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Abstract. Cluster measurements in the magnetosheath with
spacecraft separations of 2000 km indicate that magnetic pul-
sations interpreted as mirror mode structures are not frozen in
plasma flow, but do propagate with speeds of up to∼50 km/s.
Properties of these pulsations are shown to be consistent with
propagating slow magnetosonic solitons. By using nonlinear
two fluid theory we demonstrate that the well known classi-
cal mirror instability condition corresponds to a small subset
in a continuum of exponentially varying solutions. With the
measured plasma moments we have determined parameters
of the polybaric pressure model in the region of occurrence of
mirror type structures and applied it to numerical modelling
of these structures. In individual cases we obtain excellent
agreement between observed mirror mode structures and nu-
merical solutions for magnetosonic solitons.

Keywords. Interplanetary physics (MHD waves and turbu-
lence) – Magnetospheric physics (Magnetosheath) – Space
plasma physics (Nonlinear phenomena)

1 Introduction

Mirror mode structures represent large modulations of the
magnetic field amplitude (δB/B ∼ ±50%) measured by
satellites in the magnetosheath and in the solar wind; e.g.
Kaufmann et al.(1970); Tsurutani et al.(1982); Schwartz
et al. (1996). These structures occur most commonly in re-
gions of significant proton temperature anisotropy,T⊥ > T‖,
in a high-beta plasma, and exhibit anti-correlations between
magnetic fieldδB and densityδN perturbations; see a recent
review byLucek et al.(2005). It is usually thought that they
are produced by the purely growing mirror instability that
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should be excited when the temperature anisotropy satisfies
the local instability condition

T⊥

T‖

> 1+
1

β⊥

, (1)

derived in the limitω/k → 0 (Hasegawa, 1969). Here,β⊥ =

2µ0p⊥/B2 is the perpendicular plasma beta,ω is the wave
frequency andk the wave number. In the above equation,
contributions from electrons (much colder than ions in the
magnetosheath) and minority ions have been neglected (see
e.g.Hellinger, 2007).

A prevalent opinion is that mirror modes represent struc-
tures frozen in plasma reference frame that are unstable
due to the temperature anisotropy (Southwood and Kivelson,
1993). The instability has been also studied using finite Lar-
mor radius effects (e.g.Pokhotelov et al., 2004; Kuznetsov
et al., 2007) and the structures have been the subject of sim-
ulation efforts (Baumg̈artel et al., 2003; Borgogno et al.,
2007; Califano et al., 2008), and analytical studies investigat-
ing their relation with slow mode magnetosonic waves (Hau
et al., 2005). Recent experimental results based on Cluster
measurements include studies bySoucek et al.(2008) and
Génot et al.(2009).

The frozen in plasma assumption has been an unverifiable
hypothesis before the multi-spacecraft measurements are
available. However, the properties of “mirror structures” as
observed by Cluster can be quantitatively explained by mod-
els showing that they represent propagating trains of slow
magnetosonic solitons (Baumg̈artel et al., 2003; Stasiewicz,
2004a,b, 2005a) moving with speed of 0–30 km/s, well be-
low the local Alfvén speed. Furthermore, a global model
of mirror modes in the bow shock – magnetosheath – mag-
netopause system byJohnson and Cheng(1997) predicts
propagation of these waves due to a combination of diamag-
netic drift and the Doppler shift of frequency associated with
plasma flow (Johnson and Cheng, 1997). Thus, a reliable de-
termination of the velocity of these structures is important for
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their proper theoretical description. The underlying question
is that in case of structures frozen in flow only temperature
anisotropy can provide the growth, while in the case of prop-
agation, ion inertia in a moving plasma could be an important
factor in mirror mode nonlinear dynamics.

Previous systematic determinations of the velocity of non-
linear structures using Cluster multi-spacecraft measure-
ments (Horbury et al., 2004) were inconclusive because they
suffered large errors in measured speeds with mean value of
22 km/s and standard deviation of±33 km/s. The accuracy of
the speed determination depends critically on the separation
distance between Cluster spacecraft, which was varied dur-
ing years of operations with typical separations of 100 km,
1000 km and 10 000 km. With small separations,∼100 km,
the short delay times of signals measured by different space-
craft introduce large errors in the determination of the ve-
locity. On the other hand, with large separation distances
∼10 000 km, the structures observed by different spacecraft
have very little or no coherence, which makes impossible de-
termination of their time shifts and velocity. The separation
distance of∼1000 km is found to be ideal for this purpose
because the structures are still coherent and the delay time is
sufficiently long to determine their velocity accurately.

Using Cluster measurements from the magnetosheath
with spacecraft separations of 2000 km we show that mag-
netic pulsations interpreted as mirror mode structures are
not frozen in plasma, but propagate with speeds of up to
∼50 km/s. Properties of these pulsations are shown to
be consistent with propagating slow magnetosonic solitons.
These nonlinear solutions of two-fluid equations are sought
in the parameter space comprising the wave Alfvén Mach
number defined asM = (ω−k ·V p)/kVA, and the propaga-
tion angleα with respect to the magnetic fieldB. Here,VA is
the Alfvén speed, andVp is the bulk plasma velocity in the
reference system under consideration. Nonlinear, exponen-
tially varying solutions may occur in different areas of the
parameter space (M,α) and in both anisotropic and isotropic
plasmas. We demonstrate that mirror instability condition (1)
represents a 1-D subset (M ≈ 0) in a large area of phase space
describing a continuum of exponentially varying solutions.
We also show that the polybaric pressure model proposed by
Stasiewicz(2005b) represents good approximation to Clus-
ter measurements and can be used in applications related to
hot anisotropic plasmas in fluid approximation. Finally, we
demonstrate that individual mirror structures could be mod-
elled with high accuracy as slow mode magnetosonic soli-
tons.

2 Polybaric pressure equations

A proper model for plasma pressure anisotropy, which may
provide free energy for instabilities, is important for mod-

elling mirror structures. The anisotropic pressure tensor in
the gyrotropic limit can be generally expressed as

P = p⊥I+(p‖ −p⊥)êbêb, (2)

whereI is the unit tensor, and̂eb = B/B. For a collision-
less and magnetized plasma, Chew-Goldberger-Low (Chew
et al., 1956) derived two separate equations for pressure com-
ponents perpendicular and parallel to the magnetic fieldB

p⊥ ∝ NB, p‖ ∝ N3B−2. (3)

The above equations are related to adiabatic invariants of
motion and are known as double-adiabatic or CGL model.
There have been reservations about the CGL equations be-
cause of discrepancies between predictions of kinetic and
CGL theories (Abraham-Shrauner, 1967). Some modifica-
tions of these equations, consisting essentially on use of dif-
ferent polytropic exponents for perpendicular and parallel
pressures, have been proposed byHau and Sonnerup(1993),
andBelmont and Mazelle(1992) who also showed that these
exponents depend on the parallel phase velocity in Fourier
space, which prevents them being universal.

The pressure equations in collisionless plasma are very
important as closure for the fluid hierarchy, and have been
the subject of significant efforts in recent years. Notably,
anisotropic MHD model that include linear Landau damping
was proposed bySnyder et al.(1997). Cheng and Johnson
(1999) constructed a kinetic-fluid model that embeds effects
of ion Larmor radius (FLR) and wave-particle resonances in
the framework of fluid description. More recently,Passot and
Sulem(2006) incorporated Landau damping and FLR terms
calculated within the gyrokinetic scalings into a fluid hier-
archy. Chust and Belmont(2006) have provided a general
discussion of the closure of fluid equations in colissionless
magnetoplasmas in different limits depending on the parallel
wave speed in relation to the thermal speed of particles.

While the above mentioned models properly capture phys-
ical problems related to plasma kinetic processes and skill-
fully attempt to fit them into a fluid hierarchy, they must
be specifically adapted to a particular physical problem.
A practical solution to this problem has been proposed
by Stasiewicz(2005b) who suggested a generalization of
CGL equations with exponent parameters derived empiri-
cally from space measurements. This model referred to as
“polybaric” has four free parameters, without any assump-
tion on adiabaticity

p⊥ = p⊥0(N/N0)
γ (B/B0)

κ , (4)

ap = p‖/p⊥ = ap0(N/N0)
γa (B/B0)

κa , (5)

whereap is the pressure anisotropy parameter and subscript
“0” denotes background quantities. In a simplified version,
with constant anisotropy,ap, the model has been used to
study soliton solutions, which compare well with Cluster
measurements (Stasiewicz, 2004a,b, 2005a), and to study po-
larization of solitary waves (Mjølhus, 2006).
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Fig. 1. Cluster observations across the magnetosheath showing
(a) magnetic fieldB and (b) the hot ion temperature ratioT⊥/T‖

measured by CIS experiment (black line) together with mirror in-
stability threshold (1), (red line).

To illustrate applicability of this technique we apply it to
Cluster measurements made on 12 February 2005 in the mag-
netosheath on an inbound orbit in the Southern Hemisphere.
This is a case with long duration observation of mirror mode
structures, shown in Fig.1 that will be the subjects of de-
tailed analysis in this paper. The spacecraft position was
[10.5 −0.6 −10.7]RE GSE (Geocentric Solar Ecliptic) at
18:00 UT and [5.1−2.5 −9.8]RE at 23:00 UT. The upper
panel shows magnetic fieldB with a long period of pulsa-
tions from 18:30 UT until 23:30 UT, which have properties
usually associated with mirror structures in terms of appear-
ance, periodicity, polarization, and propagation direction to
the magnetic field. The lower panel shows the tempera-
ture anisotropyT⊥/T‖ as measured by CIS HIA experiment
(Rème et al., 2001) and a superposed plot of the mirror insta-
bility threshold (Eq. 1). It shows that the plasma was mirror
unstable during 18:30–23:30 time interval.

In Fig. 2 we show the polybaric fit to Cluster measure-
ments. A least squares fit of expression (4) to plasma pa-
rameters measured by CIS (HIA) givesp⊥ ∝ N1.45B0.14,
andap ∝ 0.8N−0.62B−0.24, with overall correlation of 0.90
between the model and measurements. A similar fit for
the parallel pressure givesap0 = 0.8,γa = −0.62 andκa =

−0.24. Despite its simplicity the model gives valuable in-
sight how plasma perpendicular temperature,T⊥ ∝ Nγ−1Bκ ,
and anisotropy,ap = T‖/T⊥, varies with background plasma
parametersN,B, providing hints on the exchange of energy
between particles and fields. For example, in the analyzed
case the ion temperature measured by Cluster-1 behaves like
T⊥ ∝ N0.45B0.14, with indexγ lower than the adiabatic one
and withB dependence different fromT⊥ ∝ B, as would be
expected from conservation of the first adiabatic invariant.
An underlying assumption for the fitting of the polybaric ex-
pressions (4), (5) is that the data are taken from the same
flow streamline, which may not be the case for longer inter-

    19:00     20:00     21:00     22:00     23:00   
0

0.5

1

p ⊥   
nP

a

(a)

    19:00     20:00     21:00     22:00     23:00   
0

0.5

1

Cluster−1    2005−02−12    Time UT

p ||   
nP

a

(b)

Fig. 2. (a)Perpendicular ion pressure (black line) as measured by
Cluster CIS (HIA) experiment in a region of mirror structures. Su-
perposed is fit (red line) with expression (4), which yieldsγ =1.45,
κ=0.14. (b) Similar fit for the parallel pressure givesap0=0.8,
γa=−0.62 andκa=−0.24. The correlation coefficient between
model and observations for the perpendicular pressure is 0.90 and
for the parallel pressure 0.73.

vals, such as that in Fig.2. This could be an explanation for
some discrepancies seen in Fig.2.

3 Dispersive nonlinear waves in anisotropic plasmas

Let us introduce the dispersive ion inertial lengthλi =

VA/ωci (ωci is the ion cyclotron frequency), and the total
plasma betaβ⊥ = βi⊥ +βe⊥. Linearization of standard two-
fluid equations leads to the dispersion equation for MHD
modes that include ion and electron inertia effects, finite
plasma beta and pressure anisotropy (Stasiewicz, 2005a).
Similar approach to nonlinear phenomena observed in space
has been advocated earlier byMcKenzie et al.(2004) and
Sauer et al.(2003). Generalization of two fluid equations for
the ion pressure model with variable anisotropy (5) (see Ap-
pendix) gives the following linear dispersion relation appli-
cable for both sinusoidal waves, as well as for exponentially
varying instabilities (or nonlinear waves)

k2λ2
i =

A(C −A)M−2
‖

1+(me/mi)(C −2A)
(6)

whereM‖ = M/cosα,me/mi is the electron to ion mass ra-
tio, and

A = M2
‖
−1+

β⊥

2
(ap0−1), (7)

C = sin2αDM2
‖
−sin2α(an0D+ab0)β⊥/2, (8)

D =
1+(κ +ab0cos2α)β⊥/2

M2−(γ +an0cos2α)β⊥/2
, (9)

an0 = ap0(γ + γa)− γ , andab0 = ap0(κ + κa − 2)− κ + 2.
Sinusoidal waves correspond tok2 < 0, while the reverse
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Fig. 3. Phase portrait with growth rate, log(kλi) given by Eq. (6),
of MHD (including mirror) instabilities in a hot anisotropic plasma
for the parameters range from the region of mirror structures ob-
served by Cluster (β⊥=11,γ =1.60,κ=0.10,γa=−0.62,κa=−0.25,
ap0=0.714). Letters a, b, c, d mark locations of solitons shown
in Fig. 4. The asterisk “*” shows the location of mirror structure
modelled in Fig.8. The center region is occupied by non-stationary
waves.

condition k2 > 0 applies to instabilities (or exponentially
varying nonlinear waves).

In the limit of small cosα and smallM, the dispersion (6)
is expanded as

k2λ2
i A

−1
≈ −1−

2+κβ⊥

γβ⊥

+(
1+

β⊥

2
[
an0(2+κβ⊥)

γβ⊥

−ab0−ap0+1]

)
cos2α

M2
. (10)

It can be seen that exponentially growing solutionsk2 > 0 in
the limit M → 0 occur for

1+
β⊥

2
[
an0(2+κβ⊥)

γβ⊥

−ab0−ap0+1] < 0, (11)

which is equivalent to

T⊥

T‖

−1>
1

β⊥

(2+
2γa

γ
)+

κγa

γ
−κa . (12)

The above inequality coincides with Eq. (1) for some values
of parameters in the polybaric pressure model (Eqs.4–5),
namely forγa = −γ /2,κa = −κ/2. Thus, the mirror insta-
bility criterium (Eq. 1) derived with kinetic model is con-
tained in the general two-fluid dispersion (6) and the ap-
proximation (10) for MHD instabilities, and it corresponds
to a one-dimensional regionM ≈ 0 of the two-dimensional
(M,α) space. We would like to emphasize that Eq. (6) not
only describes mirror modes, but also properly reproduces
dispersion equations in the limit of inertial electron Alfvén
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Fig. 4. Examples of soliton solutions in four points marked with
letters a, b, c, d in Fig.3. Black lines show normalizedB and red
lines normalizedN . The distancex is in units of the ion inertial
lengthλi .

waves (IEAW) and kinetic Alfv́en waves (KAW) as shown
recently byStasiewicz and Ekeberg(2008).

To illustrate link between the mirror instability and non-
linear waves we plot in Fig.3 the linear growth rate of non-
linear waves, log(kλi) given by Eq. (6) for parameters cor-
responding to Cluster observations. It can be seen that in a
plasma with pressure anisotropy, exponentially varying solu-
tions exist in large areas between sinusoidal Alfvén waves
and slow magnetosonic waves. This region has been de-
noted as slow alfvenons in the nomenclature introduced re-
cently byStasiewicz and Ekeberg(2008). Mirror modes, as
demonstrated earlier byStasiewicz(2004a) and reconfirmed
further in this paper, belong to a smaller area denoted as slow
magnetosonic solitons. An additional red region of unstable
waves in the right lower corner corresponds to inertial elec-
tron Alfvén wave structures (IEAW), and it would vanish if
me = 0 is set in Eq. (6); seeStasiewicz and Ekeberg(2008)
for details concerning these waves.

The asymptotic behaviour of exponentially unstable solu-
tions (k2 > 0) cannot be inferred from the linearized growth
rate (Eq.6) but requires numerical integration of nonlinear
equations (A1–A5) given in the Appendix. Such integra-
tions show that the exponentially varying solutions can be
divided into two categories: (a) stationary waves (solitons)
and (b) non-stationary waves, which do not have integrable
solutions. The non-integrable solutions occupy the center
part of the colored, slow alfvenon region shown in Fig.3 and
are not discussed in this paper. One can speculate that this
area could correspond to observations in the magnetosheath
showing chaotic-type nonlinear pulsations, which are actu-
ally more common than regular solitons discussed in this pa-
per.
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A large area of the phase space (M,α) has stationary,
soliton-type solutions with examples shown in Fig.4 for
points marked with letters a, b, c, d in Fig.3. There are
two types of solitons in this area: Alfvén-type near the bor-
der with Alfvén waves and magnetosonic type in the upper
part, near the border with slow magnetosonic waves. The
difference is mainly in the magnetic polarization (By,Bz),
whereBx is in the direction of the minimum variance: it is
nearly circular for the Alfv́en type and nearly linear (elon-
gated ellipse) for the magnetosonic type. Another important
difference is the presence of strong electric field in Alfvén
solitons and its absence in magnetosonic solitons.

Mirror mode structures observed in space have nearly
linear (or elongated ellipse) polarization, consistent with
magnetosonic solitons, as shown elsewhere byStasiewicz
(2004a,b, 2005a). Numerical integrations show that the po-
larization is controlled mainly by the distance from the in-
stability border with slow magnetosonic waves. It is lin-
ear at the border, and becomes more elliptic further out to-
ward the border with non-stationary waves. Both magnetic
peaks and magnetic holes solutions can be obtained in un-
stable areas, consistent with two types of mirror modes mea-
sured in space. However, the area with solutions representing
magnetic holes is larger than the area with magnetic peaks,
an asymmetry which increases with decreasing plasma beta.
Furthermore, while the pressure anisotropy greatly increases
the area available for alfvenons, they can be also produced
in isotropic plasma and in plasma with reversed anisotropy,
T‖ > T⊥, which is important for explanation of similar struc-
tures observed in plasma below the threshold (1). In the next
section we shall demonstrate that mirror mode structures ob-
served by Cluster do have non-zero speed with respect to
plasma,M > 0, and are consistent with the theoretical model
described above.

4 Cluster measurements and timing analysis

We now focus on a detailed analysis of magnetic structures
measured at times marked with vertical red lines a, b, c in
Fig. 1. These time intervals are expanded in Fig.5, which
representatively show soliton-like magnetic pulsations ob-
served by Cluster continuously during four hours. Using the
multipoint capabilities of Cluster we shall demonstrate that
these structures propagate across the plasma and cannot be
regarded as frozen in plasma flow.

4.1 Determination of the velocity of plasma structures.

Let us assume the presence of plasma structures with planar
fronts moving through space with velocityVs in the direction
normal to the front. These fronts are observed at different
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Fig. 5. Zoom at Fig.1 showing magnetic pulsations in three differ-
ent times corresponding to labels a, b, c. Notice soliton-like char-
acter of the measured pulsations which persists continuously dur-
ing many hours. Marked intervals are subject to timing analysis in
Fig. 6.

times tj (=1,2,3,4) by spacecraft located at positionsr j . The
relation between these variables is

(r1− r j ) ·
Vs

V 2
s

= t1− tj , (13)

which represents three linear equations that can be used to
determine velocityVs . A possible transverse velocity in the
front plane,Vst , would not contribute to time delays and is
undetermined by this method. The normal speed of the struc-
ture with respect to the plasma moving withVp is determined
with

Vsp = Vs −Vp ·ns, (14)

wherens = Vs/Vs is the normal vector to propagating planar
structures. The above estimate is the minimum speed, which
would be larger if the structure is not flowing exactly with
Vst . Clearly, all structures measured in space are confined
in 3-D. However, if the radius of curvature is much larger
than the wavelength or thickness of the structure one can as-
sume local planarity, a procedure commonly used for wave
phenomena in space.

In Fig. 6 we show examples of coherent solitary struc-
tures measured by all four Cluster spacecraft. Time-series
for spacecraft C2, C3, C4 have been shifted to align with
solitons measured by C1 and marked with (a), (b), (c), re-
spectively, by maximizing the correlation coefficient. The
separation distances between the spacecraft in case “a” are
r12=2279, r13=3040, r14=1737 km, which makes long de-
lay times and reliable velocity determinations. The time

www.ann-geophys.net/27/4379/2009/ Ann. Geophys., 27, 4379–4389, 2009
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Fig. 6. Magnetic field measured on four Cluster spacecraft shifted
in time to align with solitary structures seen by spacecraft C1
(black) through maximizing the correlation coefficient. The applied
time shifts are listed in Table2.

Table 1. Plasma parameters for time intervals shown in Fig.6. Ion
parameters are averages from CIS-HIA instruments on C1 and C3.
δVp is the standard deviation of the hot ion speed,Vp.

event N B Vp δVp VA β⊥
T⊥

T‖

cm−3 nT km/s km/s km/s

Fig. 6a 10 10 248 ±8 69 11.4 1.2
Fig. 6b 10 13 217 ±6 90 7.1 1.4
Fig. 6c 12 13 159 ±6 82 9.7 1.3

delays between the satellites implied from the alignment of
solitons aret12=12.10, t13=18.00, t14=7.11 s in the case of
Fig.6a. The computed velocity of the structure isVs=[−130,
25, 66] km/s, andVsp=43 km/s. The ion flow measured by
CIS on C1 and C3 satellites isVp=[−197,−23,−145] km/s
and the component perpendicular to the magnetic field is
Vp⊥=[−82, −66, 37]. These quantities are summarized in
Table 2 for all three events.

Now, let us assume that structures are aligned with the
background field and convect with perpendicular ion veloc-
ity Vp⊥ as implied by some analyses (Horbury et al., 2004;
Constantinescu et al., 2003). We can compute expected time
delays from such a configuration using Eq. (13) with substi-
tutionVs → Vp⊥. These times aret12=18.9 (12.1),t13= 24.8
(18.0), t14= 12.8 (7.1) s, much different from the observed
time delays (in parentheses).

Table 2. Velocity of solitary structuresVs and speedVsp com-
puted with Eqs. (13) and (14) from signal delays derived from multi-
spacecraft timing for three events in Fig.6. The measured ion ve-
locities, Vp, and their perpendicular componentsVp⊥ are shown
for comparison.

event Vx Vy Vz Vsp t12 t13 t14
km/s s

a: 21:26:45
Vs −130 25 66 43 12.10 18.00 7.11
Vp⊥ −82 −66 37
Vp −197 −23 −145

b: 22:14:31
Vs −75 29 32 7 19.71 30.51 11.52
Vp⊥ −96 −96 3
Vp −164 −32 −138

c: 23:13:04
Vs −49 28 1 −30 27.58 43.96 19.08
Vp⊥ −70 −63 −15
Vp −102 −2 −122

4.2 Error analysis

The numerical results summarized in Table2 show that mir-
ror mode structures do propagate across the plasma with
speeds of up to 43 km/s in the analyzed cases, and by no
means can they be regarded as frozen in plasma flows. The
accuracy of this determination depends on the accuracy in the
timing procedure, fluctuations of the ion velocity measured
by different spacecraft, and generally on the spatial geometry
of the structures and on spacecraft configuration.

The velocity of the structure,Vs , determined with Eq. (13)
is affected only by the accuracy of the timingt1 − tj , be-
cause the positions of the spacecraft are known with very
high accuracy. Time delays for signals presented in Figs.6
and shown in Table2 are determined by maximizing the
correlation function of two timeseries. The position of the
maximum of the correlation function is found with the accu-
racy corresponding to the sampling time of the magnetome-
ter. However, different time intervals taken for the correlation
procedure would produce slightly different time delays. This
experience shows thatδt ≈ 1 s can be regarded as a typical
error in timing. The sensitivity of expression (13) to errors
in timing δt can be easily checked by substituting different
times. The result of such simulations is that 1 s difference
in time delays produces typically∼1 km/s difference inVs

components. This applies to the current spacecraft config-
uration and it would be different in other cases. Thus the
errors of timing produce velocity errors that are comparable
to errors introduced by the speed of the Cluster s/c, which is
≈3 km/s.

The speed of the structures in the plasma frame given by
Eq. (14) is affected by inaccuracies in the determination of
ion speeds. As seen in Table1 the ion speed fluctuates
with δVp ≈ 10 km/s, which is the major error enteringVsp

given by Eq. (14). This error is reduced by the cosine of the
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angle betweenns andVp. In the analyzed cases this angle
is ≈60◦, corresponding to a reduction factor of 0.5. Thus,
δVp ≈ 10 km/s would produce 5 km/s error inVsp. Further-
more, the angular inaccuracy of the ion velocity vector cor-
responding to the angular resolution of 6◦ for CIS instrument
would produce errors of(1− cos6◦)Vp, which amounts to
1.2 km/s for ion speedsVp ≈ 200 km/s.

In summary, the error in the normal velocity of the struc-
ture (13) should be not larger than 3 km/s, while the error
in the normal speed in respect to plasma (14) should be not
larger than 10 km/s. Yet another errors could be produced
by possible non-planarity of the structures. The planarity
of the structures can be estimated using minimum variance
analysis (MVA) of the magnetic field. The MVA applied to
magnetic field vector in individual structures measured on a
single spacecraft gives orthogonal directions where(x,y,z)

correspond to minimum, intermediate and maximum varia-
tion of B with eigenvaluesλx,λy,λz (Sonnerup and Cahill,
1967). The eigenvector related to the minimum eigenvalue is
a proxy to the normal vectorns .

The MVA is applied to single solitons from Fig.6a, b, c.
For time interval 23:13:04–35 in Fig.6c and spacecraft C3
we obtain the normal vectorns3 = [−0.92, 0.35, 0.16] and
the ratio of eigenvalues 1:3:254. The normal vectors deter-
mined for spacecraft C1, C2, C4 differ from that of C3 by
anglesδθ = 22◦,11◦,7◦, respectively. Comparison of the di-
rections ofns3 and of the velocityVs determined from the
spacecraft timing and shown in Table2 (case c) gives an an-
gle of 12◦, which means that the direction of the propagation
front determined from spacecraft timing is in a reasonable
agreement with the direction determined from MVA. It is a
rather known fact that these two methods give somewhat dif-
ferent angles, as shown also in a statistical study of plasma
discontinuities in Cluster data byKnetter et al.(2004).

The angle between the velocity of the structureVs and the
perpendicular velocity of ions shown in Table2 (case c) is
71◦. For the total ion velocity this angle is 56◦. This means
that the popular view of mirror structures convecting with
ion flows is not supported by Cluster measurements. The
distance between C1 and C3 isr13 = 3427 km, which im-
plies the radius of curvaturern = r13/δθ13 ≈ 9000 km. The
observed duration of the soliton 18 s and speed of 56 km/s
(Table2) gives thickness of 1000 km, much smaller than the
radius of curvature. A curved front of a structure would in-
troduce additional timing errors. Assuming spacecraft sepa-
ration of 1000 km in the plane transverse to the normal di-
rection, and the curvature radius of 9000 km, we find the
distance between plane and curved surfaces to be 55 km.
A soliton moving through space with speed 56 km/s needs
1 s to cover such a distance. This would introduce addi-
tional timing errors ofδt ≈ 1 s, that would cause errors of
1 km/s inVs , as discussed above. An uncertainty of the nor-
mal direction of 15◦ could produce an error inVsp amount-
ing to (1−cos15◦)Vp, which is 8 km/s for ion speedsVp ≈

200 km/s.

Repeating the above outlined MVA procedure for the case
in Fig. 6b, time interval 22:14:31–54, we obtain the normal
directionns4 = [−0.92, 0.13, 0.36] and the ratio of eigenval-
ues 1:2:157 for spacecraft C4. This direction differs from
the direction determined from spacecraft timing (Table2,
case b) by 13◦. The normal directions determined with MVA
with other spacecraft differ from that ofns4 by ≈ 20◦ im-
plying a curved propagating front, similar as in case (c) dis-
cussed above. Again, the front direction make large angles
≈ 56◦ with perpendicular ion velocity, inconsistent with the
assumption of structures being frozen in plasma.

For the case in Fig. 6a, time interval 21:26:45–62, we ob-
tain the normal directionns1 = [−0.78, 0.45, 0.42] and the
ratio of eigenvalues 1:3:35 for spacecraft C1. This direc-
tion makes angle of 17◦ to the front velocity determined with
spacecraft timing and shown in Table2 (case a). The normal
directions determined for spacecraft C2, C3, C4, differ from
C1 by anglesδθ = 13◦,8◦,21◦, respectively.

The above discussion indicates that the mirror structures
propagate across the plasma with speeds determined here of
up to 43 km/s with error bars of up to 15 km/s. Their thick-
ness is∼1000 km, and radius of curvature is∼10 000 km.
The minimum speeds of structures with respect to plasma
obtained here (Vsp ≈ 43,7,−30 km/s; see Table2), fall in
the range of velocities−60< Vsp < 60 km/s (M < 0.5) ob-
tained earlier from a larger statistical study made byHor-
bury et al.(2004). Also their determination of propagation
angles cover 60–90◦, which corresponds to cosα < 0.5 and
means that their data points would scatter within the colored
alfvenon region shown in Fig.3. These authors used Cluster
orbits with small separation between spacecraft, which re-
sulted in large errors in speed determination. Their velocity
measurement has a mean value of 22 km/s and standard devi-
ation of 33 km/s due to short spacecraft separation distance.
However,Horbury et al.(2004) incorrectly concluded that
their results are consistent with structures being stationary in
the plasma frame. In fact, measurement errors do not permit
one to claim that the physical values less than the measure-
ment error are equal to zero.

4.3 Modelling of individual structures

The position on the diagram in Fig.3 determines the proper-
ties of a soliton. The Mach numberM and the propagation
angleα must be determined by the boundary conditions or
the driver of these structures. The maximum compression of
b = B/B0 is controlled by the momentum Eq. (A1), which
describes a functional relationship betweenb andn. An ex-
ample of this function is shown in Fig.7 for two plasma beta
β⊥ = 2 and 11. All stationary solutions must lie on such
curves, which represent typical behaviour of slow modes
with anticorrelation betweenb andn, and bi-modal nature of
solutions where either magnetic peaks or dips are permitted.
Maximum amplitude ofb in mirror modes, and generally in
all slow mode solitons is controlled mainly by plasmaβ. For
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Fig. 7. Relation between the densityn = N/N0 and the mag-
netic fieldb = B/B0 implied by Eq. (A1), computed for two betas:
β⊥=11 (red) andβ⊥=2 (blue) lines. Other parameters are:M=0.1,
cosα=0.27,γ =1.60,κ=0.10,γa=−0.62,κa=−0.25,ap0=0.714.

example, in Fig.7, maximum field compression forβ⊥ = 11
is 3.2, while for forβ⊥ = 2 is only 1.5. Parametersγ andκ in
the pressure model determine the steepness of curves shown
in Fig. 7, while pressure anisotropy parametersγa , andκa

affect only shape ofb−n curves in the region of magnetic
dips.

We have selected the third soliton measured by Cluster-
2 (red) in Fig.6b for a detailed modelling with the present
theory. The minimum variance analysis applied to this case
makes it possible to estimate propagation angle of the soli-
ton from the relation cosα = 〈Bx〉/〈B〉, wherex is the di-
rection of the minimum variance ofB. This angle is found
to beα ≈ 74◦. The Mach number of the soliton was then
varied to obtain solution with the same maximum ampli-
tude Bmax/B0 ≈ 2.7 as in Cluster observations. Compari-
son of the modelling results (red “+”) are shown together
with Cluster measurements (black lines) in Fig.8. The mea-
sured field magnitude was normalized with the background
valueB0 =7.1 nT. The time axis for Cluster measurements
has been converted to spatial scale by free adjustment. The
shape and polarization of the soliton compares rather well
with observations shown also in Fig.8.

5 Discussion

In this section we briefly discuss predictions of the present
soliton model and put them in the context of other models,
when applicable.

5.1 Size of the structures

Generally, the soliton models with Hall-type dispersion in
the generalized Ohm’s law have the ion inertial lengthλi =

VA/ωci as the major dispersive parameter. The electron in-
ertia terms do not affect the solutions in the (M,α) range
of mirror modes. The kinetic models based on FLR effects
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Fig. 8. Comparison of solitons measured by Cluster-2 at time
22:14:10–22:15:05 UT with a numerical solution computed for pa-
rameters in Fig.7, with β⊥=11, andM=0.067. This solution corre-
sponds to the position marked with asterisk in Fig.3. The computed
amplitude and polarization are plotted with red “+”.

have the ion gyroradiusri = Vt i/ωci as the dispersive param-
eter. These two are related through ion beta asri =

√
βi⊥λi .

In the case of Fig. 6c, the solitary structures have observed
duration of 18 s and speed determined with inter-spacecraft
timing of 56 km/s, which gives the size of 1000 km. The
sizes obtained with integration depend roughly on the po-
sition (M,α) in Fig. 3, and become smaller in red regions
and larger in blue regions. They would also depend onβ

and anisotropyap that affect instability patterns and the area
shown in Fig.3. Generally, the present model predicts and
can explain various sizes of fluid-type solitons observed in
space and related to ion inertia. Note that estimations of the
size of mirror structures assuming that they are frozen in ion
flows would give their sizes much larger than sizes estimated
from accurate multi-spacecraft timing.

5.2 Magnetic polarization

The minimum variance direction is used to determine the
propagation angle with respect to the magnetic field, cosα =

〈Bx〉/〈B〉, while (By,Bz) determine the transverse polariza-
tion pattern. It may vary from nearly linear for eigenvalues
λy � λz, (equivalently〈By〉 � 〈Bz〉) to quasi elliptic when
these inequalities are not fulfilled.Génot et al.(2009) have
noted that mirror modes are more commonly observed as
elliptically than linearly polarized, contrary to predictions
of the linear theory of instability. The present model ex-
plains such behaviour, because the polarization pattern de-
pends mainly on the distance form the border with sinusoidal
magnetosonic waves in Fig.3. The polarization is nearly lin-
ear at the border and the componentBy becomes larger when
the soliton solutions approach the non-stationary boundary in
Fig. 3.
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5.3 Amplitude of pulsations and the saturation
mechanism

The early models of saturation processes involved cooling of
trapped particles in magnetic troughs (Kivelson and South-
wood, 1996; Pantellini, 1998) are applicable mainly to mag-
netic holes. More recent models involve saturation due to
local variation of the ion Larmor radius (Pokhotelov et al.,
2004; Kuznetsov et al., 2007). Nonlinear dynamics of mirror
modes has been recently reviewed byCalifano et al.(2008),
who concluded that the saturation mechanism remains a ma-
jor unresolved problem. The model presented in this paper
implies that the saturation mechanism should be related to
the mechanism responsible for creation of solitons, i.e. a bal-
ance between dispersive and nonlinear terms in the governing
Eqs. (A1–A5), constraint by constants of motion. Depending
on the initial position of the perturbation in the (M,α) space
of Fig. 3, this balance could be achieved at different ampli-
tudes, leading to solitons with a variety of scales and ampli-
tudes. The maximum possible amplitude ofB is determined
by the normal momentum conservation Eq. (A1), which de-
scribes a path in the(B,N) space (see Fig.7), where physical
solutions must follow (Stasiewicz, 2004a,b). Plasma beta is
the most important parameter that controls maximum ampli-
tude ofB in such curves. Numerical solutions show that for
a given propagation angleα, the amplitude of the soliton in-
creases withM until it reaches the non-stationary boundary,
where apparently a balance between dispersion and nonlin-
earities cannot be achieved. These non-stationary solutions
could correspond to nonlinear chaotic fluctuations observed
frequently in the magnetosheath.

5.4 Growth rate and spatial variation of the amplitude

A view promoted by some researchers is that the spatial vari-
ation of the amplitude of pulsations seen in Fig.1 indicates
that mirror structures generated at the bow shock grow while
being convected to the magnetopause. A spatial gradients of
amplitudes on large scales>20 000 km could then be used
to determine the growth rate of mirror modes (Tatrallyay
et al., 2008). This seems to be an incorrect interpretation
because the mirror structures grow on the distances much
smaller, comparable to their spatial scales (fewλi) while they
propagate. Spatial variations of soliton amplitudes on scales
>20 000 km depend rather on variations of plasma parame-
ters that control the maximum amplitude of the soliton and
should not be mixed with their growth rates. Lack of coher-
ence between some solitons seen on different spacecraft in
Fig. 6 and in many other cases (not shown here) with similar
inter-spacecraft separation indicate that these structures grow
and decay on scales of a few thousand km.

5.5 Two modes of mirror structures: peaks and dips,
and their occurrence below the threshold

Two modes of mirror structures: peaks and dips, the pre-
ferred occurrence of dips in lower beta plasma (Joy et al.,
2006) and frequently in plasmas below the instability thresh-
old (Soucek et al., 2008; Génot et al., 2009) make big chal-
lenge for researchers having in mind non-propagating struc-
tures self-created by the instability (1). To circumvent these
problems, modifications based on FLR effects have been pro-
posed recently byKuznetsov et al.(2007) involving what
they call as “subcritical bifurcation”. The present model
has straightforward answers to all these problems: Magnetic
peaks and dips represent both normal modes of Hall-MHD
system and thus represent two types of asymptotic stationary
states. They come naturally from integration of nonlinear
Eqs. (A1–A5) as shown in Fig.4, without involving any spe-
cial FLR effects. With decreasing of plasma beta the area of
integrable solutions with dips (in diagrams like Fig.3) be-
comes larger than the area with peaked solutions. This could
explain the observed preference of dips in lower beta plasma
(β ∼ 1). Nevertheless it would be worthwhile to find a varia-
tional principle which determines why particular types of so-
lutions are selected in different regions. Finally, in lower beta
plasmas there is still small area with nonlinear solutions even
for isotropic plasma. This can explain why mirror modes
(magnetosonic solitons) are observed sometimes well below
the threshold (1). Generally, occurrence of mirror modes be-
low the threshold (1) indicates that the ion inertia and soliton
behaviour atM > 0, is the relevant mechanism rather than
the temperature anisotropy and mirror behaviour atM = 0.

5.6 Mechanism for the generation

A common view is that mirror structures are initiated at the
bow shock and then slowly evolve and grow while being
frozen in plasma and convected toward the magnetopause,
specifically to regions with increased ratioT⊥/T‖. This
implies their longevity and a possibility of identification
of individual mirror structures on large distances, at least
10 000 km. However, from our experience, at Cluster space-
craft separation of 10 000 km the structures do not exhibit
much coherence between the spacecraft and it is rather dif-
ficult to find a single event good for timing analysis. This
indicates that they may not travel so far and models propos-
ing their transport across the magnetosheath may not be
valid. The present theory implies an alternative scenario.
As can be seen in Fig.1, pressure anisotropy increases in
the magnetosheath from the bow shock toward the magne-
topause. Magnetosonic perturbations generated at a given
point (M,α) that lies in the sinusoidal (white) area of Fig.3,
and moving toward a region with increasingT⊥/T‖, would
find this point in the alfvenon area and could evolve into a
soliton. This model for generation of mirror mode structures
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in the magnetosheath should be investigated further with sim-
ulation methods.

6 Conclusions

Using ion measurements on Cluster in the magnetosheath
we have derived empirically the parameters of the polybaric
pressure model described by Eqs. (4–5). This model appears
to provide a versatile and realistic replacement for polytropic
pressure models used in fluid analytical derivations and sim-
ulations schemes.

Using two-fluid model with polybaric pressure we have
demonstrated that the classical mirror instability threshold
represents a limiting caseM = 0 of a large area in the phase
space (M,α) covered by unstable, exponentially varying so-
lutions denoted as slow alfvenons. These alfvenons have
speeds in the range 0–VA and consist of three types of nonlin-
ear structures: Alfv́en solitons, magnetosonic solitons, and
non-stationary, nonlinear waves.

Applying multi-spacecraft timing to Cluster measure-
ments with large separation distances (∼2000 km) we have
shown that mirror structures move with respect to the plasma
with speed of up to 43 km/s and are not consistent with struc-
tures being frozen in plasma flow. The propagating fronts ex-
hibit radius of curvature∼10 000 km, which still justifies use
of plane approximation on scales up to∼1000 km. Com-
parison of the observed mirror structures with theoretical
alfvenon solutions show that they have properties of mag-
netosonic solitons with respect to the shape, size, amplitude,
polarization and speed.

The present model implies answers (mentioned briefly in
Sect. 5) to currently discussed and regarded as unresolved
problems of mirror mode physics, related to the generation
mechanism, saturation, sizes, amplitudes, generation of mag-
netic peaks and dips, as well as appearance below the insta-
bility threshold.

Appendix A

The standard fluid equations containing the plasma momen-
tum and the generalized Ohm’s law with electron inertial
terms, applied to 1-D propagation in thex direction, in the
stationary wave frame, lead to a set of equations for dimen-
sionless variables,n = N/N0, b = B/B0,v = V/VA (e.g.
Stasiewicz, 2005a). The normal momentum equation rep-
resents a balance of pressure components

2M2n−1
+b2

+βnγ bκ
+βApcos2α = const, (A1)

where β = βi + βe = 2µ0p⊥0/B
2
0, Ap = nγ bκ−2(ap − 1),

M = (ω−k ·V )/kVA is the Alfvén Mach number in the ref-
erence system under consideration,VA = B0(µ0N0mi)

−1/2

is the Alfvén speed, andα is the propagation angle with re-
spect to the magnetic field. The anisotropy parameterap is

given by Eq. (5). The transverse components of the momen-
tum equation give

vy =
by

M‖

(1−
β

2
Ap) (A2)

vz =
bz

M‖

(
1−

β

2
Ap

)
−

bz0

M‖

(
1−

β

2
Ap0

)
, (A3)

wherebz0 = sinα andAp0 = ap0−1. The generalized Ohm’s
law can be written in dimensionless form as
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∂bz

∂x
= by −

nvy

M‖

. (A5)

The lengthx is expressed in units ofλi , Re = me/mi , and we
have assumed isotropy of the electron pressure. Lineariza-
tion of these equations assuming perturbations∝ exp(kx)

leads to the dispersion Eq. (10). Integration of these equa-
tions has been used to obtain soliton solutions presented in
this paper. The electron inertia is not important in the(M,α)

area of mirror structures, so the second order derivatives can
be dropped to facilitate the integration. Region, where the
solutions numerically diverge is denoted as “non-stationary
waves” in Fig.3.
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