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Abstract. On 10–11 December 2005 a slow CME occurred
in between two coronal streamers in the Western Hemi-
sphere. SOHO/MDI magnetograms show a multipolar mag-
netic configuration at the photosphere consisting of a com-
plex of active regions located at the CME source and two
bipoles at the base of the lateral coronal streamers. White
light observations reveal that the expanding CME affects
both of the lateral streamers and induces the release of
plasma within or close to them. These transient phenom-
ena are possibly due to magnetic reconnections induced by
the CME expansion that occurs either inside the streamer
current sheet or between the CME flanks and the streamer.
Our observations show that CMEs can be associated to not
only a single reconnection process at a single location in the
corona, but also to many reconnection processes occurring at
different times and locations around the flux rope. Numer-
ical simulations are used to demonstrate that the observed
lateral reconnections can be reproduced. The observed sec-
ondary reconnections associated to CMEs may facilitate the
CME release by globally decreasing the magnetic tension of
the corona. Future CME models should therefore take into
account the lateral reconnection effect.

Keywords. Solar physics, astrophysics,and astronomy
(Corona and transition region; Flares and mass ejections) –
Space plasma physics (Magnetic reconnection)

1 Introduction

Coronal Mass Ejections (CMEs) usually refer to spectacular
eruptions of plasma and embedded coronal magnetic field
from the Sun’s corona into interplanetary space. The total
mass ejected in CMEs ranges from 1013 g to a few 1016 g,
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the total energy from 1027 erg to some 1033 erg (see e.g.
Vourlidas et al., 2002; Gopalswamy et al., 2004). Based on
thousands of CMEs observed by Solwind, SMM (the “So-
lar Maximum Mission”), and SOHO (the “Solar and Helio-
spheric Observatory”), several statistical properties of larger
solar eruptions have been studied, such as velocity, acceler-
ation, and angular width distributions. Some candidates for
the CME triggering, suggested from observational data anal-
ysis, are: the proximity of a CME site to coronal holes (Bravo
et al., 1999), magnetic shear (Mikic and Linker, 1994), fila-
ment helicity (Martin, 2003), X-ray sigmoids (Rust and Ku-
mar, 1996; Sterling and Hudson, 1997) and magnetic flux
emergence (Feynman and Martin, 1995).

In agreement with these different candidates, various CME
models have been formulated invoking different scenarios for
the storage and release of magnetic energy eventually leading
to CMEs. A few excellent papers are available in literature
that give a thorough review on the different CME initiation
theories and models (Klimchuk, 2001; Low, 2001; Forbes et
al., 2006; Roussev and Sokolov, 2006; Mikic and Lee, 2006).
A large portion of the CME initiation models are considered
to be storage and release models (Klimchuk, 2001). In these
models, additional free magnetic energy can be stored in the
corona due to photospheric surface flows or the emergence
and cancellation of magnetic flux. The role of photospheric
motions has been investigated numerically (see for example,
van Ballegooijen and Martens, 1989; Amari et al., 2003),
where the potential magnetic field is subjected to twisting
motions so that a more complex structure is reached. Photo-
spheric shearing motions have been the principal triggering
mechanism used in the breakout scenario (Antiochos et al.,
1999), where the vulnerability of multipolar topologies to re-
arrangements of the magnetic field’s connectivity is exploited
to enable the eruption. The sheared arcade reconnects with
the overlying field to create a passage for the CME. More
complex, three-dimensional (3-D) simulations were recently
performed byLynch et al.(2008). An alternative model uses
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Fig. 1. The white light solar corona as seen by the LASCO/C2 coronagraph in standard (top row, panelsa and f), running difference
(panelsb–e) and wavelet (bottom row) images. This sequence shows the observed occurrence of secondary eruptions associated with the
main CME of 11 December 2005.

flux injection, or flux emergence, as described byChen and
Shibata(2000). In this model, a pre-existing flux rope is
made unstable by the emergence of new magnetic flux of
opposite polarity in the pre-existing coronal loops, causing a
decrease in magnetic pressure that eventually leads to the for-
mation of a current sheet. Recently,Zuccarello et al.(2008)
showed that the emergence of new magnetic flux of the same
sign of the central arcade of a breakout configuration can
cause CMEs. In flux cancellation models, the magnetic field
is first energized by shearing motions followed by converg-
ing motions towards the polarity inversion line. This process
caused magnetic reconnection to occur between the opposite
polarity feet of the sheared magnetic arcade. This eventually
leads to the formation of a flux rope.Amari et al. (2000)
investigated, in a simple bipolar topology, the role of flux
cancellation in the destabilization of a flux rope formed by
the combination of shearing and twisting motion and later
studied this in a complex multiflux configuration (Amari et
al., 2007).

However, the essential ingredients for CME onset are not
yet identified and despite the huge amount of coronagraphic
and spectroscopic data acquired in the last decades and the
complexity reached by the most recent MHD simulations,
the fundamental and still unresolved question about CMEs
is: what really causes a CME to erupt?

Observations of large scale CMEs are not the whole story:
over the last few years many small scale transient events and
small scale eruptions have also been observed such as “nar-
row CMEs” (Gilbert et al., 2001), plasma blobs propagating
outwards along post-CME and streamer current sheets (Ko et
al., 2003), small scale recursive eruptions within the streamer
boundaries namely “streamer puffs” (seeBemporad et al.,
2005). More recent observations acquired from the Hinode
and STEREO (the “Solar Terrestrial Relations Observatory”)
missions are now demonstrating that eruptions on the Sun are
occurring on much smaller spatial scales and much higher
rate than ever thought. In particular, Hinode/XRT and SOT
data revealed that X-ray jets on polar coronal holes are much
more frequent than previously detected from Yohkoh data
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Fig. 2. Left: A map of photospheric magnetic fields observed during the transit of the AR complex across the solar disk (Carrington
Rotation 2037); colors range from−103 G (black) up to +103 G (white). This map has been obtained by averaging the original magnetic
field measurements by SOHO/MDI instrument, in order to reduce the complexity around the CME source region. Vertical solid lines delimit
the solar hemisphere visible on 11 December 2005, while the dashed curved line shows the position of the neutral line across the West solar
limb. Right: the pre-eruption coronal magnetic field configuration as extrapolated (with a Potential Field Source Surface approximation)
above the West limb.

(Cirtain et al., 2007) and that small jets, similar to the X-
ray anemone jets, are occurring even above active regions in
the chromosphere (Shibata, 2007). Very recently,Innes et
al. (2009) demonstrated from high resolution (∼1.6′′/pixel)
STEREO/EUVI data that mini-filament eruptions and micro-
flares brightening occur at a rate of 1400 events/day over the
whole Sun involving small spatial scales (∼10′′–30′′), while
small-scale transient events with typical three part structure
– “mini CMEs” – from inside a coronal hole have been re-
ported with STEREO/SECCHI data byNisticò et al.(2009).
Moreover, many previous works demonstrated that large and
small scale eruptive events are quite often interrelated each
other, possibly by cause-effect relationships (seevan Driel-
Gesztelyi et al., 2008, for a review on this subject): dur-
ing their expansion a CME may reconnect with surround-
ing smaller-scale bipoles, leading to the observed large scale
EUV dimmings (seeAttrill et al., 2007; Mandrini et al.,
2007), but also with fieldlines left open by a previous CME
and/or with nearby streamers, generating type III and N radio
burst (see e.g.Goff et al., 2007; Démoulin et al., 2007). There
is also mounting evidence that coronal streamers can pro-
duce by themselves small scale eruptions: as it has been re-
cently demonstrated, these structures are intrinsically unsta-
ble above their cusps, where reconnections may occur (Chen
et al., 2009) and one or more plasmoids may form (Bárta et

al., 2008), as also anticipated by the detection of propagat-
ing blobs, “in & out pairs”, and “streamer detachments” (see
e.g.Wang and Sheeley, 2006; Sheeley and Wang, 2007); but
coronal streamers are also known to be unstable below their
cusp, where compact ejective flares occurring in the outer
flank of the streamer base can produce many homologous
small scale eruptions traveling out along the streamer and
leaving it largely intact (Bemporad et al., 2005; Moore and
Sterling, 2007).

All these results led us to consider the possibility that small
scale, high rate, ubiquitous eruptions could play a role in
the occurrence of larger scale CMEs reported in the previ-
ous decades. Here however, we will investigate the possible
role played by large scale CMEs in the occurrence of small
scale eruptions. To this end, we first report on the detection of
secondary eruptions induced by a CME expansion (Sect. 2),
second we show that these eruptions can be simulated by al-
lowing magnetic reconnection in the ambient corona where
the CME expands (Sect. 3); our results are then summarized
in Sect. 4.

2 Observations

The coronal white light configuration on 10 December 2005
is shown in Fig.1 (panel a): in particular SOHO/LASCO
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Fig. 3. Top: The initial coronal configuration used in our simu-
lations obtained by the potential superpositoin of a dipolar and a
quadrupolar configuration. The purple and green colored field lines
represent regions of open field lines and fast flow while the three
streamers are colored in white. Bottom: The initial coronal config-
uration showing the orientation of the magnetic field lines.

C2 images show two streamers centered at an approximate
latitude of 39◦ NW and 40◦ SW and a complex of smaller ra-
dial structures in between (Fig.1). Starting at∼19:00 UT,
a CME appears at the West limb in the LASCO/C2 field of
view. This CME propagated in between the two streamers,
with its flanks close to the streamer axes. Starting from about
03:00 UT on 11 December, the northwest streamer appears
to pinch off and the propagation of a concave Y-shaped fea-
ture along the streamer axis is observed (Fig.1, panels b–
c). In the following hours, after a small secondary ejection
that occurred around 12:00 UT (Fig.1, panel d), a similar

process occurs in the southwest streamer that clearly shows
the formation of an X-point in between two radial features
approaching each other. The X-points stretches in two Y-
shaped features, one propagating outward along the streamer
and the other rooted on the Sun, while a current-sheet-like
pattern develops in between (Fig.1, panel e).

Figure 4 shows the system’s evolution over time of the
relative density in response to the applied shearing mo-
tions. The colour code indicates the relative density, i.e.
ρr(t)'[ρ(t)–ρ(0)]/ρ(0), while the white lines represent the
magnetic field lines.

A possible interpretation for the series of events described
above has been provided byBemporad et al.(2008); in this
work they proposed that the observed secondary eruptions
could result from magnetic reconnection occurring in the
lower corona (above or below the altitude of the LASCO/C2
occulter) along the neutral streamer current sheets or between
the CME flanks and the streamer boundaries; in our inter-
pretation these events were induced by the CME expansion.
In particular, one of the above reconnection events has been
directly observed by the SOHO/UVCS instrument (the “Ul-
tra Violet Coronagraph Spectrometer”): the UVCS spectro-
scopic data have been used to estimate the coronal plasma
physical parameters before and after the reconnection and in
particular (for details, seeBemporad et al., 2008). In the fol-
lowing we will demonstrate that the proposed interpretation
can be reproduced by MHD simulations.

To this end, a better knowledge of the pre-CME coronal
magnetic field is needed. Figure2 shows the photospheric
field map (observed by SOHO/MDI) along with the extrap-
olated coronal magnetic field. Strong bipolar photospheric
fields (up to∼103 G) around the equator at the West limb
are associated with a complex of Active Regions that, on 11
December 2005, was approximately crossing the limb. At
higher North and South latitudes the “S”-shaped magnetic
neutral line is mainly parallel to the equator. Hence, along
the West limb we find a stronc concentrated bipole around the
equator and two more dispersed and weaker bipoles ar larger
latitudes (“esa-polar configuration”) Corresponding coronal
magnetic fields were computed starting from photospheric
fields using a PFSS (Potential Field Source Surface) approx-
imation. Within the potential field approximation dynamic
phenomena such as solar eruptions cannot be reproduced, but
it has been demonstrated that this approximation can provide
a good tool to estimate the magnetic field configuration in
coronal streamers. In particular, the extrapolated field shows
two middle latitude groups of extended closed fieldlines (in
very good agreement with the positions of the two observed
coronal streamers) and a smaller equatorial group associated
with the CME source region. In the following Section we
will demonstrate that, using as a starting point an initial mag-
netic configuration of coronal fields that mimics the observed
configuration it is possible to reproduce the secondary erup-
tions observed in white light coronagraphs and induced by
the CME expansion.
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Fig. 4. Snapshots showing the relative mass density and magnetic field lines at different times during our simulation. The left panel shows
the initial configuration. The second panel shows how the relative density has evolved aftert=15 h 58 min. The third panel shows how the
relative density has evolved aftert=19 h 40 min and clearly shows how the expanding CME is pinching the northern and southern streamers.
The fourth panel shows the evolution aftert=22 h 7 min when we can clearly see how induced lateral reconnection has detached the top parts
of the two streamers.

Fig. 5. Snapshots showing the current density and magnetic field lines at different times during our simulation. The left panel shows the
current density att=15 h 58 min. The second panel shows the reconnection att=18 h 26 min when the expanding central arcade pushes the
northern and southern streamers and induces reconnection. The third panel shows the current density att=19 h 40 min while the fourth panel
shows the current density att=22 h 7 min. Here the tops of streamers have already detached.

3 Simulations

The solar corona, the initial arcades and the wind are
modeled in the framework of ideal magnetohydrodynam-
ics (MHD). The MHD equations are solved numerically in

spherical geometry and assuming axisymmetry (2.5D). The
grid contains 484×205 cells. The initial condition is a bi-
modal solar wind with fast flow at the poles and slow flow
around the equatorial region. The coronal magnetic field is
the potential superposition of a dipolar and a quadrupolar
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configuration resulting in the triple streamer structure shown
in Fig. 3. Notice that the simulated initial configuration is
very similar to the configuration extrapolated from the ob-
served photospheric fields. The system is then driven by
shearing motions at the footpoints of the central structure.

An extra upward magnetic pressure force is built up due
to the extra azimuthal magnetic field,Bϕ , generated at the
solar base in response to the applied shearing motions, even-
tually causing the central structure to expand outwards. This
outward expansion leads to the formation of a flux rope. Fig-
ure4, first panel, shows the initial steady state coronal con-
figuration. The plasmoid has expanded outward significantly
after t=15 h 58 min, Fig.4 second panel. The northwest and
southwest streamers are pushed northward and southward
respectively by the expanding field lines and the plasma in
these streamers is compressed as is demonstrated by the in-
crease in relative density in these regions. Figure4 third
panel, shows how the central structure (or streamer) has con-
tinued to expand outward. The density at the centre has
also increased significantly. As it rises outward, the plasma
within the central streamer is accelerated into the solar wind,
stretching it even further. Eventually a current sheet is cre-
ated with which the lower-lying loops can reconnect. Mean-
while the nothern and southern streamers have continued to
be pushed up- and downward compressing the plasma inside
even further. Finally, the flux rope is ejected from the solar
surface. Figure4, fourth panel, shows how the CME has ex-
panded outward even further and consists of a bright leading
edge, a cavity and a dense core embedded in this cavity. It’s
further expansion has also induced even more intense recon-
nection with the two streamers resulting in the detachment
of the top of both streamers (at≈4.5R�). Because of the
axisymmetric nature of our simulations, these detachments
occur simultaneously for both the northern and the south-
ern streamer. They propagate outwards as concave Y-shaped
features. Towards the end of our shear profile, the streamer
reforms and we return to our initial triple streamer configu-
ration.

Figure5 shows the evolution of the current density over
time. The current density is used to indicate where recon-
nection in our system takes place. In Fig.5 first panel shows
how the reconnection takes place between the flank of the
expanding central structure and the adjacent streamers. The
reconnection site is pushed north- and southward as the cen-
tral streamer continues to expand, as shown in Fig.5 second
panel. The reconnection site continues to move to a higher
latitude in Fig.5 third panel and Fig.5 fourth panel until the
central structure is detached from the solar surface and the
tops of the adjacent streamers disconnected by the induced
reconnection.

The current symmetrical setup does not allow the repro-
duction of the observed secondary eruptions. The observa-
tions report two streamers centered at an approximate lati-
tude of 39◦ NW and 40◦ SW (18:00 UT) and a complex of
smaller radial structures in between. The two streamers in

Fig. 6. Snapshot of the relative density and magnetic field lines
showing the secondary eruption in the wake of the disconnected
streamer top (marked in white).

our simulations are centered at a latitude of 35◦ NW and
35◦ SW. The complex of smaller radial structures is repre-
sented by a single streamer centered around the equator. We
will only be able to reproduce the secondary eruptions if we
place a more complex structure in between the two streamers
or if we move away from a perfectly symmetric evolution of
the system. The latter can be done by simply shearing either
the NW or SW streamer. Introducing extra azimuthal mag-
netic field,Bϕ , at the base of the SW streamer causes it to
swell up. The central and NW streamers are pushed north-
ward by the expanding flux rope. Reconnection causes the
tops of both streamers to eventually disconnect. However,
reconnection between the CME flank and the NW and cen-
tral streamer causes a small secondary eruption that can be
seen in Fig.6. The secondary eruption follows the discon-
nection of the streamer tops. Further simulations and more
detailed analysis will be reported elsewhere.

4 Conclusions

White light observations reported here demonstrate that, dur-
ing a CME expansion, many small scale secondary ejec-
tions of plasma may occur in the surrounding corona dur-
ing and after the main eruption. In our interpretation these
secondary eruptions originate from reconnection events in-
duced by the expanding CME in the surrounding corona
along the streamer current sheets and between the CME
flanks and the streamer boundaries (see alsoBemporad et
al., 2008). Simulations reported here have shown that this
interpretation is correct because secondary side ejections in-
duced by an expanding CME can be, at least qualitatively,
reproduced. Our simulations started from an initial magnetic
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field configuration that mimics the real field configuration as
extrapolated in the corona from photospheric fields using a
PFSS approximation. Our initial axisymmetric simulations
were unable to reproduce the observed secondary eruptions
but were able to reproduce the streamer detachments. How-
ever, when the bottom streamer was stressed instead of the
central structure, a secondary eruption was observed. Re-
producing the observed secondary eruptions more accurately
would require us to start from a non-symmetric initial con-
figuration, which we plan to do in the near future. There is a
clear indication however that CMEs could not only be asso-
ciated to a single location of reconnection in the corona, but
to many reconnections occurring at different times and loca-
tions around the flux rope. The exact effect of these lateral re-
connections is currently being studied in more detail; in any
case first results reported here show that future CME mod-
els will have to take this “lateral reconnection effect” into
account.
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