mini-
mum in the cost function. The convolution method has been
used in many studies including Wakasugi et al. (1986, 1987);
Sato et al. (1990); Currier et al. (1992); Maguire and Avery
(1994); Ragopadhyaya et al. (1993, 1998, 1999); Schafer et
al. (2002); and Williams (2002).

To illustrate the logic of the convolution method, Fig. 1
shows a flow diagram. The top portion (above the dashed
line) of Fig. 1 shows the inputs into the convolution method
which includes the DSD model, estimates ofωDoppler and
σair, and the observed radar Doppler velocity spectrum of
the rain. Details of estimatingωDoppler andσair from radar
observations and the input rain spectrum are discussed in
Sect. 6. The bottom portion of Fig. 1 shows the flow diagram
of the convolution method. For each retrieval,ωDoppler and
σair remain constant, so the spreading and shifting function
Sair(v−ωDoppler, σair) needs to be calculated only once using
Eq. (13) (Fig. 1e). Starting with an initialN(D) (box d), the
initial Shydro(v) is estimated using Eqs. (11) and (12) (Fig. 1f)
and then convolved bySair(v−ωDoppler, σair) to produce an
estimate ofSmodel(v) using Eq. (14) (Fig. 1g). This model
spectrum is compared with the observed spectrumSobs(v)

using one of three different cost functions (Eqs. 16, 17, or
18) as discussed in Sect. 5) (Fig. 1h). If this solution does
not minimize the cost function (Fig. 1j), thenN(D) is ad-
justed (Fig. 1i) andShydro(v) is recalculated (Fig. 1f). The
loop through Fig. 1i, f, g, h, j is repeated until the cost func-
tion is minimized. After finding the best solution,N(D) and
estimates ofR andDm using Eqs. (3) and (4) (Fig. 1k) are
saved for future analysis. The flow diagram is repeated us-
ing the same radar observations but different DSD functional
shape (described in Sect. 2) to yield 7 solutions for each cost
function.

4.2 Deconvolution method

While the convolution method applies a spreading function
to the ideal radar spectrumShydro(v) to estimate a realis-
tic radar spectrumSmodel(v) which is then compared with
the observed spectrumSobs(v), the deconvolution method
applies a “de-spreading” function to the observed spectrum
Sobs(v) to estimate a deconvolved spectrumSdeconv(v) which
is then compared with the model spectrum from an ideal
radarShydro(v). The new deconvolved spectrum is expressed

Fig. 1. Convolution method flow diagram.

as

Sdeconv(v) = Sair(v − ωDoppler, σair) ⊕ Sobs(v) (15)

whereSobs(v) is the observed Doppler velocity spectrum and
the symbol⊕ indicates the deconvolution operation. One
major difficulty with numerical deconvolution operations is
that the noise in the observed spectrum can be amplified,
which could lead to unstable retrievals and unrealistic solu-
tions. Studies by Lucas et al. (2004) and Schafer et al. (2002)
provide two examples of performing stable deconvolution
routines.

Figure 2 shows a flow diagram of the deconvolution
method. The top portion (above the dashed line) of Fig. 2
shows the inputs into the deconvolution method which are
the same inputs as for the convolution method, and the bot-
tom portion shows the flow diagram of the deconvolution
method. Since for each retrieval,ωDoppler, σair, andSobs(v)

remain constant,Sdeconv(v) needs to be estimated only once
(see Fig. 2e and g). The iterative procedure starts with an
initial estimate ofN(D) (Fig. 2d) which is used to estimate
Shydro(v) (Fig. 2f), and then compared withSdeconv(v) using
one of three different cost functions (16), (17), or (18) as dis-
cussed in Sect. 5) (Fig. 2h). If this solution does not minimize
the cost function (Fig. 2j), thenN(D) is adjusted (Fig. 2i) and
Shydro(v) is recalculated (Fig. 2f). The loop through Fig. 2i,
f, h, j is repeated until the cost function is minimized. After
finding the best solution,N(D) and estimates ofR andDm

using Eqs. (3) and (4) (Fig. 2k) are saved for future analysis.

5 Cost functions

In order to determine the “best” solution, cost functions are
defined to subjectively compare the model spectrum with the
observed spectrum. Three cost functions are used in this
study. Two cost functions compare spectra at each velocity
channel and one cost function compares three moments of
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Fig. 2. Deconvolution method flow diagram.

the spectra. While the spectral cost functions produce model
spectra that better represent the observed spectra, the mo-
ment cost function is computationally faster. All three cost
functions are described below.

5.1 Spectral two-norm cost function

In this study, the spectral two-norm cost function is defined
as the sum of the squared difference between the modeled
and observed spectra at each velocity channel and is ex-
pressed as

J‖spectra‖ =

∑
i

(Sobs(vi) − Smodel(vi))
2 (16)

wherei represents only the velocity channels with spectral
values larger than the noise level. The value ofJ‖spectra‖
is similar to aχ2 estimate used by Sato et al. (1990) and
Schafer et al. (2002).

5.2 Spectral one-norm cost function

The spectral one-norm cost function is defined as the sum of
the absolute difference between the modeled and observed
spectra at each velocity channel and is expressed as

J|spectra| =

∑
i

|Sobs(vi) − Smodel(vi)|. (17)

The numerical benefit of the one-norm cost function over the
two-norm cost function is that outliers between the model
and observation contribute less to the one-norm cost func-
tion. Thus, the one-norm cost function is a more robust cost
function than the two-norm cost function (Aster et al., 2005).

5.3 Moment cost function

While the spectral cost functions involve every spectral point
above the noise level, the moment cost function uses only the

Fig. 3. Time-height cross section of radar reflectivity from the ver-
tically pointing 920-MHz profiler for(a) 22 January and(b) 23 Jan-
uary 2006 during TWPICE. The lines at 1.5 and 4.0 km indicate the
altitude range of DSD retrievals used in this study.

first three moments of the modeled and observed spectra and
is expressed as

Jmoment=
|Zobs− Zmodel|

Zobs
+

|〈Vobs〉 − 〈Vmodel〉|

〈Vobs〉

+

∣∣σVobs − σVmodel

∣∣
σVobs

(18)

where Zobs and Zmodel are the reflectivity [dBZ] (zeroth
moment expressed in dBZ),〈Vobs〉 and 〈Vmodel〉 are the
reflectivity-weighted mean Doppler velocity [m s−1] (first
moment), andσVobs andσVmodel are the reflectivity-weighted
Doppler velocity standard deviation [m s−1] (square root of
the second moment) for the observed and modeled spectra,
respectively. LettingS(v) denote either the observed or mod-
eled spectrum, the reflectivity in units mm6 m−3 is estimated
using

z =

∞∫
−∞

S(v)dv (19)

and can be expressed in dBZ units using Eq. (2). The
reflectivity-weighted mean Doppler velocity is estimated us-
ing (Williams, 2002)

〈V 〉 =

∞∫
−∞

vS(v)dv

∞∫
−∞

S(v)dv

. (20)
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And the reflectivity-weighted Doppler velocity standard de-
viation is estimated using (Williams, 2002)

σV =


∞∫

−∞

(v − 〈V 〉)2S(v)dv

∞∫
−∞

S(v)dv


1/2

. (21)

6 Radar observations during TWPICE

Vertically pointing profiling radar observations were col-
lected in January and February 2006 during the Tropical
Warm Pool – International Cloud Experiment (TWP-ICE)
around Darwin, Australia. The experiment provided both
remote sensing observations and aircraft in-situ measure-
ments within anvil clouds which are needed to verify the
microphysical properties inferred by ground-based remote
sensing instruments. For this study, the Doppler velocity
spectra collected by the collocated 50-MHz and 920-MHz
profiling radars were used to estimate the vertical air mo-
tion and the vertical profile of rain drop size distributions
(DSDs). The long wavelength 50-MHz profiler observations
are used to estimate the vertical Doppler motionωDopplerand
the turbulent broadeningσair as the precipitation passed di-
rectly over the profiler site. The shorter wavelength 920-
MHz profiler observations provided the observed reflectivity-
weighted Doppler velocity spectraSobs(v) used to estimate
the DSD.

The time-height cross sections of reflectivity for the two
rain events on 22 and 23 January 2006 used in this study are
shown in Fig. 3. Both rain events had radar brightband sig-
natures near 4.5 km indicative of stratiform rain. Near 15:50
and 18:20 UTC on 23 January (Fig. 3b), the reflectivity struc-
ture did not contain a brightband as convective rain elements
passed over the profiler site.

Examples of reflectivity-weighted Doppler velocity spec-
tra observed by the two profilers while precipitation was di-
rectly over the profiler site on 23 January 2006 at 20:04 UTC
are shown in Fig. 4. Figure 4a was derived from the 50-
MHz profiler and Fig. 4b and c were derived from the 920-
MHz profiler. The colored panels in Fig. 4a and b show
the reflectivity-weighted Doppler velocity spectral density
S50−MHz(v) and S920−MHz(v)=Sobs(v) in units of 10 log10
((mm6 m−3)/(m s−1)) at each range gate. The logarithmic
scale is used to aid in visualizing data that spans six orders
of magnitude. The 920-MHz profiler reflectivity is shown in
Fig. 4c and has units of dBZ.

The advantage of using the 920-MHz operating frequency
radar is that the radar is sensitive to backscattered energy
from hard targets distributed throughout the radar pulse vol-
ume. Referring to the colored panel of Fig. 4b, the 920-MHz
profiler Doppler spectra show particles with net downward
motion below the freezing level, which is located around
4.5 km. The solid black lines in the colored panels indicate
the air-density–corrected terminal fall speeds of raindrops
with diameters of 1-, 3-, and 6-mm estimated using Eq. (12).
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Fig. 5. Retrieved(a) reflectivity, (b) mean diameterDm, and(c) rain rate for each of the 42 DSD retrievals and at each of the 25 range gates
for 22 January 2006 at 13:55 UTC. The Marshall-Palmer (MP) DSD model retrievals are shown with circles and all other DSD models are
shown with pluses. The MP solutions are over-constrained for this data set and produceDm andR that are not consistent with the other
retrievals. MP DSD models are not used in any of the ensemble statistics.

The 50- and 920-MHz profilers operated with a coordi-
nated scan strategy so that both radars were observing verti-
cally for the first 45 s of every minute. The first valid range
gate for the 50-MHz profiler was 1.5 km above the ground
and each range gate was separated by 315 m. The 920-MHz
profiler operated with 105 m range gate spacing, and the 25
range gates between 1.5 and 4 km were used in this study,
which is high enough to have valid 50-MHz profiler vertical
air motion estimates (1.5 km) and low enough to avoid the
radar brightband (4.5 km). To account for the different verti-
cal resolution of the two profilers, the 50-MHz profiler ver-
tical air motion estimates at 315 m vertical resolution were
interpolated to the 920-MHz profiler 105 m resolution. Sys-
tem parameters for both profilers are listed in Table 1.

7 Ensemble statistics

For each simultaneous 50- and 920-MHz radar observation,
42 different raindrop size distributions (DSDs) were esti-
mated at each of the 25 range gates between 1.5 and 4 km.

These 42 DSD estimates constitute one ensemble and were
formed using seven different DSD models (see Sect. 2),
two different numerical inverse model methodologies (see
Sect. 4), and three different cost functions (see Sect. 5). In
this study, all ensembles are studied independently of alti-
tude, time, and rain regime to evaluate the statistical proper-
ties of the ensemble retrieval methodology.

7.1 Filtering outliers

Before the statistical properties of the ensemble retrieval
methodology can be evaluated, outliers need to be filtered
from each ensemble. The DSD estimates at each altitude
were visually examined for each profile to search for con-
sistent biases in the retrievals. A typical profile is shown in
Fig. 5 with the 42 DSD estimates of reflectivity, mean rain-
drop diameter, and rain rate for each range gate shown in
three separate panels. The six Marshall-Palmer DSD Model
(MP) retrievals are shown with circles and all other DSD
Models are shown with pluses. Note that for this profile, the
MP mean raindrop diameterDm is consistently less than the
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Fig. 6. Panel(a) shows the histogram of〈Dm〉 occurrence for all 26 725 ensembles as a function of retrieved〈Dm〉 (solid line) and the
percent accumulation from 0 to 100% (dashed line). Panel(b) shows the histogram ofσ {Dm} for the small range of 1.45<〈Dm〉<1.55 mm.
Panel (b) also shows the percent accumulation from 0 to 100% of these 2474 ensembles in this sub-set. The values of the 10th, 50th, and
90th percentiles are indicated in the two panels.

Table 1. Operating parameters of the Darwin 50- and 920-MHz profilers (V is vertical, E is east, and N is north).

Parameter 50-MHz Profiler 920-MHz Profiler

Scan sequence V(45 s), E(15 s), V(45 s), N(15 s) V(45 s), E(15 s), V(45 s), N(15 s)
Height resolution 315 m 105 m
Height coverage 1.5–20 km 200 m–12 km
Beamwidth 3◦ 9◦

other DSD Models, and the MP rain rateR is consistently
greater than the other DSD Models.

These biases occurred with nearly every profile during the
two rain events and theDm bias for each DSD estimate rel-
ative to the ensemble mean is shown in Table 2. The 42
DSD estimates are shown in Table 2 with the seven rows
corresponding to the DSD models and the six columns corre-
sponding to the two numerical model methods and the three
cost functions. The bias for each DSD estimate is defined us-
ing all n observations from both rain events and determined
using

Bias=
1

n

n∑
i

(
Destimate

m,i −〈Dm〉i

)
(22)

whereDestimate
m,i is a particular DSD estimate and〈Dm〉i is

the ensemble mean using all 42 DSD estimates for eachith

observation. The MP DSD modelDm is biased low rela-
tive to the ensemble mean for all six numerical methods by
at least 0.4 mm. ThisDm underestimate leads to a rain rate
over estimate. TheDm bias indicates that the constraints of
the MP DSD Model which were derived using mid-latitude
stratiform rain events are not appropriate for DSD estimates
for these two tropical rain events observed near Darwin, Aus-
tralia. Due to the inconsistency of the MP retrievals, the
six MP DSD Models were eliminated from the ensemble
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Fig. 7. Panel(a) shows the histogram of〈R〉 occurrence for all 26 725 ensembles as a function of retrieved〈R〉 (solid line) and the percent
accumulation from 0 to 100% (dashed line). Panel(b) shows the histogram ofσ {R} for the small range of 1.45<〈R〉<1.55 mm h−1. Panel (b)
also shows the percent accumulation from 0 to 100% of these 562 ensembles in this sub-set. The values of the 10th, 50th, and 90th percentiles
are indicated in the two panels.

database, leaving a maximum number of 36 members in each
ensemble.

It is understood that with the ensemble modeling
paradigm, not all models produce realistic results for every
situation. Therefore, the remaining 36 mean raindrop diam-
eterDm and 36 rain rateR estimates for each ensemble were
screened for outliers using a two-step filter. First, the me-
dian and standard deviation ofDm andR (D̃m, R̃, σ {Dm},
andσ {R}) were estimated for each ensemble of 36 DSD esti-
mates. The second step removed all DSD estimates that were
either outside the bounds of̃Dm±2σ {Dm} or R̃ ± 2σ {R},
or greater thanR̃+2R̃. After this two-step filter, all ensem-
bles with less than 28 members were eliminated from the
database, leaving a total of 26 725 independent ensembles
each with at least 28 DSD estimates.

7.2 Statistical measures of the ensembles

After each ensemble was filtered to remove outlier DSD
estimates, the mean and standard deviation ofDm and R

were estimated for each ensemble (〈Dm〉, σ {Dm}, 〈R〉, and
σ {R}). The top panel of Fig. 6 shows the histogram of〈Dm〉

and the percent accumulation for all 26 725 ensembles. Vi-

sual inspection suggests that the〈Dm〉 histogram is quasi-
symmetric and the uniform distribution of the 10, 50 and
90 percentiles with values of 0.9, 1.5, and 2.1 mm supports
a quasi-symmetric histogram. The bottom panel of Fig. 6
shows the histogram and percent accumulation ofσ {Dm}

for a sub-set of 2474 ensembles that have〈Dm〉 between
1.45 and 1.55 mm. While visually, theσ {Dm} histogram ap-
pears asymmetric with more larger values than smaller val-
ues, quantitatively, the 10th, 50th, and 90th percentile values
are nearly uniformly distributed with values of 0.05, 0.10,
and 0.14 mm, suggesting a quasi-symmetric distribution.

The histogram and percent accumulation of〈R〉 for all
26 725 ensembles are shown in the top panel of Fig. 7. Both
visual inspection and the non-uniform spacing between the
10th, 50th, and 90th percentiles of〈R〉 indicate that the rain
rate histogram is asymmetrical. The bottom panel in Fig. 7
shows the histogram and percent accumulation ofσ {R} for
the small interval of〈R〉 between 1.45 and 1.55 mm h−1. The
strong asymmetry of theσ {R} histogram is identified both
visually and by the non-uniform percentiles (0.04, 0.08, and
0.32 mm h−1). This implies that Gaussian statistics, which
include estimates of the mean and standard deviation, can-
not be used to describe the distribution ofσ {R} for this small
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Table 2. Bias ofDm for each DSD estimate relative to the ensemble mean (see Eq. 22). Each row corresponds to a DSD model (described
in Sect. 2) with the model equation shown in the parentheses. Each column corresponds to a numerical inverse method (described in Sect. 4)
and a cost function (described in Sect. 5).

DSD model (Eq. #) Convolution method Deconvolution method
J‖spectra‖ J|spectra| Jmoment J‖spectra‖ J|spectra| Jmoment

Gamma (5) 0.031 0.033 0.029 −0.003 0.005 0.045
Exponential (6) −0.103 −0.093 −0.056 −0.124 −0.123 −0.039
Marshall-Palmer (7) −0.485 −0.527 −0.467 −0.516 −0.560 −0.527
Gamma withµ=2.5 (5) 0.060 0.050 0.061 0.038 0.021 0.072
Gamma withµ=5 (5) 0.128 0.112 0.138 0.100 0.082 0.148
Constrained Gamma (9) 0.031 0.034 0.021 0.025 0.029 0.008
Log-Normal (10) 0.152 0.144 0.078 0.133 0.125 0.108

interval of 〈R〉. Therefore, the uncertainty of〈R〉 is quan-
tified using the 10th, 50th, and 90th percentiles ofσ {R} for
small intervals of〈R〉. For consistency in the analysis, un-
certainties in〈Dm〉 will also be quantified using the 10th,
50th, and 90th percentiles ofσ {Dm} for each small interval
of 〈Dm〉, even though the frequency distributions are quasi-
Gaussian in shape.

7.3 Uncertainties for small ranges ofDm and R

Due to the non-linear and non-Gaussian distribution of en-
semble statistics discussed in the previous section, estimat-
ing the uncertainty inDm andR requires estimating the 10th,
50th, and 90th percentiles ofσ {Dm} andσ {R} for small in-
tervals of〈Dm〉 and〈R〉. In particular, for each small inter-
val of 〈Dm〉 or 〈R〉, the corresponding population ofσ {Dm}

andσ {R} are sorted to estimate the 10th, 50th, and 90th per-
centiles ofσ {Dm} andσ {R}. Figure 8 shows the 10th-to-
90th percentile ranges plus the 50th percentile value for〈Dm〉

ranging from 0.4 to 2.7 mm in 0.1 mm intervals (top panel)
and for〈R〉 ranging from 0.0 to 2.3 mm h−1 in 0.1 mm h−1

intervals (bottom panel). The 50th percentile is shown for
each〈Dm〉 and〈R〉 with the horizontal bar in both panels.

The smallestDm uncertainty occurs for〈Dm〉 between 0.8
and 1.8 mm and the 90th percentile is less than 0.15 mm and
the median value is less than 0.11 mm. The uncertainty in-
creases for small and larger〈Dm〉 values, which is consis-
tent with the simulations performed by Schafer et al. (2002).
The uncertainty ofR increases with〈R〉. While the 90th
percentile uncertainty approaches 0.6 mm h−1 for 2 mm h−1

rain rate (30% relative error), the median uncertainty is less
than 0.15 mm h−1 at this rain rate (less than 8% relative er-
ror). The non-uniform spacing between the rain rate 10th,
50th and 90th percentiles highlights the non-linear rain rate
error between the different retrieval methodologies.

8 Conclusions

Before radar estimates of the raindrop size distribution
(DSD) can be assimilated into numerical weather predic-
tion models, the retrieved DSD must include both the esti-
mated precipitation parameter (i.e., reflectivity, mean mass-
weighted diameter, rain rate) and an estimate of the uncer-
tainty. The ensemble methodology enables the DSD un-
certainty to be estimated by measuring the spread in DSD
retrievals that use the same observations as inputs but use
different retrieval methodologies to estimate the DSD. The
DSD retrieval methodologies are dependent on how the DSD
is modeled, how the numerical inversion method is imple-
mented, and how the cost function is defined to determine
the “best” solution.

In this study, seven different DSD models were used to
mathematically describe the raindrop size distribution and
included a Gamma distribution, an exponential distribution,
a Marshall-Palmer distribution, constantµ=2.5 and µ=5
Gamma distributions, a Gamma distribution constrained us-
ing aµ−Dm relationship, and a log-normal distribution. The
convolution method and deconvolution method were the two
numerical inversion methods used in this study. And, three
cost functions were used to compare the observations and
models and included two point-by-point cost functions and
one moment cost function. For each set of radar observa-
tions, 42 different DSD estimates were generated to form
one ensemble. The retrieved DSDs were parameterized by
the reflectivity, mass-weighted mean diameterDm, and rain
rateR.

By comparing the 42 DSD parameters of reflectivity,Dm,
andR at each range gate for every profile during two rain
events, it was determined that the Marshall-Palmer (MP)
DSD model produced DSD parameters withDm too small
andR too large compared with the other DSD models. Note
that the MP DSD is a special case of an exponential shaped
DSD with N0 fixed to a value and the slope dependent on
the rainrate (see Eq. 7 and Marshall and Palmer, 1948).
These biases were observed for nearly every profile and
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Fig. 8. Panel(a) shows the 10th-to-90th percentile ranges ofσ {Dm} for 0.1 mm intervals of〈Dm〉. The median value for each〈Dm〉 interval
is shown with a horizontal line. Panel(b) shows the 10th-to-90th percentile ranges ofσ {R} for 0.1 mm h−1 intervals of〈R〉 along with the
median value shown with a horizontal line.

were independent of range gate suggesting that the MP DSD
model, which was developed using mid-latitude stratiform
rain events, was not appropriate for these tropical rain events.
Therefore, the MP DSD model runs were eliminated from the
ensemble database. After removing outliers from individual
ensembles, 26 725 ensembles were used in this study with at
least 28 DSD estimates in each independent ensemble.

In order to estimate the uncertainty of theDm andR esti-
mates, small intervals of meanDm and meanR (〈Dm〉 and
〈R〉) were identified, and the spread in the corresponding
σ {Dm} andσ {R} were studied in detail. The histograms of
σ {Dm} andσ {R} were not symmetric which prevented the
use of Gaussian statistics (estimates of mean and standard
deviation) to describe the histograms and to describe the un-
certainties ofDm andR. Therefore, the 10th, 50th, and 90th
percentiles ofσ {Dm} and σ {R} were used to describe the
uncertainty ofDm andR for small intervals ofDm andR.

The smallestDm uncertainty occurs for〈Dm〉 between
0.8 and 1.8 mm and the 90th percentile is less than 0.15 mm
which corresponds to a relative error of less than 20%. The
median value ofσ {Dm} was less than 0.11 mm and corre-

sponds to a relative error of less than 15%. The uncer-
tainty increases for smaller and larger〈Dm〉 values. The
uncertainty ofR increases with〈R〉. While the 90th per-
centile uncertainty approaches 0.6 mm h−1 for 2 mm h−1 rain
rate (30% relative error), the median uncertainty is less than
0.15 mm h−1 at this rain rate (less than 8% relative error).
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