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Abstract. On 5 September 2002 the Geotail satellite ob-
served the cone angle of the Interplanetary Magnetic Field
(IMF) change to values below 30◦ during a 56 min interval
between 18:14 and 19:10 UT. This triggered the generation
of upstream waves at the bow shock, 13RE downstream of
the position of Geotail. Upstream generated waves were sub-
sequently observed by Geotail between 18:30 and 18:48 UT,
during times the IMF cone angle dropped below values of
10◦. At 18:24 UT all four Cluster satellites simultaneously
observed a sudden increase in wave power in all three mag-
netic field components, independent of their position in the
dayside magnetosphere. We show that the 10 min delay be-
tween the change in IMF direction as observed by Geotail
and the increase in wave power observed by Cluster is consis-
tent with the propagation of the IMF change from the Geotail
position to the bow shock and the propagation of the gener-
ated waves through the bow shock, magnetosheath and mag-
netosphere towards the position of the Cluster satellites. We
go on to show that the wave power recorded by the Clus-
ter satellites in the component containing the poloidal and
compressional pulsations was broadband and unstructured;
the power in the component containing toroidal oscillations
was structured and shows the existence of multi-harmonic
Alfv énic continuum waves on field lines. Model predictions
of these frequencies fit well with the observations. An in-
crease in wave power associated with the change in IMF di-
rection was also registered by ground based magnetometers
which were magnetically conjunct with the Cluster satellites
during the event. To the best of our knowledge we present
the first simultaneous observations of waves created by back-
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streaming ions at the bow shock in the solar wind, the dayside
magnetosphere and on the ground.
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1 Introduction

The control of ULF waves observed in the dayside magneto-
sphere by the Interplanetary Magnetic Field (IMF) has been
studied since the 1970s.Troitskaya et al.(1971) realised that
whenever the cone angle of the IMF dropped below a certain
threshold enhanced ULF power was observed.

Troitskaya et al.(1971) explained this observation by at-
tributing the wave generation process to populations of back-
streaming ions at the bow shock which are most likely to
occur during times of low cone angles. These backstreaming
ions resonantly interact with naturally occurring waves in the
solar wind, amplifying them. Since the propagation speed for
ULF waves in the solar wind is significantly lower than the
solar wind flow speed, these ULF waves are convected down-
stream towards Earth. The compressional waves cross the
bow shock, magnetosheath and magnetopause without sig-
nificant changes to their spectrum (Krauss-Varban, 1994).

Whereas the direction of the IMF controls whether waves
are generated at the bow shock or not, the strength of the IMF
controls the peak frequency at which waves are generated.
Takahashi et al.(1984) used ATS 6 magnetic field data to find
that the peak frequency of waves observed inside the dayside
magnetospheref was dependent on the IMF strengthB and
the cone angleθxB .

Observational evidence supporting this mechanism is
available in abundance. It has been studied in detail using
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Fig. 1. IMF measured by the MAG instrument onboard Geotail in
GSM coordinates on 5 September 2002. The bottom panel shows
the IMF cone angleθxB .

satellites in the solar wind (e.g.Le and Russell, 1992a,b),
in the dayside magnetosphere (e.g.Arthur and McPherron,
1977) and ground based magnetometers (e.g.Webb and Orr,
1976). Comprehensive reviews of the research done on up-
stream generated waves and their interaction with the dayside
magnetosphere in the 1970s and 1980s can be found inOdera
(1986) andGreenstadt et al.(1981).

Using magnetic field data from the ISEE 1 and 2 satel-
lites the morphology of upstream waves within the solar wind
medium is well documented byLe and Russell(1992a) and
Le and Russell(1992b). They found that the ULF foreshock,
i.e. the boundary that separates the disturbed and undisturbed
upstream magnetic field, begins at an angle of 50◦ between
the IMF and the bow shock normal. The entire region con-
nected to the bow shock with smaller angles is filled by
waves.

During an inbound pass of the ISEE spacecraft,Le and
Russell(1992b) observed waves up to 5RE upstream of the
Earth bow shock. The upstream waves became stronger,
more compressional and more linearly polarised the closer
they were observed to the bow shock. They also found that
the spectral peak of the generated waves became broader the
closer they were observed at the bow shock whereas the peak
frequency stayed constant as long as the IMF strength did not
change. Directly behind the bow shock the peak spanned fre-
quencies from about 10 to 100 mHz.

Once the upstream generated waves enter the dayside
magnetosphere they can mode convert to Alfvénic waves
where the frequency of the incoming compressional wave
matches one of the eigenfrequencies of a field line. The re-
sulting Alfvénic continuum has been observed byEngebret-
son et al.(1986). As the upstream generation process for the
compressional waves is broad band compared to the spec-
trum of eigenfrequencies of field lines in the dayside magne-
tosphere, a multi-harmonic Alfv́enic continuum is often ob-
served.

Chi and Russell(1998) used electric and magnetic field
data from the ISEE 1 spacecraft to determine energy prop-
agation directions from the Poynting fluxes of waves in the
dayside magnetosphere. They found that at higher frequen-
cies (7–100 mHz) only few waves are standing while most
are travelling. They also found a tendency for waves to travel
anti-sunward, clearly indicating an upstream source.

Of the three possible regimes in which to study upstream
waves, i.e. upstream of the bow shock, in the dayside magne-
tosphere and on the ground, all studies mentioned above only
examine one or two. Here we present simultaneous measure-
ments of upstream generated waves observed in all three re-
gions.

2 Observations

2.1 Space based observations

2.1.1 Geotail

On 5 September 2002 between 18:00 and 19:30 UT the Geo-
tail satellite was located at (29, 7, 2)RE in GSM coordinates,
about 13RE upstream of the Earth’s bow shock. The mag-
netic field instrument onboard the satellite sampled the IMF
every 3 s. The three IMF componentsBx , By , Bz in GSM
coordinates and the magnitudeBtot are shown in the top four
panels in Fig.1. The bottom panel shows the IMF cone angle
θxB=acos(|Bx | /Btot), i.e. the angle between the Sun-Earth
line and the direction of the IMF.

Before 18:14 UT the cone angle of the IMF was around
90◦ due to smallBx values. At 18:14 UTBx abruptly
changed to negative values around−5 nT causing the cone
angle to drop below 40◦. Between 18:14 and 18:24 UT the
cone angle decreased further with two excursions to values
above 40◦ at 18:17 and 18:22 UT.

Between 18:24 and 19:10 UT the cone angle was mainly
below 30◦ with brief excursions to slightly higher values at
18:51 and 18:58 UT. From 18:30 to 18:48 UT it reached very
low values averaging around 10◦.

During this interval of very low cone angle pulsations
in the magnetic field were observed, 13RE upstream the
Earth’s bow shock. The peak to peak amplitude was around
0.5 nT in the X, 2 nT in the Y and 4 nT in the Z component.
At this time the field was essentially orientated in negative X
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direction and hence the pulsations were predominantly trans-
versely polarized. But as significant pulsation activity was
also observed in the field magnitude, compressional waves
were present, too.

Figure2 shows dynamic spectra of the three GSM compo-
nents of the magnetic field measured by Geotail. The FFT
length was about 6.5 min (128 points) as indicated by the
ruler above the top panel in Fig.2. The FFT window was
advanced by 32 points between successive spectra. Overplot-
ted on the spectral powers is the frequencyf of the upstream
generated waves as predicted byTakahashi et al.(1984):

f = 7.6 Btot cos2 θxB . (1)

HereBtot denote the IMF strength andθxB the cone angle. A
moving average of 20 points length (60 s) was used forBtot
andθxB to eliminate short term fluctuations.

Around 18:15 UT an increase in power at low frequencies
occurred, most notably in the spectrum of the X component.
However, this increase was not caused by pulsation activ-
ity but due to the step-like feature observed around that time
(compare Fig.1).

A strong increase in FFT power between 30 and 70 mHz
was observed between 18:30 and 18:50 UT, a smaller in-
crease followed after 19:05 UT. The main increase of wave
power was observed while the cone angle was particularly
low. The frequency at which most power was observed by
Geotail was 40 mHz. This value is well matched by the fre-
quency predicted byTakahashi et al.(1984) as shown by the
black solid line superimposed on the spectra. All four Clus-
ter satellites, as will be shown in the next section, observed
the most power in the compressional component at the same
frequency.

2.1.2 Cluster

On 5 September 2002 the four Cluster spacecraft passed
through the dayside magnetosphere. Their orbit and mag-
netic field lines as predicted by the Tsyganenko 96 (T96)
model (Tsyganenko, 1995) are shown in the top two panels of
Fig. 3. Standard input parameters (Dst=0 nT,pdyn=2.0 nPa,
By=0 nT,Bz=0 nT) were used for the field line trace.

The orbit followed essentially the magnetic meridian at
12:00 Magnetic Local Time (MLT) as the satellites passed
from open field lines connected to the southern polar cap into
regions of closed field lines. After having passed through
perigee at a geocentric distance of∼4.5RE they then ex-
ited the closed dayside magnetosphere and entered open field
lines connected to the northern polar cap.

During autumn 2002 the average separation of the space-
craft was about 1RE . During the event discussed here it
ranged from∼0.5RE between s/c 1 and 2 to 2.5RE between
s/c 1 and 3. At 15:00 UT s/c 1 and 2 led the orbital motion,
followed by s/c 3 and 4. As s/c 4 was on the orbit with the
smallest perigee it caught up with s/c 1 and 2 by the time
these satellites reached the northern cusp region. s/c 3 was

Fig. 2. Dynamic spectra of the Geotail magnetic field data. The
superimposed black line gives the frequency predicted by Eq. (1).

lagging behind all other spacecraft throughout the entire in-
terval.

The Flux Gate Magnetometer (FGM) onboard the Cluster
satellites provides the full 3-D magnetic fieldB at 4 s (spin)
resolution. Additionally, the Electric Field and Waves (EFW)
instrument measured the electric fieldE in the spin plane of
the spacecraft.

On the timescales of ULF pulsations the frozen-in theorem
is usually fulfilled. Hence we can assumeB andE to be
perpendicular. This assumption allows us to reconstruct a
3-D electric field in GSM coordinates by using

0 = E · B ⇔ Ez = −
(
ExBx + EyBy

)
/Bz (2)

Equation (2) will not produce sensible results whenever the
magnetic field vector is close to the spacecraft spin plane.
Electric field values were therefore treated as missing data
whenever the angle between the magnetic field and the spin
plane was smaller than 5◦.

After the full electric field has been computed, both field
data have then been transformed from GSM into a mean
magnetic field aligned coordinate system (MFA). The field
aligned directionF in this orthogonal system is calculated
by a moving average over each GSM component of the mag-
netic field over 150 points (10 min). The positive direction
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Fig. 3. The top two panels show the orbit of the Cluster satellites
in GSM coordinates between 15:00 and 21:00 UT projected into
the XY and XZ plane. Every full hour the positions of all four
spacecraft are shown, s/c 1 is coloured black, s/c 2 red, s/c 3 green
and s/c 4 blue. The dotted lines indicate the magnetic field pre-
dicted by the T96 model. The bottom panel shows the footprint
of s/c 3 over Northern America in magnetic coordinates between
16:30 and 21:00 UT. Positions of magnetometer stations belonging
to the CARISMA and MACCS chain are also shown. The statisti-
cal location of the auroral oval (Feldstein and Starkov, 1967) for the
prevailing geomagnetic conditions (Kp=1) is superimposed in light
grey for reference.

of this component is parallel to the background magnetic
field. The vector product of the satellite’s geocentric position
r and the field aligned direction gives the azimuthal direc-
tion asA=F×r. The azimuthal axis points eastward. The
radial componentR then completes this right handed coor-
dinate system asR=F×A. The radial axis points radially
inwards.

Since the electric field was constructed under the assump-
tion that it is perpendicular to the magnetic field, the field
aligned component of the electric field in the MFA system
will be identical zero. Hence only the azimuthal and the ra-
dial component of the electric field are displayed in the fol-
lowing discussions.

The advantage of the MFA coordinate system is that the
component in which an oscillation is observed will identify
its wave mode. Compressional modes are observed in the
field aligned magnetic field. Oscillations in the azimuthal
magnetic and radial electric component are toroidal Alfvénic
modes whereas poloidal Alfvénic modes are observed in the
radial magnetic and azimuthal electric field.

After the data were transformed into the MFA coordinate
system the magnitude of the T96 magnetic field model at the
spacecraft’s position was subtracted from the field aligned
component. Again, standard input parameters (Dst=0 nT,
pdyn=2.0 nPa,By=0 nT, Bz=0 nT) were used for the T96
model.

Both magnetic and electric field data were then high pass
filtered with a cut-off period of 4000 s. Subsequently a dy-
namic FFT of length 128 points (∼8 min, denoted by the
ruler above the top panel in Figs.4 to 7) was applied to the
three Hamming window tapered time series of each space-
craft. This FFT length results in a frequency resolution of
about 2 mHz. Each FFT window as advanced by 32 points
(about 2 min). The results of the two electric and three mag-
netic components in the MFA system are shown for the four
spacecraft in Figs.4, 5, 6 and7.

The thick dashed white lines plotted over the dynamic
FFTs of the toroidal magnetic and electric field show the fre-
quencies of the six lowest toroidal harmonics as predicted
by theory. How these were calculated will be discussed in
Sect.3.2.

Solid white lines on the spectra of the azimuthal electric,
radial and field-aligned magnetic component give the fre-
quency of upstream generated waves as predicted by Eq. (1).

The bottom panels in Figs.4 to 7 give L-valueL of the
spacecraft determined from the magnetic latitudeλ and the
geocentric distancer asL=r/acos2(λ). The time of reach-
ing the minimum L-value during the orbit is marked in all
panels, the minimum L-value and the time are also given in
the bottom panels.

The Open Closed Field Line Boundary (OCB) for all
spacecraft was determined from electron energy distribu-
tion measurements by the PEACE instrument onboard the
satellites (not shown). Closed field lines are charac-
terised by a trapped population of high energy (>1 keV)
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Fig. 4. Dynamic spectra of the radial, azimuthal electric and radial, azimuthal, field aligned magnetic field components measured by s/c 1
on 05 September 2002. The vertical dashed lines give the times of the inbound and outbound OCB crossings. The expected frequencies of
the Alfvénic toroidal mode have been overplotted in the radial electric and azimuthal magnetic panels as white dashed lines. The frequency
of upstream generated waves as predicted by Eqn. 1 is overplotted on all other dynamic spectra. The bottom panel shows the L values of the
crossed field lines. The minimum L value and the time it was reached are marked by a solid vertical line. The time of crossing the magnetic
equator is given by a thin white dashed line. Additional x axes give MLT and magnetic latitude.

Fig. 4. Dynamic spectra of the radial, azimuthal electric and radial, azimuthal, field aligned magnetic field components measured by s/c 1
on 5 September 2002. The vertical dashed lines give the times of the inbound and outbound OCB crossings. The expected frequencies of the
Alfv énic toroidal mode have been overplotted in the radial electric and azimuthal magnetic panels as white dashed lines. The frequency of
upstream generated waves as predicted by Eq. (1) is overplotted on all other dynamic spectra. The bottom panel shows the L values of the
crossed field lines. The minimum L value and the time it was reached are marked by a solid vertical line. The time of crossing the magnetic
equator is given by a thin white dashed line. Additional x axes give MLT and magnetic latitude.

www.ann-geophys.net/27/357/2009/ Ann. Geophys., 27, 357–371, 2009



362 L. B. N. Clausen et al.: Simultaneous measurements of upstream waves6 L. Clausen: Simultaneous Measurements of Upstream Waves

Fig. 5. Same format as Fig. 4, but s/c 2 data on 05 September 2002.Fig. 5. Same format as Fig.4, but s/c 2 data on 5 September 2002.
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Fig. 6. Same format as Fig. 4, but s/c 3 data on 05 September 2002.Fig. 6. Same format as Fig.4, but s/c 3 data on 5 September 2002.
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electrons. This population was easily identified in the
PEACE spectrograms during this interval. The criterion
for an in/outbound boundary crossing was that the differ-
ential energy flux (DEF) at 5 keV rose/dropped to values
above/below 10−6 µJ/cm2 s sr eV. With this rather crude cri-
terion the crossings could be determined to an accuracy of
±2 min which is sufficient for this study.

Before having entered closed magnetic field lines the satel-
lites flew through the cusp region of the magnetosphere. This
region is usually characterized by broadband ULF wave ac-
tivity in magnetic field data (Dunlop et al., 2005). Hence a
sharp decrease in wave power in the ULF band can also be
used as a criterion for leaving the cusp and entering closed
field lines.

s/c 1 was the first satellite to enter closed field lines accord-
ing to electron DEF data at 15:36 UT. This time is marked by
a vertical dashed line in Fig.4. The crossing was accom-
panied by a sharp drop in the FFT power above 20 mHz in
all three components of the magnetic field. The fact that the
wave power dropped about 4 min later than the occurrence
of a trapped electron population is due to the finite length
of the FFT as indicated by the ruler above the top panel in
Fig. 4. The outbound OCB crossing with reversed charac-
teristics, i.e. sudden increase of ULF broadband power and
disappearance of the trapped electron population, occurred
at 19:57 UT.

The inbound leg of the orbit between 15:36 and 17:49 UT
(perigee) was characterised by very low wave activity be-
tween 0 and 80 mHz. In the radial and azimuthal magnetic
component two lines of increased power at a constant and a
slightly increasing frequency were observed. These are in-
strumental artifacts and have no physical relevance in this
context.

Horizontal lines of increased power at 20, 40 60, and
80 mHz were also observed in both electric field components
by s/c 1. These too are instrumental artifacts.

At 18:10 UT, shortly after perigee, a simultaneous increase
in wave power in the two electric and three magnetic compo-
nents was observed. The increase is best seen in the compres-
sional magnetic component (last spectrum in Figs.4 to 7).
The power was structured in a fan-like fashion in the toroidal
magnetic component and, though somewhat less obvious, in
the toroidal electric component. The frequency decreased as
the L-value increased.

Wave power was also observed in the poloidal and com-
pressional components, however it was unstructured and
broad band. Its frequency did not seem to be dependent on
the L value.

As can be seen from the data presented in Figs.4 to 7 the
sudden increase in structured and unstructured ULF power
was observed by all four spacecraft simultaneously, although
being located at different L-values within the dayside mag-
netosphere.

For all four spacecraft it is true to say that after having
entered closed magnetic field lines, the FFT power was at

very low values for all three components. FFT power then
increased at 18:10 UT between 20 and 80 mHz in all com-
ponents at all spacecraft. Whereas it was broad band and
L-value independent in the poloidal component, it was nar-
row band and L-value dependent in the toroidal component.
The compressional component showed also broad band, L-
value independent power which abruptly decreased around
19:10 UT. The decrease in less sharp in the other compo-
nents.

2.2 Ground magnetometer observations

During the event stations belonging to the CARISMA and
MACCS array of ground based magnetometers were located
at the footprint of the Cluster satellites on the dayside of the
magnetosphere around 12:00 MLT. The footprint of s/c 3 and
the positions of the magnetometer stations are shown in geo-
magnetic coordinates in the bottom panel of Fig.3. The other
spacecraft’s footprints followed the trace of s/c 3 very closely
and are not shown for the sake of clarity. The statistical loca-
tion of the auroral oval (Feldstein and Starkov, 1967) for the
prevailing geomagnetic conditions (Kp=1) is superimposed
in light grey for reference.

Dynamic spectra were calculated from available data of
ground based magnetometers. Before a FFT of about five
minutes length was applied the otherwise unfiltered data
were reduced by a linear trend and multiplied by a 10% co-
sine taper. Each FFT window was advanced by 32 points
(two and a half minutes). The logarithm of the FFT power
of the X component (geographic North-South) is shown in
Fig. 8.

Between∼18:20 and∼19:20 UT an increase in wave
power at frequencies between 20 and 80 mHz was observed
at all stations except CRV. This is in the same frequency
range as power was observed at the Cluster spacecraft and
the Geotail satellite. The observed power varied with latitude
whereas the peak frequency where most power was observed
was constant around 40 mHz. The qualitative agreement be-
tween this frequency and the frequency predicted by Eq. (1)
is, as before for Geotail and Cluster observations, very good.
The onset time was more distinct than the end time. After
∼19:30 UT another increase in wave power at lower frequen-
cies was observed.

The dynamic spectrum for data recorded at CRV shows
no signatures of an increase in wave power between 20 and
80 mHz. This is most likely due to the fact that CRV was
located on open field lines. The poleward boundary of the
auroral oval as indicated in Fig.3 can be taken as a proxy
for the OCB and hence CRV was located on open field lines.
Additionally, s/c 3 crossed the OCB around 16:45 (compare
vertical dashed line in Fig.6). According to the footprint
predictions using the T96 model, this position matches well
with the location of the poleward boundary of the auroral
oval.
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Fig. 7. Same format as Fig. 4, but s/c 4 data on 05 September 2002.Fig. 7. Same format as Fig.4, but s/c 4 data on 5 September 2002.
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Fig. 8. Dynamic spectra of X component data from some ground
based magnetometer stations belonging to the CARISMA and
MACCS array in Canada on 5 September 2002. The station’s name,
magnetic latitude and MLT are given in the top left corner of each
panel. Also shown as a solid black line is the predicted frequency
of the upstream generated waves as given by Eq. (1).

The fact that CRV did not observe any increase in wave
power on open field lines strengthens our argument that up-
stream generated waves entered the closed dayside magneto-
sphere.

3 Discussion

As outlined in the introduction, the connection between the
IMF cone angle and pulsation power in the ULF frequency
range in the dayside magnetosphere is theoretically well un-
derstood (Troitskaya et al., 1971). During times of low IMF
cone angle solar wind ions are reflected at the bow shock.
These backstreaming ions generate waves in the solar wind
by a cyclotron resonant interaction. Since the wave prop-
agation speed is lower than the solar wind speed they are
convected with the bulk solar wind flow towards Earth, pass-
ing the bow shock and magnetopause without significant
changes to their spectrum. From the dispersion relation of

MHD waves it is obvious that only the compressional waves
will enter the inner dayside magnetosphere.

From Figs.4 to 7 it is clear that the power in both the
poloidal and compressional components of the magnetic and
electric was broad band whereas it was focused in bands in
the toroidal component. The clearest observations were pro-
vided by data from s/c 3 in Fig.6.

Our interpretation is that due to favourable conditions
broad band compressional waves were generated by back-
streaming ions upstream of the bow shock and entered the
dayside magnetosphere. Here they mode convert into narrow
band field guided Alfv́en waves, creating an Alfvénic contin-
uum.

3.1 Field-aligned component

The sudden decrease in the IMF cone angle occurred at
18:14 UT. Before 18:24 UT two brief excursions to larger
cone angles occurred; the first 18:17 UT, the second at
18:22 UT. To establish when compressional wave power was
observed by the Cluster spacecraft, a dynamic FFT with a
length of 32 points – a quarter of the length used to create
Figs. 4 to 7 – was calculated. Subsequently all power be-
tween 20 and 80 mHz was integrated to give a time series
of the wave power. This time series is shown for the four
satellites in Fig.9.

Figure9 shows that the compressional power in the mag-
netic field measured by the spacecraft arrived in wave pack-
ets rather than as continuous pulsations, as has been ob-
served before byChi and Russell(1998). All packets have
been marked with vertical dashed lines. These show that
all packets were simultaneously observed by all spacecraft,
even though their position within the dayside magnetosphere,
i.e. their L-value, was significantly different (see top panel in
Fig. 9).

The amplitude of the wave packets seems to be controlled
by a convolution of two factors. As the IMF cone angle
dropped to values below 10◦, the amplitude of the observed
wave packets was higher. Secondly, the position within the
magnetosphere controlled the amplitude: the closer the satel-
lite was to the equatorial plane the larger the observed ampli-
tude.

Figure9 also reveals that the boundaries of the interval of
enhanced power were controlled by time not by spacecraft
position. At the end of the interval after 19:05 UT s/c 3 ob-
served no compressional power at L-values between 4 and
5. However, earlier between 18:30 and 19:00 UT all other
spacecraft had observed power at these L-values.

The first significant compressional power to be registered
by the Cluster magnetometers started at 18:24 UT, i.e. 10 min
after the drop in the IMF cone angle was observed by the
Geotail satellite. The delay time between the change in cone
angle and the occurrence of wave power is due to two fac-
tors: (1) the propagation of the change in IMF with the solar
wind from the Geotail position to the bow shock and (2) the
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traversal of the magnetosheath by the generated waves with
the magnetosheath flow, since it can be assumed that the first
waves to arrive at Cluster were those generated immediately
upstream of the bow shock.

The convection timeτsw of the IMF from the Geotail posi-
tion Dgt to the subsolar bow shock can simply be calculated
via τsw=(Dgt−Dbs0)/vsw.

The ACE satellite measured the solar wind speed during
this event. After lagging the data by an appropriate delay due
to the propagation of the solar wind,vsw can be estimated to
be∼430 km/s during the event discussed here. This allows
us to estimateτsw to be 3 min.

Khan and Cowley(1999) argued that the transition time
of the solar wind through the magnetosheathτsh can be esti-
mated by

τsh =
Dbs0− Dmp0

α vsw − vmp
ln

(
α vsw

vmp

)
, (3)

wherevsw is the solar wind bulk plasma speed andDbs0 and
Dmp0 denote the bow shock and magnetopause standoff dis-
tances, respectively.vmp is the plasma bulk speed at the
magnetopause whichKhan and Cowley(1999) argued to be
20 km/s. α is the ratio of the flow speed just downstream and
just upstream from the shock, i.e.vbs/vsw. This ratio follows
from the usual shock jump conditions as

α =
(γ − 1)M2

+ 2

(γ + 1)M2
(4)

whereM is the magnetosonic Mach number andγ=5/3.
Following Shue et al.(1997) the position of the magne-

topauseDmp0 was 11.0RE , the geocentric bow shock dis-
tanceDbs0 was 15.0RE according to results fromPeredo
et al.(1995). As the solar wind speed is known to have been
430 km/s, the estimated transition timeτsh of the compres-
sional waves from just upstream the bow shock into the day-
side magnetosphere is then about 9 min.

Addingτsw to τsh we arrive at a total delay time of 12 min,
which is in excellent agreement with the observed 10 min.

3.2 Azimuthal component

In the preceding section we have shown that the compres-
sional power observed by the Cluster satellites was gener-
ated by backstreaming ions. We will now show that the
compressional waves mode-converted into toroidal Alfvén
waves, generating Alfv́enic continuum.

As the satellites move from large to a minimum L value
on their inbound pass, the fundamental eigenfrequency of the
crossed field lines increases. Once the perigee is passed, the
field line length increases and hence the fundamental eigen-
frequency decreases.

According toSchulz(1996) the frequencyωn of the nth

harmonic of the toroidal mode on a dipolar field line with a

Fig. 9. Wave power in the compressional magnetic component be-
tween 20 and 80 mHz observed by the Cluster satellites (panels la-
beled s/c 1 to s/c 4) on 5 September 2002. The right y axes give the
magnitude of the integrated power. The filtered time series of the
compressional magnetic field component is shown relative to the y
axes on the left. The top panel shows the spacecraft’s L value. The
bottom panel shows the IMF cone angle.

certain L value and plasma mass density exponent,m is given
by

ωn(L, m, n) =
3π

8

vA0(L)

L a

1

sin(3(L))

+

(
n −

3

4

)
1ω(L, m) (5)

wherevA0(L)=B0(L)/
√

µ0ρ0(L) is the equatorial Alfv́en
velocity, a is the Earth’s radius and3(L) is the colatitude
where the field line of interest intersects the Earth. The ex-
ponentm determines how the mass is distributed along the
field line, i.e.

ρ(r) = ρ0

( r0

r

)m

. (6)

The increment of the frequency1ω(L, m) is independent of
the harmonic number and given by

1ω(L, m) = 2π

∮
v−1

A ds (7)
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Fig. 10. Electron densities determined from the spectra provided
by the WHISPER instrument between 17:00 and 20:00 UT on 5
September 2002. The bottom panel shows the L-value for refer-
ence. Different spacecraft are again coded by different colours.

which can for a dipolar magnetic field be expressed as

1ω(L, m) = 4
L a

vA0(L)

∫ sin(3(L))

0

(
1 − x2

)(3−m/2)

dx. (8)

The equatorial Alfv́en velocity depends on the equatorial
mass densityρ0(L) and the equatorial magnetic fieldB0(L).
ρ0(L) can be assumed to vary as (compareChi et al., 2001)

ρ0(L) =


ρps0

(
Lpp0

L

)3

, L ≤ Lpp

ρms0

(
Lmp0

L

)3

, L > Lpp.

(9)

In Eq. (9) ρps0 is the equatorial plasmaspheric mass density
inside the plasmasphere at a geocentric reference distance of
Lpp0 in units of Earth radii. Accordingly,ρms0 is the equato-
rial mass density at a reference pointLmp0 inside the magne-
tosphere.

The equatorial magnetic fieldB0(L) can be assumed to
be dipolar and depending on a reference point. The perigee
of s/c 3 was chosen as the reference point (L0=4.45RE ,
Br0=310 nT) such that the magnetic field along the L values
can be modelled as

B0(L) = Br0

(
L0

L

)3

. (10)

For calculations using the above model, the knowledge of
the position of the plasmapause is essential. Figure10

shows electron densities deduced from spectra provided by
the Waves of HIgh frequency and Sounder for Probing of
Electron density by Relaxation (WHISPER) instrument. A
model plasma frequency can be fitted to every spectrum ob-
served by the WHISPER experiment, hence allowing the de-
termination of the electron density (Trotignon et al., 2001).

Electron densities provided by the WHISPER instrument
are linked to a quality flag. This flag is set to a value be-
tween 0 and 100 according to the confidence of fit of the
model plasma frequency to the measured spectrum. Fig-
ure10 shows only measurements where this flag was bigger
than 33.

From Fig.10 it is clear that none of the spacecraft entered
the plasmasphere. The plasmapause position was therefore
set toL=4RE as it will not further affect the model calcula-
tions. Analogous to the model magnetic field, the perigee of
s/c 3 was chosen as the magnetospheric reference point for
the number densities (Lmp0=4.45RE , nms0=25 cm−3).

Using Eq. (5) the frequencies of the lowest six harmon-
ics of the toroidal mode were determined for every L-value
along the orbit of the Cluster satellites for an exponent of
m=2 (compareDenton et al., 2002). The average mass per
particle was chosen to be 1.15 amu in order to reproduce the
best agreement at perigee between the model and the obser-
vations.

The frequency values are overplotted on the spectra of the
toroidal field components in Fig.4 to 7 and show excellent
agreement with the observations.

Note that one can even make some general remarks about
the node structures of the harmonics from the spectra. The
fundamental toroidal mode has a node in the magnetic field at
the magnetic equator. The spectrum of s/c 3 shows this char-
acteristic by a decrease in wave power close to the perigee
of the orbit. The second harmonic has an antinode in the
equatorial plane which is observed as increased wave power
around perigee at s/c 3. The node structure is far less obvious
in the toroidal component of the electric field.

This node structure was not observed by the other space-
craft because they had already passed the equatorial plane by
the time the Alfv́enic continuum started.

To further support our observations, the fundamen-
tal eigenfrequencies of the field lines half way between
some ground based magnetometer stations belonging to the
CARISMA chain have been calculated. Only data from mag-
netometers aligned along essentially the same longitude can
be used for this method.

The cross-phase technique has been proven to be an excel-
lent diagnostics tool to determine the fundamental eigenfre-
quency of field lines from ground based magnetometer data
(Waters et al., 1991). The fundamental eigenfrequency of a
field line half way between two magnetometer stations can be
determined by finding the maximum value of the cross-phase
calculated from the two latitudinally separated stations. Here
we used data from the suitable station pairs to find the fun-
damental eigenfrequency. The results are given in Table1.
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The cross-phase technique does not depend on large-
amplitude FLR signatures in the analysed ground-based
magnetometer data. Rather, the phase relation between
small-amplitude pulsations which are assumed to occur at the
natural eigenfrequency is used for the frequency estimation.

According to the prediction in Fig.3 the foot print of s/c 3
during perigee was located very close to the field line half
way between PINA and ISLL. Hence the frequency of the
lowest harmonic measured by both instruments should be
very similar.

And indeed, the fundamental eigenfrequency of that field
line was about 13 mHz according to the cross-phase analysis
based on ground based data (see Table1). According to mea-
surements of s/c 3 and the predictions of our model calcula-
tions, the fundamental eigenfrequency at perigee at 18:54 UT
was 15 mHz (see Fig.6).

The ground based magnetometer data has been checked
for signatures of FLRs. These would be expected to be ob-
served since the Cluster measurements show the existence
of Alfv énic continuum on the field lines conjunct with the
ground based magnetometers. E.g. FLR signatures would be
expected to occur with a frequency of 13 mHz and a reso-
nance latitude around that of PINA and ISLL. However, no
pulsations with FLR characteristics were found.

The pulsations belonging to the Alfvénic continuum had a
rather small amplitude when observed by the Cluster satel-
lites. Ionospheric screening probably prevented these oscil-
lations to be observed on the ground.

3.3 Upstream waves at Geotail

The observations discussed earlier raise the question why
Geotail did not observe upstream waves from the moment
the change in IMF direction hit the bow shock. According
to earlier calculations the upstream wave generation started
3 min after the sudden positive turning in the IMFBx com-
ponent was measured by Geotail at 18:14 UT. However up-
stream waves are only observed at the Geotail position from
18:30 UT onwards, also ending significantly earlier (around
18:48 UT) than when the compressional power stopped being
detected by Cluster (around 19:10 UT).

The above observations can be explained when looking at
the configuration of the Geotail position, the IMF and the
bow shock.

The ions reflected from the bow shock will essentially
travel along the IMF field lines against the solar wind stream.
Hence upstream wave will only be observed by Geotail if a
IMF field line stretched from the spacecraft’s position to the
bow shock. Moreover, at the foot point of that field line on
the bow shock boundary the condition for ion reflection must
have been fulfilled. Whenever the angle between the field
line from Geotail to the bow shock surface and the normal
of the bow shock at the foot point was below 30◦ upstream
waves are expected at the Geotail position.

Fig. 11. Geometry for different IMF orientations at different times
on 5 September 2002. The blue dot on the left marks the position
of the Geotail satellite, the black dots represent the points on the
bow shock surface from which the normal was calculated. The two
according normals are yellow and red, the average normal is in blue.
Also shown is the bow shock surface in the respective plane, the
position vector of the cross point and Earth.

As the IMF changed with time, the foot point moved over
the bow shock surface or in fact may not have crossed the sur-
face at all. Additionally the angle between the IMF and the
normal at the foot point changed. This condition only decides
whether upstream wave are observed at the Geotail satellite.
The cone angleθxB controls whether waves are generated at
the nose of the bow shock.

In order to test this hypothesis, the angleθnB between the
IMF direction through Geotail’s position̂xIMF and the shock
normaln̂ at the point wherêxIMF crossed the bow shock sur-
face was calculated.
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Fig. 12. The black trace shows the angleθnB between the IMF
connected to the Geotail position and the normal of the bow shock
surface at the crossing point of the two. The red trace shows the
IMF cone angleθxB .

Peredo et al.(1995) gives a quadratic form to describe the
shape of the bow shock depending on the Alfvénic Mach
number. The point at whicĥxIMF crosses the bow shock
is thus easily found. From other points on the bow shock
surface in the vicinity of the cross point the normal vectorn̂

and hence the angleθnB can be determined. This method is
schematically shown in Fig.11at different times.

The angleθnB is shown in Fig.12 in black. Also shown
in red is the cone angleθxB . From the black curve it is clear
why upstream waves were only observed between 18:30 and
18:48 UT and between 19:10 and 19:20 UT. Only during
those times was the IMF orientated in such a way that the
ions would travel against the solar wind stream in the direc-
tion of Geotail. Thus waves could be generated further up-
stream and subsequently observed by the instrument onboard
Geotail.

4 Conclusions

On 5 September 2002 an increase in the IMFBx compo-
nent caused a sudden decrease of the IMF cone angle be-
low 30◦. After the change in the IMF had propagated to the
bow shock, the generation of waves due to reflecting ions be-
gan. At 13RE upstream the bow shock the Geotail satellite
observed these upstream generated waves with a peak fre-
quency of 40 mHz.

10 min after the change in the IMF cone angle the Cluster
satellites registered a sudden increase in compressional wave
power with a peak frequency of 40 mHz in the dayside mag-
netosphere. We show that this delay is consistent with the
propagation of the IMF from the Geotail position to the bow
shock and the subsequent propagation of upstream generated

Table 1. Locations in magnetic coordinates and L-value of sta-
tions belonging to the CARISMA chain. The fundamental eigen-
frequencyf was determined by the cross-phase technique.

Station pair Lat. Lon. L [RE ] f [mHz]

PINA ISLL 62.0 332 4.5 13
ISLL GILL 65.1 332 5.6 7.5
MCMU RABB 65.7 313 5.9 6.5
MCMU FSMI 65.9 307 6.0 6.5
GILL FCHU 67.4 332 6.8 6.5
FCHU RANK 70.5 334 9.0 4.0

waves from there through the magnetosheath into the dayside
magnetosphere.

Cluster magnetic field data shows that simultaneously with
the increase in compressional wave power, the dynamic spec-
tra of the azimuthal magnetic and radial electric field compo-
nents show the presence of Alfvénic continuum oscillations.
Hence we provide strong evidence for the direct driving of
the Alfvénic continuum in the dayside magnetosphere by up-
stream generated waves.

An increase in wave power at 40 mHz is also seen in data
from ground based magnetometers which were magnetically
conjunct with the Cluster satellites during the event. The ob-
served frequency of the lowest harmonic observed by s/c 3
at perigee is consistent with calculations of the fundamental
eigenfrequency of the involved field line using ground based
data. However, no FLR signatures were found on the ground
as would be expected from the existence of the Alfvénic con-
tinuum.

The dipole based, toroidal FLR solution ofSchulz(1996)
was found to accurately predict the toroidal eigenfrequencies
of the field lines crossed by the Cluster satellites. This is true
for both the magnetic and electric field. Due to the polar
orbit of the Cluster satellites, node structures of the Alfvénic
continuum were observed.

The magnetometer onboard Geotail registered wave activ-
ity significantly after the change in the IMF cone angle had
reached the bow shock. We explain this observation by show-
ing that only during this later interval was the IMF orientated
in such a way that reflected ions could propagated beyond the
position of Geotail.

We therefore present, for the first time to our knowledge,
simultaneous observations of upstream generated waves in
the solar wind, the dayside magnetosphere and on the
ground.
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