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Abstract. The Double Star TC-1 magnetosheath pass on 26
February 2004 is used to investigate magnetic field fluctua-
tions. Strong compressional signatures which last for more
than an hour have been found near the magnetopause be-
hind a quasi-perpendicular bow shock. These compressional
structures are most likely mirror mode waves. There is a
clear wave transition in the magnetosheath which probably
results from the change of the interplanetary magnetic field
(IMF) cone angle. The wave characteristics in the magne-
tosheath are strongly controlled by the type of the upstream
bow shock.
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waves and instabilities; Solar wind-magnetosphere interac-
tions)

1 Introduction

TC-1 is the equatorial satellite of the geospace Double Star
Project (DSP) which consists of two small satellites oper-
ating in the near-earth equatorial and polar regions. It was
launched in December 2003 and finished its mission in Oc-
tober 2007. TC-1 had a large elliptical orbit with an apogee
of about 13RE (1RE=6370 km). Since the apogee is rather
far away from the Earth, TC-1 crosses the bow shock and
explores the whole magnetosheath. When the apogee of
TC-1 is on the day side, so is Cluster’s, thus correlative
observational studies can be made in the dayside magne-
tosheath. The Flux Gate Magnetometer (FGM,Carr et al.,

Correspondence to:J. Du
(jdu@spaceweather.ac.cn)

2005; Balogh et al., 2001) on board TC-1 and Cluster are
used to measure the magnetic field.

The magnetosheath, which is often characterized by an
ion temperature anisotropy (T⊥>T‖) and hot plasma con-
ditions, is an ideal location for growth of low-frequency
waves with angular frequencyω below or approximately at
the proton gyrofrequency�p (Sckopke et al., 1990). Mirror
mode (MM) waves are commonly observed in the high-beta
plasma of the magnetosheath (Song et al., 1992; Fazakerley
and Southwood, 1994). MM is a compressible mode and ex-
hibits linearly polarized magnetic field variations with wave
vector nearly perpendicular to the background magnetic field
(Pokhotelov et al., 2001a). Under the conditions of such
a temperature anisotropy, another instability, namely elec-
tromagnetic ion cyclotron (IC) instability, can also grow to
modest fluctuation level (Gary, 1992; Gary et al., 1993) in
addition to mirror instability. The IC instability dominates in
low β plasma and generates transverse electromagnetic ion
cyclotron waves propagating parallel to the magnetic field,
however, the presence of He-ions suppresses the growthrate
for proton IC waves (Gary et al., 1993).

MM waves are non-propagating modes in the plasma rest
frame and compressive in nature.Lucek et al.(1999a,b) have
identified mirror mode structures in the dawn-side magne-
tosheath from the Equator-S magnetic field data only. The
relative change of the magnetic field strength,1B/B, was
used as a measure of the disturbance level in the field mag-
nitude. Locally de-trended subsets of data points were used
to calculate the angle between the local maximum variance
direction and the average field direction. For MM waves
this angle should be smaller than 30◦ (Price et al., 1986)
and the amplitude of fluctuations1B/B should be large. In
this study we follow the same approach to identify mirror
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Fig. 1. Trajectories of TC-1 and Cluster projected to the GSE X-Y and X-Z planes for the interval 04:00–12:00 UT on 26 February 2004.
Also shown are the nominal locations of the magnetopause (MP) and the bow shock (BS).

wave structures from the magnetic field data observed by
TC-1 in the magnetosheath. Naturally, there are some other
methods for mode identification (Song et al., 1994; Denton
et al., 1995, 1998). But the available magnetic and plasma
data are required by them, and unfortunately the plasma data
from TC-1 for this case are not good enough. Therefore the
method inLucek et al.(1999a,b) which only used the mag-
netic field data became our best choice.

There are several possible sources for low frequency
waves in the magnetosheath: solar wind fluctuations, fore-
shock waves, waves generated by the bow shock or the mag-
netopause, and waves that grow in the magnetosheath itself.
Any change of these sources can result in wave-mode transi-
tion in the magnetosheath. A Large number of studies about
the waves in the magnetosheath have been performed, which
were reviewed inSchwartz et al.(1996), Song and Russell
(1997) andDenton(2000). However, direct observations of
wave-mode transitions in the magnetosheath are rarely re-
ported in literature. In previous studies, ACE or Wind was
used as a solar wind monitor, while other satellites were ex-
ploring the magnetosheath. Because of their large distance
from Earth, it must take several dozens of minutes for the so-
lar wind to flow from the monitors to Earth and thus it is hard
to calculate the time delay accurately. In this study, while
TC-1 was exploring the magnetosheath, Cluster was just in
front of the bow shock at a distance of a fewRE . Therefore,
it is easier to estimate the time delay from Cluster. We will
study the influence of the upstream solar wind conditions on
the magnetosheath properties. In this paper we will show that
the change of upstream Interplanetary Magnetic Field (IMF)
orientation results in an apparent transition of wave-modes in
the magnetosheath.

2 TC-1 observations and MM in the magnetosheath

The data used in this study were collected by TC-1 and Clus-
ter between 04:00 and 12:00 UT on 26 February 2004. The
orbits of TC-1 and Cluster for this period are shown in Fig.1.
The magnetopause and bow shock location is shown for av-
erage conditions of the solar wind. During this period TC-
1 made an outbound traversal of the magnetosheath from
(6.2, −4.8, −1.0) RE to (12.7, −3.0, −2.0) RE GSE.

The magnetic data with a time resolution of 4 s obtained by
TC-1 and two parameters calculated from them are shown in
Fig. 2. The panels from the top to bottom show the azimuth
(φ) and elevation (θ ) angles of the magnetic field in GSE co-
ordinates, the magnetic field magnitude|B|, the fluctuation
of the field1B/B and the angle between the maximum vari-
ance direction and average magnetic fieldαeB, respectively.

As MM structures are characterized by compressional
power with the fluctuations only in magnetic field magni-
tude and not in direction, it is preferable to present the mag-
netic field vector in polar coordinates. The azimuth angleφ

is the angle between the projection of magnetic vector in X-Y
plane and the x-axis in GSE co-ordinates, while the elevation
angleθ is the angle between the magnetic vector and the X-Y
plane.φ is measured counterclockwise from the positive half
of the x-axis to the projection of magnetic field and positive
θ shows that the field has a northward component. To calcu-
late the parameters1B/B andαeB, 2 min sliding windows
(∼30 data points) with 1 min shift (∼15 data points) were
used.1B/B is the ratio of standard deviation to the average
value of magnetic field. For each window, minimum vari-
ance analysis (Sonnerup and Scheible, 1998) was performed
and the angleαeB between the maximum variance direction
and the mean magnetic field was calculated.

The outbound magnetopause crossing at∼05:36 UT can
be easily identified by a sharp deviation of the magnetic field
from the steady magnetospheric direction and a decrease in
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Fig. 2. Magnetic field data for the crossing of the magnetopause
(first vertical dashed line at∼05:38 UT), magnetosheath and bow
shock (last 5 vertical dashed lines after 09:20 UT) observed by TC-
1 on 26 February 2004. From the top to bottom panels, shown are
the azimuth (φ) and elevation (θ ) angles of the magnetic field in
GSE coordinates, magnetic field magnitude|B|, the fluctuation of
the field1|B|/|B| and the angle between the maximum variance di-
rection and average magnetic fieldαeB , respectively. The two ver-
tical dash-dotted lines show the interval during which mirror mode
waves are observed.

the field magnitude. It can be seen that there are several
bow shock crossings at∼09:31, 09:41, 09:50, 09:55, and
10:22 UT, respectively. The multiple bow shock crossings
were probably due to the changing solar wind conditions.
The positions of bow shock and magnetopause are marked
with vertical dashed lines in Fig.2.

Using the angleαeB in the bottom panel of Fig.2, the inter-
val from 06:00 to 07:13 UT can be identified byαeB≤30◦ and
1B/B is relatively high (∼0.3). This means that there are
moderately intensive fluctuations of the magnetic field mag-
nitude approximately parallel to the background field, and
we identify that this region is dominated by MM waves.

Fig. 3. The magnitude|B| of magnetic file measured by TC-1 in the
magnetosheath during the interval from 06:00 UT to 07:13 UT.

Figure3shows the magnetic field strength during the inter-
val of MM-like activity from 06:00 to 07:13 UT. The strongly
compressive fluctuations are dominant in this region. There
are some larger amplitude and scale structures which inter-
rupt the MM signatures (e.g. at∼06:06 and∼06:36 UT). It
has been suggested bySchwartz et al.(1996) that this type of
large scale structures may evolve from MM structures after
saturation. Such structures were also found byLucek et al.
(1999b) in the Equator-S observations.

3 Wave-mode transition in the magnetosheath

As shown in Fig.2, the properties of the fluctuations changed
sharply at∼07:13 UT. Prior to this time the fluctuations were
identified as MM. Afterwards, the field magnitude fluctu-
ated less intensively and the compressional property was lost.
There are many possible reasons for this wave mode transi-
tion, such as a change in local plasma conditions, increas-
ing distance from magnetopause or changing upstream solar
wind conditions. In this section, we will focus the influence
of upstream IMF orientation on the wave mode in the mag-
netosheath.

As shown in Fig.1, Cluster was in the solar wind region
for this event. The magnitude, cone and clock angles of the
IMF observed by Cluster are shown in Fig.4. The cone angle
is the angle between the IMF vector and the positive direc-
tion of x-axis in GSE coordinates. The clock angle is the an-
gle between the projection of the IMF in Y-Z plane and the
positive y-axis (measured counterclockwise from the posi-
tive half of the y-axis). The two dash-dotted lines mark the
time interval from 06:00 to 07:13 UT when TC-1 observed
the MM signatures in the magnetosheath.

In panel 2 of Fig.4 there is an apparent change of the
cone angle from∼90◦ to ∼45◦ at 07:05 UT, marked by a
vertical dotted line. The two horizontal dashed lines indicate
45◦ and 90◦, respectively. The time when the IMF cone an-
gle changed is close to the time of the wave-mode transition
(∼07:13 UT) in the magnetosheath. There is only a time de-
lay of ∼8 min between them. If we are only considering the
distance between two satellites and the solar wind speed of
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Fig. 4. The clock angle (φc, top panel), cone angle (θc, middle
panel) and magnitude|B| (bottom panel) of the IMF measured by
Cluster.

∼315 km/s, the time delay should be about 2.5 min. How-
ever, the solar wind is decelerated at the bow shock and the
actual time delay should be longer. The plasma speed mea-
sured by TC-1 in the magnetosheath is∼55 km/s. The dis-
tance between TC-1 and the bow shock can be determined
easily by the location of the spacecraft at 07:13 UT and its
position of bow shock crossing. Thus the revised time de-
lay has been calculated and its value is∼6 min, which is
still 2 min shorter than the observed value (8 min). This
difference may result from: 1. The distance and plasma
speed were considered only along the x-axis; 2. The chang-
ing solar wind conditions might change the location of the
bow shock; 3. The plasma speed in the magnetosheath was
strongly dependent on the relative position from the magne-
topause. Near the time of mode transition there is no other
clear change of the interplanetary conditions except IMF
cone angle. Therefore, in spite of this difference of 2 min
from the observed time delay, we think that the main rea-
son for the wave mode transition in the magnetosheath is the
change of IMF cone angle.

Because TC-1 was near the subsolar point in this case, the
bow shock normal is approximatively parallel to theX-axis.
Therefore, the IMF cone angle is nearly equal to the angle
between the upstream magnetic field and the shock normal,
θBn, which is important for the generation of MM waves.
MM waves are expected to occur during quasi-perpendicular
shock conditions, which are often characterized by tempera-

ture asymmetries created by e.g. shock-drift acceleration (see
e.g.Kirk et al., 1994, Sect. 2.2). The IMF cone angle was
∼90◦ before 07:05 UT and the TC-1 was observing the mag-
netosheath behind a quasi-perpendicular shock where MM
waves were dominant. As the turn of the IMF, the property
of the shock changed and the wave-mode transition in the
downstream magnetosheath happened.

It is possible that the change of the shock property could
impact the plasma properties in the magnetosheath, and then
the different plasma conditions generate the different waves.
However, the instrument HIA onboard TC-1 was saturated
during this time interval and the plasma data in the mag-
netosheath were not available. It is impossible to estimate
whether there is a large-scale spatial variation of plasma
properties in the magnetosheath.

4 Conclusions

In this paper, a Double Star TC-1 magnetosheath pass on
26 February 2004 was used to investigate the magnetic field
fluctuations, with emphasis on mirror-mode waves. The
1B/B and αeB are used to identify the MM structures.
The inner magnetosheath close to the magnetopause between
06:00 UT to 07:13 UT is dominated by compressional waves.
While TC-1 was observing the fluctuations in the magne-
tosheath, Cluster was monitoring the interplanetary condi-
tions just in front of bow shock at the same time. By com-
paring the properties of fluctuations in magnetosheath and
the directions of IMF, we conclude that the IMF cone angle
influences the downstream wave mode in this case. In the
magnetosheath near subsolar point, the IMF cone angle is
approximatively equal to theθBn of the upstream bow shock.
As expected from theory the bow shock conditions (quasi-
perpendicular or quasi-parallel) determine the possible gen-
eration of MM waves in the magnetosheath. The region filled
with the mirror waves was behind the quasi-perpendicular
bow shock withθBn≈90◦. WhenθBn decreases to 45◦ and
the upstream bow shock became quasi-parallel, the wave
mode changed and the compressional property was virtually
lost and no MM waves were observed anymore.
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