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Abstract. Long-pulse topside radar data acquired at Jica-
marca and processed using full-profile analysis are compared
to data processed using more conventional, range-gated ap-
proaches and with analytic and computational models. The
salient features of the topside observations include a dramatic
increase in theTe/Ti temperature ratio above theF peak at
dawn and a local minimum in the topside plasma tempera-
ture in the afternoon. The hydrogen ion fraction was found to
exhibit hyperbolic tangent-shaped profiles that become shal-
low (gradually changing) above the O+-H+ transition height
during the day. The profile shapes are generally consistent
with diffusive equilibrium, although shallowing to the point
of changes in inflection can only be accounted for by tak-
ing the effects ofE×B drifts and meridional winds into ac-
count. The SAMI2 model demonstrates this as well as the
substantial effect that drifts and winds can have on topside
temperatures. Significant quiet-time variability in the top-
side composition and temperatures may be due to variabil-
ity in the mechanical forcing. Correlations between topside
measurements and magnetometer data at Jicamarca support
this hypothesis.

Keywords. Ionosphere (Equatorial ionosphere; Ion chem-
istry and composition) – Radio science (Instruments and
techniques)

1 Introduction

A number of experiments aimed at measuring ionospheric
plasma density, temperature, and composition were carried
out at the Jicamarca Radio Observatory shortly after the fa-
cility became operational in the 1960s. Because of its low op-
erating frequency (49.92 MHz), Jicamarca can measure iono-
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spheric parameters at altitudes of several thousand kilometers
without encountering limiting Debye length effects. How-
ever, because of the long correlation time of the echoes, par-
ticularly in the O+ dominated part of the ionosphere where it
is of the order of 1 ms, and because of clutter from the equa-
torial electrojet and other sources, measuring ionospheric pa-
rameters becomes difficult at low altitudes. Jicamarca con-
sequently employed a variety of pulsing schemes, includ-
ing double pulse pairs and unmodulated pulses of different
lengths (up to 5 ms), to make the measurements. Interpulse
periods had to be long enough to satisfy the duty cycle lim-
itations of the transmitters, and incoherent integration times
had to be correspondingly long to achieve reasonable statis-
tical confidence. Nevertheless, the measurements could be
made, owing to the high (4–5 MW) peak power capability of
the observatory at that time and to the absence of interference
and space debris. For a review of some of the early experi-
ments at Jicamarca with many interesting anecdotes about
how data were collected and processed, readers should con-
sultFarley(1991).

Following the discovery of coherent scatter from field-
aligned plasma irregularities in the equatorial electrojet and
the postsunset F-region (equatorial spreadF), the emphasis
at Jicamarca shifted to experiments with increased resolu-
tion, bandwidth, pulse rates, and numbers of receiver chan-
nels for interferometry (see for exampleWoodman and La
Hoz, 1976; Farley et al., 1981). Incoherent scatter experi-
ments designed to utilize Jicamarca’s unique ability to mea-
sure highly accurate vector drifts by observing perpendicular
to B were also emphasized (Woodman and Hagfors, 1969;
Kudeki et al., 1999). Much of the original topside data were
never published, and some of the details regarding their ac-
quisition were lost. F-region density, temperature, and com-
position measurements were revived in the 1970s and 1980s
with the reintroduction of the Faraday rotation/ double-pulse
experiment (Pingree, 1990). However, the results persis-
tently indicated unphysically low electron-ion temperature
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Fig. 1. Diagram comparing gated and full-profile analysis methods.
Bold characters denote model parameter candidates (see text).

ratios (Te/Ti<1), and most of the data collected were never
published.

The anomalous temperature ratio problem was resolved
when Sulzer and Gonzalez(1999) analyzed the effects of
electron Coulomb collisions on incoherent scatter theory at
small magnetic aspect angles (see alsoAponte et al., 2001;
Woodman, 2004). Their work spurred an exhaustive in-
vestigation into the behavior of the incoherent scatter spec-
trum at small aspect angles, including collisional and mag-
netoionic effects, that continues to the present (Kudeki and
Milla , 2006; Milla and Kudeki, 2006). Among other find-
ings, this investigation showed how backscattered power pro-
files should be corrected for unequal electron and ion tem-
peratures when calculating electron density profiles near the
magnetic equator (Rodrigues et al., 2007). The correction is
typically much smaller than the one required at large aspect
angles. Today, most of the theoretical hurdles associated with
density, temperature, and composition measurements at Jica-
marca seem to have been cleared, although practical chal-
lenges remain. Improved instrumentation and data process-
ing capabilities developed for other investigations are avail-
able for incoherent scatter experiments, and Jicamarca’s peak
power level is gradually returning to its historical peak.

Recently,Hysell et al.(2008) addressed several lingering
experimental complications associated with long-pulse mea-
surements in the topside. These include radar clutter from
space debris, which is especially detrimental in long-pulse
experiments and prevalent at the equator, and robust noise
estimation. Most importantly, they implemented the full-
profile analysis proposed byLehtinen(1986) and described
in detail byHolt et al.(1992) and thenLehtinen et al.(1996)

for resolving range-lag ambiguity, which is particularly im-
portant at Jicamarca given the long correlation time of the
echoes. They presented the first topside results acquired at
Jicamarca in several decades and compared the results with
preliminary numerical models. In this manuscript, we apply
the same techniques to begin establishing a baseline for equa-
torial composition and thermal structure. Where possible,
we compare our results with results from more conventional
radar data analysis methods and check for consistency. Most
of the behavior observed can be inferred also from histori-
cal results, which can now be placed on firmer experimental
foundations.

2 Methodology

Figure1 illustrates the difference between conventional gated
ISR data analysis and full-profile analysis. Incoherent scatter
theory predicts the autocorrelation functionρ(k, τ ) of ther-
mal electron density fluctuations for an equilibrium, station-
ary, homogeneous plasma parametrized by number density
Ne, electron temperatureTe, ion temperatureTi , hydrogen
ion fraction H+, helium ion fraction He+, and other param-
eters including the magnetic field, line-of-sight drift, colli-
sions, etc. (see for exampleSheffield, 1975). The statis-
tics of the signal received by the incoherent scatter radar are
then determined by the same autocorrelation function, con-
volved with the two-dimensional range-lag ambiguity func-
tion Wt1,t2(r, τ ) or instrument function for the experiment
(seeLehtinen, 1986; Woodman, 1991; Lehtinen and Huusko-
nen, 1996; Nygrén, 1996). This function is determined by the
characteristics of the transmitted pulse and the receiver filter
and is independent of the characteristics of the radar target.
Here,r is the range to the scattering volume,τ is the time lag,
andt1 andt2 are sample times separated byτ . Parameters are
permitted by incoherent scatter theory to vary significantly
between different scattering volumes but only very gradually
within a volume. The lag product estimator formed from the
voltage samples,〈v(t1)v

∗(t2)〉, and the error covariance esti-
mator that can be derived from it (Hysell, 2000), constitute
the primary data from which inferences may be drawn. The
covariance estimator is based on the data, and the radar pulse
width and bandwidth must be set so that the estimator is suf-
ficiently accurate for the analysis to proceed.

The first step in a traditional, range-gated analysis is to
reconstruct distinct autocorrelation function estimates for
each radar range gate from the lag product matrix. In the
case of alternating code (Lehtinen, 1986) and coded long-
pulse (Sulzer, 1986) experiments, this can be accomplished
through the explicit convolution of the received signal with
the emitted waveform, an operation that can be performed
efficiently in tandem with the calculation of the lag product
matrix. Limitations of these methods include that 1) the zero-
lag estimator remains poorly range resolved and 2) the other
lags suffer from significantly increased self clutter except in
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the limit of very low signal-to-noise (SNR) ratios. Whereas
the signal-to-noise-plus-clutter ratio in a typical long-pulse
experiment at Jicamarca is close to or greater than unity at
all times and ranges of interest here in the first few lags, it is
much less than unity in a typical 16-bit randomized alternat-
ing code experiment. Satisfactory results are only obtained
given very long incoherent integration times, which are im-
practical to implement when conditions are changing rapidly.

A somewhat outmoded means of processing long-pulse
ISR data involves reconstructing range-gated autocorrelation
functions approximately using simple summation rules (Tu-
runen, 1986). While this may produce satisfactory results in
cases where the pulse length is short compared to ionospheric
length scales of interest, the technique performs very poorly
at Jicamarca near theF peak of the ionosphere, particularly
during the day when all topside parameters exhibit signifi-
cant variations with altitude up to 1500 km. Attempts to ap-
ply this simple technique produce enormous oscillations in fit
temperatures and light ion fractions. Finally, range-resolved
autocorrelation functions can be estimated from lag products
matrices through direct numerical deconvolution (Virtanen
et al., 2008; Nikoukar et al., 2008). The remaining steps in
the gated analysis then involve estimating ionospheric pa-
rameters (state variables) gate-by-gate and iteratively using
nonlinear least-squares methods.

In a full-profile analysis, lag product matrices and error co-
variances are calculated, but the intermediate range-gated au-
tocorrelation functions are never reconstructed or fit. Instead,
complete model parameter (state variable) profiles are gener-
ated directly and simultaneously. The forward model is used
to calculate the corresponding candidate lag product matri-
ces which are then compared with measurements. The chi-
squared model prediction error is minimized iteratively until
satisfactory model-data agreement is reached. The model pa-
rameters themselves are typically discretized (20 values per
profile in our case), but the forward model can be evaluated
at arbitrary resolution using interpolation (cubic B-spline in-
terpolation in our case – seeDe-Boor, 1978, for review).

However, the long-pulse analysis is generally mixed de-
termined, meaning that there will be no model profiles that
exactly reproduce the measured lag products but, rather, a
large class of statistically admissible profiles that reproduce
them adequately in terms of the chi-squared parameter. Fur-
thermore, it is poorly conditioned, with many members of the
class exhibiting large oscillations and irregular, non-physical
behavior. Poor conditioning arises from a large range of sin-
gular values in the linearized version of the inverse prob-
lem and signals a tendency of the inversion to amplify sta-
tistical noise in the dataset (i.e. to “fit the noise”). Mixed-
determinedness and poor conditioning are inherent aspects
of the long-pulse analysis problem rather than the analy-
sis methodology. To overcome them, regularization may
be used. For reviews of inverse methodology and the is-
sues involved in regularization, seeMenke(1984), Tarantola
(1987), andAster et al.(2005). Whereas range-lag ambi-

guity can be overcome by pulse coding provided the added
clutter is tolerable, rank deficiency and poor conditioning can
be overcome by regularization provided there is sufficient a
priori information upon which to draw. Note that it may be
possible to improve the conditioning of the problem without
adding clutter by modulating the long pulse, perhaps break-
ing it into two or more pulses of different lengths with inter-
vening gaps. We recognize that possibility but do not explore
it further here.

Regularization means reducing the solution space and ex-
cluding improbable solutions by incorporating a priori infor-
mation about the model parameters. That the ionospheric
state variables are non negative constitutes such a priori in-
formation. At equatorial latitudes, we furthermore expect the
electron temperature to be greater than or equal to the ion
temperature at all altitudes and the variations in model pa-
rameters to be gradual between adjacent ranges. An expedi-
ent way to implement regularization is to incorporate appro-
priate penalty functions into an augmented nonlinear least-
squares minimization of the usual chi-squared model predic-
tion error.

Details regarding the analysis are given inHysell et al.
(2008) including the shape of the ambiguity functions in the
forward model, the nonlinear least-squares methodology, the
explicit form of the penalty functions, and the error propa-
gation. Below 450 km altitude, long-pulse data are contam-
inated by clutter from various sources, and the experiment
relies on data from a double-pulse Faraday rotation mode
which is run concurrently. For computational expediency,
the full-profile analysis includes a number of approximations
with which we will dispense as computational limitations re-
lax over time. Although it is possible to compute and utilize
the full error covariance matrix, only the diagonal elements
are used here. Among other effects, this likely implies under-
estimates in the derived parameter uncertainties. A thorough
grid search is used at the start of the analysis to identify aus-
picious initial conditions for the analysis. The power profile,
and the density profile from it, is calculated independently
prior to the full-profile analysis. Since the ionospheric auto-
correlation function is nearly flat near the zero lag, the rela-
tionship between the measured long-pulse power profile and
the profile of power received from each radar range involves
an essentially one-dimensional convolution. We perform
a one-dimensional deconvolution using an augmented non-
negative least-squares approach for second-order Tikhonov
regularization to recover the latter profile (Lawson and Han-
son, 1987). This is normalized to the power profile from the
double-pulse experiment and used thereafter in the forward
model calculation.

Full-profile analysis comes with some rather severe lim-
itations. It is not very robust and fails in the presence of
even small amounts of interference, uncompensated noise,
or undetected clutter from space debris or coherent echoes.
Convergence fails in the absence of a suitable initial guess.
It remains computationally intensive (although real-time
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processing has recently become practical). However, it ap-
pears to be the methodology most suitable for topside inves-
tigations at Jicamarca for the reasons outlined above.

3 Observations

The full-profile analysis has been applied to data acquired
between 6–7 May 2008, and again between 8–13 July 2008,
during the Coordinated Incoherent Scatter World Day period.
The 10.7 cm solar flux was between 65–67 throughout both
intervals. Geomagnetic activity was low at the start of the
World Day period and increased to moderate at the end. In
the May experiments, different pulsing modes were used se-
rially in an effort to help validate the full-profile analysis.
These included 1) a double-pulse Faraday rotation mode sim-
ilar to the one described byPingree(1990), 2) a mode com-
bining the double pulse with randomized alternating coded
pulses, similar to the one described byHysell (2000), and 3)
a mode combining the double pulse with long uncoded pulses
similar to the one described byHysell et al.(2008). All three
modes are now available as common programs at Jicamarca.
Full-profile is applied only to the long-pulse data acquired in
the third of the modes.

Figure2 shows data acquired on the first morning of the
July 2008 World Day period. For this experiment, 0.1 ms
double-pulse pairs are interleaved with a 1.6 ms long pulse,
the overall sequence having a 40 ms interpulse period. Data
are sampled using digital receivers and filters set to a 25µs
impulse response time. Additional filtering (to 0.1 ms), de-
tection, and clutter removal using order statistics are per-
formed computationally. Below (above) 450 km altitude,
state parameters are derived from the double-pulse pair (long
pulse data) only. The incoherent integration time is typically
about 10 min.

The first column of Fig.2 shows normalized autocorrela-
tion functions derived from the double-pulse data. Vertical
lines denote lags contaminated by clutter from the ground,
the electrojet, and so-called 150-km echoes. The second col-
umn shows normalized lag products derived from the long-
pulse data. In both the first and second columns, data are
represented by plotter symbols with error bars, and model
fits by solid lines. The third column shows electron den-
sity. The green curve is derived from the short double pulses,
which are transmitted on orthogonal circular polarizations,
from Faraday rotation. This absolute electron density estima-
tor is accurate but not robust and is used mainly to normalize
the power profile corresponding to the double pulse zero lag
density estimator, which is shown in black with error bars
below 450 km.

Above this altitude, electron density is estimated from the
long-pulse zero lag. As mentioned above, a deconvolution
scheme involving second-order Tikhonov regularization and
a non-negative least-squares algorithm is used to compen-
sate for the effect of the finite long-pulse length on the pro-

file. We neglect the small effect that variations in the shape
of the ACF has on the zero lag, making the deconvolution
one-dimensional. The long-pulse plasma density estimator
is normalized to the short-pulse estimator in the zone where
the two curves overlap and shown in black with error bars
above 450 km altitude.

The fourth column of Fig.2 shows electron (ion) tem-
peratures in black (red). Below 450 km altitude, these are
obtained from conventional nonlinear least-squares fitting of
the double-pulse ACFs. Equal electron and ion temperatures
are assumed at night in the double-pulse analysis. Above
this altitude, they are derived from the full-profile analysis
of the long-pulse lag products. Similar comments hold for
the light ion fraction estimates shown in the fifth column of
Fig. 2, where black (blue) plotter symbols denote H+ (He+)
ion fractions. Note that we never fit for helium ions in the
double-pulse data. In the current analysis, we depart from
our usual practice of also neglecting to fit for hydrogen ions
below 450 km. The very low solar flux in the summer of
2008 caused the H+ fraction to be significant at times below
450 km, particularly in the early morning, and so we include
it as a fit parameter during the daytime here.

Figure2 exemplifies a number of features common to Ji-
camarca daytime observations at solar minimum. The H+

fraction obeys a roughly hyperbolic tangent curve below the
O+-H+ transition height, which occurs near 550 km in this
case. Above the transition height, the increase in H+ frac-
tion with altitude is more gradual than below. This feature
is most obvious in the afternoon, when the curvature of the
H+ fraction shallows (varies more gradually with altitude),
sometimes even changing inflection from convex to concave.
The feature is not obviously correlated with secular varia-
tions in the temperature profiles. The scale height of the
plasma number density also increases drastically above the
transition height. He+ appears only as a trace constituent but
is usually also concentrated near the O+-H+ transition height
in the morning when it is most often detected.

The electron-ion temperature ratio is much greater than
unity in the bottomside, where photoelectron production
maximizes and ion-neutral cooling is efficient. The ratio is
slightly greater than unity well into the topside, where the
temperature increases gradually and nearly linearly in the
O+-dominated part of the ionosphere. Statistical uncertainty
makes it difficult to establish the asymptotic behavior of the
temperature at the highest altitudes shown. Overall, param-
eter continuity across the 450-km boundary altitude (which
is not explicitly enforced) supports the efficacy of the full-
profile analysis.

Figure3 shows a comparison of the full-profile analysis
with conventional, range-gated analysis of randomized al-
ternating code data, performed using data taken on 7 May
2008, explicitly for this purpose. The upper half of the figure
shows the alternating code data, which have been incoher-
ently integrated for an hour. The long-pulse data, shown be-
low, were incoherently integrated for 10 min. and processed

Ann. Geophys., 27, 427–439, 2009 www.ann-geophys.net/27/427/2009/



D. L. Hysell et al.: Jicamarca topside measurements 431

Fig. 2. Full-profile analysis results for the morning of 8 July 2008 from 10:08–10:18 LT. From left to right, the columns represent double-
pulse autocorrelation functions, long-pulse lag products, plasma number density, plasma temperature (electrons = black symbols, ions = red
symbols), and light-ion fraction (H+=black, He+=blue).

with full-profile analysis. The two datasets are nearly con-
tiguous in time.

In the upper half of the figure, the first column shows
double-pulse ACFs computed and analyzed in the manner
already described. The second column shows range-gated
autocorrelation functions computed from the 1.6 ms, 16-bit
randomized alternating code pulses. The third column shows
plasma number density estimates, derived above 450 km by
fitting the zero lag of the alternating code ACFs and nor-
malizing to the double-pulse/ Faraday rotation data from be-
low. The fourth column shows electron and ion tempera-
tures, which are assumed to be equal above 450 km. This
assumption is required to avoid excessive jitter in the tem-
perature fits, even given the long incoherent integration time
used here. Finally, the fifth column shows H+ fraction above
450 km. Below 450 km, the ionosphere is assumed to be en-
tirely O+. Neglecting light ions in the double-pulse ACF
analysis near and above theF peak where significant H+ ion-
ization is possible often results in fit electron-ion temperature

ratios below unity. When this occurs, a unity temperature
ratio is enforced, and the given ACF is refit. That the elec-
tron and ion temperatures match at all altitudes above about
400 km in the upper half of Fig.3 is a consequence of limita-
tions in the fitting. Helium ions are neglected at all altitudes
in this analysis.

In terms of the statistical confidence limits shown, agree-
ment between the alternating coded and full-profile obser-
vations is satisfactory. Note that, being restricted to values
less than unity, the H+ fraction estimator becomes biased
when it assumes values close to 100%. It is significantly
underestimated at high altitudes in the alternating code ob-
servations where statistical uncertainty is greatest. The cor-
responding temperatures are consequently overestimated at
high altitudes. This accounts for the discrepancy between
the two datasets starting at and above about 800 km altitude.
Below this altitude, the features of the two datasets are in
very good agreement.

www.ann-geophys.net/27/427/2009/ Ann. Geophys., 27, 427–439, 2009
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Fig. 3. Figures comparing alternating coded-pulse (upper half) and long-pulse/full-profile (lower half) results obtained on 7 May 2008. The
incoherent integration times involved in the analysis were approximately 1 h and 10 min., respectively.
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Figure 4 shows ionospheric state parameters throughout
the day of 7 May 2008, derived from the same kind of anal-
ysis that produced Fig.2. From left to right, the columns
represent the electron number density, electron temperature,
ion temperature, and light ion fraction. In the last column,
the curves concentrated toward the left are the helium ion
fraction, which maximizes in the vicinity of the O+-H+ tran-
sition height but never exceeds about 5%.

The O+-H+ transition height varies between about 500–
700 km altitude, reaching a maximum at about 14:00 LT. This
is approximately the same time that the topside electron and
ion temperatures reach their minimum values. We can sur-
mise that the neutral temperature is greatest at this time, the
neutral scale height the greatest, and conduction within and
cooling of the plasma by the neutrals most efficient. Plasma
E×B drifts which maximize at midday may also play a role,
as we discuss in the analysis section below. Also at this time,
the plasma scale height is minimized, and the topside plasma
density exhibits a gradual decline with increasing altitude.

The topside plasma temperature is greatest near dawn
(black curve) when conduction within the plasma and cool-
ing by the neutral atmosphere is least efficient. The electron-
ion temperature ratio is also drastically elevated for a few
hours after sunrise in the topside, giving rise to local max-
imum in the electron temperature there. We associate the
maximum with the heating by photoelectrons, able to pene-
trate into the topside of the ionosphere in the morning when
plasma densities are still low.

The characteristics illustrated by Fig.4 are similar to those
exhibited in the observations shown byHysell et al.(2008).
Many of these characteristics were accurately reproduced
by the NRL ionospheric model SAMI2 model (seeHuba
et al., 2000). SAMI2 reproduced very accurately the diur-
nal and altitude variation in plasma density and also hydro-
gen ion fraction. (Helium ion fraction was also accurately
predicted, although at altitudes above the O+-H+ transition
height, whereas observations place it near or below the tran-
sition height.) Electron and ion temperatures were repro-
duced reasonably well, although there were some significant
discrepancies. The electron-ion temperature ratio in the bot-
tomside was underestimated. This may be a consequence of
neglecting the heating of electrons through the quenching of
an excited state of nitrogen (N(2D)) – see review byAponte
et al. (1999). More significantly, the model failed to repro-
duce the large electron-ion temperature ratio enhancement in
the topside that occurs at sunrise. This is likely due to an
oversimplified treatment of photoelectron transport, an effect
that is now under investigation (W. E. Swartz, personal com-
munication). Secondary ionization by photoelectrons is also
neglected by the model, and this investigation may prompt a
reinvestigation of the number density and composition pre-
dictions which appeared so successful.

Finally, Fig.5 shows the first application of the full-profile
analysis to a Jicamarca World Day dataset. The data span
the interval from 8–13 July 2008. Only daytime data were

collected in a mode suitable for this analysis. Note that the
galactic center passed over the observatory between about
22:00–01:00 LT in early July. Because of this, the low
plasma number density associated with the low solar flux,
and an unseasonably high occurrence rate of plasma irreg-
ularities in the F-region associated with spreadF, the inco-
herent scatter data acquired at night during this period suffer
from a high degree of both clutter and statistical fluctuations.
Moreover, the spreadF irregularities typically persisted for
up to an hour after sunrise. The start times of the data blocks
shown in Fig.5 coincide with the cessation of spreadF irreg-
ularities and/or the emergence of significant F-region ioniza-
tion.

In addition to incoherent scatter data, Fig.5 also shows the
difference in the H components of the magnetic field mea-
sured at Jicamarca (0.8◦ N dip angle) and Piura (6.8◦ N dip
angle),∼900 km to the north. This quantity is proportional
to the equatorial electrojet current and may be regarded as a
proxy for the zonal electric field in the ionosphere during the
day (e.g.Anderson et al., 2004).

Figure5 exhibits the same phenomenology as the dataset
described byHysell et al.(2008) while also illustrating a sig-
nificant degree of day-to-day variability, particularly in the
topside temperatures but also in composition. The main fea-
tures include electron and ion temperature elevations at sun-
rise, electron-ion temperature ratio elevations at sunrise near
theF peak and throughout the day below theF peak, a top-
side local temperature minimum at midday, a peak O+-H+

transition altitude at midday, a maximum in the H+ topside
scale height at midday, and the appearance of trace amounts
of He+ confined to a narrow layer 100–200 km thick near
or below the O+-H+ transition height during the day. The
temperature and composition variability cannot be accounted
for by variability in solar or geomagnetic forcing. However,
variability in the temperatures and H+ concentrations appear
to be correlated with the magnetometer data, with the lowest
topside temperatures and H+ fractions occurring on the days
when the electric field was strongest.

4 Analysis

The ionization and thermal structure of the equatorial top-
side ionosphere are controlled in large part by material and
heat transport along magnetic flux tubes from sources and
sinks residing primarily in the bottomside F-region. Photo-
electron transport in particular seems to play a crucial role
in topside electron heating at sunrise and may affect ioniza-
tion rates through secondary ionization. Thermal conduction
maintains topside electron and ion temperatures throughout
the day. Light ions are produced either by charge exchange
with O+ in the case of H+ or by direct ionization in the case
of He+ but are then transported upward along magnetic field
lines by the ambipolar electric field in order that quasineu-
trality be maintained globally. Quantitative analysis of the
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Fig. 4. Variations in ionospheric state parameters as a function of local time on 7 May 2008. The curves are based on 10-min. incoherent
integrations. The four columns represent, from left to right, plasma number density, electron temperature, ion temperature, and light ion
fraction. Long-pulse (double pulse) data are used for parameter estimation above (below) 450 km altitude. Data quality below 450 km
altitude is poor in the early morning hours when plasma density is low.

observations presented here requires numerical tools capa-
ble of reproducing inherently nonlocal phenomena, and such
tools are under development.

The diurnal behavior of the O+-H+ transition height ob-
served here is similar to what was found byGonźalez et al.
(1992) who analyzed solar minimum AE-E satellite data
from low latitudes. They also found that the He+ concen-
tration had a daytime maximum at equinox. At middle lat-
itudes, meanwhile, the He+ ion fraction has been shown to
reach 10–20% during solar minimum, but at night rather than
during the day (Gonźalez and Sulzer, 1996). Heelis et al.
(1990) explained this behavior theoretically. At middle lat-
itudes, helium ions produced by photoionization are pushed
upward along magnetic flux tubes by the ambipolar electric
field and concentrate near the O+-H+ transition height. A
reservoir of He+ forms at altitudes where dissociative recom-
bination is slow. Helium ions may even become the dominant
species at some altitudes (Heelis et al., 1990; Gonźalez et al.,
2004). At the magnetic equator, however, helium ions are
arrested at the flux tube apexes. The diurnal behavior of the
E×B drift forces the flux tubes to low altitudes at night when
helium ions are removed through dissociative recombination
with molecular nitrogen. The He+ fraction therefore peaks
during the day and is limited to the amount of helium that
can be produced in a single day.

An elementary but revealing analysis is one that predicts
the light ion fractions as a function of altitude assuming dif-
fusive equilibrium and relegating production and loss to al-
titudes below some lower boundary (e.g.Gonźalez, 1994;
Gonźalez and Sulzer, 1996; Gonźalez et al., 2004). Diffu-
sive equilibrium is met when the force balance equations for
the electrons and ions are satisfied:

0 = −K∇(njTj )/nj + eE − mjg (1)

0 = −K∇(neTe)/ne − eE − meg (2)

ne =

∑
j

nj (3)

wherenj is the number density of ion speciesj , ne is the
electron number density,T is the temperature,E is the elec-
tric field, m is the mass,g represents gravity, andK is the
Boltzmann constant. Background electric fields and winds
have been neglected here. Quasineutrality is enforced by
Eq. (3). The equations are written in one dimension (the ver-
tical), and the magnetic field is neglected. Since the magnetic
field does not appear in the plasma Hamiltonian, it cannot af-
fect the equilibrium distribution and the outcome of this anal-
ysis. We can solve this system of equations for a multiple-
ion plasma for the number density profiles and the fractional
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Fig. 5. Full-profile results for the July 2008 World Day period. From top to bottom, the rows depict plasma number density, electron
temperature, ion temperature, hydrogen ion fraction, helium ion fraction, and the H component of the magnetic field due to the electrojet.
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Fig. 6. Plot of Eq. (5) for a 3-ion plasma versus altitude above
a 400 km reference altitude where the relative abundances are fixed
as O+:H+:He+=0.9:0.08:0.02. The ion species share the same tem-
perature, which increases with altitude (see text).

composition profiles:

nj (z)ne(z) = n◦jn◦e(T◦jT◦e/TjTe)e
−

∫ z
◦

dz/Hj (4)

nj (z)

ne(z)
=

n◦j (T◦j/Tj )e
−

∫ z
◦

dz/Hj∑
i n◦i(T◦i/Ti)e

−
∫ z
◦

dz/Hi

(5)

Hj ≡
KTj (z)

mjg(z)
(6)

where the temperatures for the plasma constituents are al-
lowed to differ and to vary with altitude, along with the grav-
itational constant. Here, terms with zero subscripts represent
boundary conditions specified at some lower altitude bound-
ary where diffusive equilibrium holds. Note that the electron
temperature has no effect on the fractional ion composition
given by Eq. (5), although it obviously affects the absolute
abundances.

Figure6 shows Eq. (5) evaluated for a three-ion plasma:
oxygen (green), hydrogen (blue), and helium (red) ions. In
the computation, the ions have a common temperature which
increases linearly from 800 K at the bottom of the figure to
1400 K at the top. The altitudes shown are above a 400 km
reference altitude where transport is provisionally assumed
to dominate photochemistry. The overall shape of the H+

fraction curve, including the gradual shallowing of the curve
with increasing altitude, is similar to that found in the right-
most panel of Fig.2. That the He+ fraction maximizes near

the O+-H+ transition height also resembles observations, al-
though the helium ions sometimes observed at Jicamarca
tend to be concentrated in layers only about 100–200 km
thick.

In fact, diffusive equilibrium is generally a poor model for
the equatorial ionosphere below the protonosphere. Light ion
photochemistry competes with transport at altitudes above
400 km, and horizontal winds and theE×B drift motion of
the equatorial flux tubes also force departures from diffusive
equilibrium. Once disturbed, equilibrium is only restored
very gradually given the slowness of cross-field material and
heat transport.

The agreement of Figs.6 and2 is partly fortuitous and due
to the facts that 1) the H+ concentration curve predicted by
photochemical equilibrium is similar to that predicted by dif-
fusive equilibrium and 2) that He+ is taken to be a minor con-
stituent. The charge-exchange reaction controlling hydrogen
ion photochemistry is O++H↔H+

+O. The forward and re-
verse reactions proceed at somewhat different, temperature-
dependent rates, but for typical topside conditions, the rate
balance condition leads to the following expression for the
hydrogen ion fraction (seeSchunk and Nagy, 2000, for ex-
ample):

n(H+)

n(H+) + n(O+)
=

αn(H)

αn(H) + n(O)
(7)

whereα=1.13 and where helium ions are neglected. With
neutral hydrogen and oxygen density profiles being governed
by the scale height expressions in Eq. (6), Eq. (7) assumes a
form very similar to Eq. (5), only with neutral temperature
replacing ion temperature and with a small correction due to
theα factor.

We can assess the impact ofE×B drifts and horizontal
(meridional) winds on the topside by comparing observa-
tions with additional SAMI2 model runs. Figure7 shows
ion fraction and ion temperature profiles computed with
SAMI2 for June solstice, solar-minimum Jicamarca condi-
tions. The upper-left panel reflects results assuming verti-
cal plasma drifts specified by the Fejer-Scherliess empirical
model (Scherliess and Fejer, 1999) and meridional winds
prescribed by the HWM wind model (Hedin, 1991). Al-
though run for a slightly later local time, the figure repro-
duces well the hydrogen ion fraction and ion temperature
profiles seen in the long-pulse data in the lower half of Fig.3.
The predicted H+ fraction shallows above the O+-H+ transi-
tion height and assumes a concave curvature, even where the
temperature profile is essentially flat, just as it often appears
to in Jicamarca afternoon observations.

We contrast this with the behavior predicted in the upper-
right panel of Fig.7, for which the imposed Fejer-Scherliess
vertical drifts were scaled by a factor of 0.25. In this case, the
hydrogen fraction profile remains nearly symmetric above
and below the O+-H+ transition height (which itself is lit-
tle changed between the two runs), despite the fact that the
ion temperature now increases drastically near and above the
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transition. Evidently, the equatorialE×B drift time history
has a significant effect on the shape of the hydrogen ion frac-
tion profile in the topside. Even more significant is the effect
it appears to have on the topside temperature profile. The
topside temperatures depicted in the left and right panels of
Fig. 7 are very different, with higher temperatures accompa-
nying slower daytime upward drifts. The sensitivity of the
former to the latter appears to be rather severe.

The lower two panels of Fig.7 represent simulation results
where the neutral winds are set to zero. Fejer-Scherliess ver-
tical drifts were used in the run shown in the lower-left panel,
and drifts scaled by a factor of 0.25 were used in the lower
right. The effects of suppressing the winds are to 1) suppress
the topside temperatures, 2) depress the O+-H+ transition
height, 3) greatly reduce the O+ fraction above the transition
height, and 4) greatly reduce the peak height and intensify the
He+ layer. The overall behavior of the curves in the lower-
right panel of Fig.7, where theE×B drifts and meridional
winds have been suppressed, is that predicted for diffusive
equilibrium.

The simulation results predict much of the behavior seen
in Fig.5, where the days with the lowest topside temperatures
and H+ fractions are the days with the largest zonal electric
fields, as inferred from magnetometer data during the day. In
that regard, the simulations provide an explanation, in large
part, for the high degree of quiet-time day-to-day variabil-
ity observed. Some of the hourly variability in the topside
may also be a time-integrated response to variations in elec-
tric field forcing, although further observation and analysis
will be required to demonstrate this. First attempts to obtain
accurate electric field estimates during the day and at night
from long-pulse radar date are currently being made.

Meridional neutral winds also likely contribute to vari-
ability in the ion temperature and composition. Measuring
meridional winds in the thermosphere from incoherent scat-
ter will always be difficult at Jicamarca, although seasonally-
averaged profiles may eventually be obtainable. A more aus-
picious strategy for identifying and quantifying the effects
of thermospheric winds in the topside would be to incorpo-
rate data from the Neutral Wind Meter instrument on the Air
Force C/NOFS satellite (when available).

Finally, Fig.7 suggests that the helium ion fraction is also
strongly influenced by the zonal electric field and meridional
winds. The simulation suggests that significant He+ layers
may only be observable when both are relatively small, and
then only at altitudes near the O+-H+ transition height. The
helium ion fraction remained very small (.5%) throughout
the observations described here but reached 10% in sporadic
daytime layers near the transition height in the 2006 Jica-
marca data examined byHysell et al.(2008). Future studies
will be targeted at correlating layer appearances such as those
with external mechanical forcing.

Fig. 7. SAMI2 simulation runs for Jicamarca June solstice, solar
minimum conditions at 15 LT. Oxygen, hydrogen, and helium ion
fractions are shown in green, blue, and red as in the previous fig-
ure. The black curves show ion temperature. The left panels reflect
simulations based on Fejer-Scherliess empirical vertical drifts. For
the simulations depicted in the right panels, the vertical drifts were
reduced by a factor of 4. The upper panels reflect simulations incor-
porating HWM meridional neutral winds. Winds were set to zero
for the simulations in the lower panels.

5 Summary

Long-pulse topside data acquired at Jicamarca and processed
using a full-profile analysis approach have been compared to
data analyzed using more conventional approaches, to a sim-
ple composition model based on diffusive equilibrium, and to
predictions from the SAMI2 ionospheric model. Hydrogen
ion fraction appears to be well approximated by the diffu-
sive equilibrium model at times, although a model based on
photochemical equilibrium gives similar results. The SAMI2
model shows that extreme shallowing of the H+ fraction pro-
file above the O+-H+ transition height can be caused by
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upward daytime verticalE×B drifts when meridional winds
are also present.

The same drifts and meridional winds can also have dra-
matic effects on the topside ion temperature profile. This
seems to be a likely explanation for the strong quiet-time
variability observed in the topside temperature profiles.
While magnetometer data support the idea that topside tem-
perature and light ion composition are very sensitive to the
zonal electric field at solar minimum, definitive experimen-
tal verification requires improvements in Jicamarca’s ability
to measure vertical drifts in oblique antenna pointing exper-
iments directly. Thermospheric neutral wind measurements
are also required but present significant technical challenges
for radar measurements. Similar remarks hold for variability
in He+ concentration, which is only observed sporadically
and which is predicted to be suppressed by external mechan-
ical forcing.

A common feature of the topside observations is the sub-
stantial increase of the electron-ion temperature ratio at sun-
rise each day at altitudes above theF peak. This feature does
not appear to be captured by the SAMI2 model, due most
likely to an oversimplified treatment of photoelectron trans-
port. Research is presently focused on improving this aspect
of the model. Not only the temperature but also the density
and composition could be affected, since secondary ioniza-
tion by photoelectrons may be important.
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nen, J.: Lag profile inversion method for EISCAT data analysis,
Ann. Geophys., 26, 571–581, 2008,
http://www.ann-geophys.net/26/571/2008/.

Woodman, R. F.: A general statistical instrument theory of atmo-
spheric and ionospheric radars, J. Geophys. Res., 96, 7911–7915,
1991.

Woodman, R. F.: On a proper electron collision frequency for a
Fokker-Planck collision model with Jicamarca applications, J.
Atmos. Sol. Terr. Phys., 66.17, 1521–1541, 2004.

Woodman, R. F. and Hagfors, T.: Methods for the measurement of
vertical ionospheric motions near the magnetic equator by inco-
herent scattering, J. Geophys. Res., 74, 1205–1212, 1969.

Woodman, R. F. and La Hoz, C.: Radar observations ofF region
equatorial irregularities, J. Geophys. Res., 81, 5447–5466, 1976.

www.ann-geophys.net/27/427/2009/ Ann. Geophys., 27, 427–439, 2009

http://www.ann-geophys.net/26/571/2008/

