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Abstract. Schumann resonance (SR) frequency variation has
been studied using Magnetotelluric (MT) data recorded in
one of the world’s toughest and generally inaccessible Hi-
malayan terrain for the first time in the author’s knowledge.
The magnetotelluric data, in the form of orthogonal time
varying electric and magnetic field components (Ex , Ey , Bx

andBy), recorded during 10 March–23 May 2006, in the Hi-
malayan region, India, at elevations between 1228–2747 m
above mean sea level (amsl), were used to study the SR fre-
quency variation. Electromagnetic field components, in the
form of time series, were recorded at 64 Hz sampling fre-
quency at a site located away from the cultural noise. Spec-
tral analysis of time series data, at a frequency resolution of
0.03 Hz, has been performed using Fast Fourier Transform
(FFT) algorithm. Spectral stabilization in three Schumann
resonance modes is achieved by averaging the power spectral
magnitude of 32 data segments, each with 2048 sample data.
Amplitude variation in the Schumann resonance frequency
associated with day-night, sunrise and terminator effect was
observed. Average diurnal variation in the first three Schu-
mann resonance frequencies associated with magnetic field
components is presented. The maximum frequency variation
of about 0.3, 0.4 and 0.7 Hz was observed in the first, second
and third mode, respectively. The frequency variations ob-
served in electric and magnetic field components also show
phase shift and varying attenuation. The SR frequency varia-
tion has been used to define the ionospheric electron density
variation in the Himalayan region, India.
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1 Introduction

Schumann (1952) has predicted an extremely low frequency
(ELF) resonance in the earth-ionospheric waveguide. The
resonance occurs between the electromagnetic wave, gener-
ated by lightning and thunderstorm, traveling along ground
surface and returning to the starting point, with a phase dif-
ference of 2πn (n = integer number). Assuming the per-
fectly conducting earth and ionospheric boundaries, differ-
ent modes of resonance frequencies can be derived from the
following relation (Schumann, 1952),

fn ≡
ωn

2π
≈

c

2πRE

√
n (n + 1) = 10.6

√
n (n + 1)

2
Hz, (1)

wheren is an integer,c is the velocity of light andRE is the
radius of earth. According to Eq. (1), the first five resonance
frequencies are 10.6, 18.4, 26.0, 35.5 and 41.1 Hz. In reality,
the ionosphere is not a perfectly conducting medium and en-
ergy losses due to its finite conductivity reduce the resonance
frequencies to 7.8, 14.1, 20.3, 26.3 and 32.5 Hz (Madden and
Thomson, 1965). Characteristics of Schumann resonance
frequencies depend on the characteristics of their source, lo-
cation of the observation point with respect to the source, and
ionospheric electron density/conductivity behaviour. Thus,
for a local region, assuming the average constant source dis-
tribution, Schumann resonance frequency variations can be
used to determine the average conductivity profile of the
ionosphere (Tran and Polk, 1979a, b). Different attenua-
tion characteristics and frequency shifts were observed in N-
S (Bx) and E-W (By) magnetic field components (Sentman,
1987, 1989). It has been well established that the resonance
frequencies contain information about space time distribu-
tion of lightning strokes around the globe. Diurnal variation
in SR frequencies depends on the point of observation, which
may also vary in different field components (Bliokh et al.,
1980; Nickolaenko, 1997; Roldugin et al., 2004a).

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


3498 R. Chand et al.: Schumann resonance frequency variations observed in magnetotelluric data

Theoretically, SR frequencies can be estimated as eigen-
values by solving the wave equations using a spherically
symmetric ionosphere. Steady state model for fixed iono-
spheric conductivity generate constant resonance frequency
for each mode. By incorporating different realistic iono-
spheric electrical conductivity models, characteristics of res-
onance frequencies can be estimated (Tran and Polk, 1979a,
b; Sentman, 1983).

The vertical electric field and horizontal magnetic field
components show the diurnal variation in the Schumann res-
onance intensities (Sentman and Fraser, 1991; Märcz et al.,
1997). The intensities of Schumann resonances reflect global
thunderstorm activity, which excite transverse magnetic nor-
mal modes of earth ionosphere cavity (Balser and Wag-
ner, 1962; Pierce, 1963; Sentman, 1996; Nickolaenko and
Hayakawa, 2002). Penetration of electric and magnetic field
components of the Schumann resonances into the ionosphere
was numerically investigated by Grimalsky et al. (2005) for
possible daytime and nighttime variation of conductivity in
the ionospheric D- and E-layers. It was shown that the pen-
etration height for magnetic field components is 2–3 times
greater than that for the electric field components. SR inten-
sity and global thunderstorm activity are minimum at night-
time or early dawn and maximum in the afternoon hours
(Märcz et al., 1997).

Sao et al. (1973) concluded, experimentally, that the day-
to-day variation of the resonance frequency coincides with
the variation of the lower ionospheric conductivity. The am-
plitude of Schumann resonances shows daily variability due
to the polarization of the electromagnetic field radiated by
lightning strokes (F̈ullekrug, 1995). This daily variability de-
pends on local time. The changes in SR frequencies are sen-
sitive to a general increase/decrease of conductivity within
the outer layer (Śatori et al., 2005). It has been found, exper-
imentally, that the variations in the N-S and E-W magnetic
components occur in antiphase for the first Schumann reso-
nance frequency (Roldugin et al., 2004a). Sátori (1996) stud-
ied that the average daily frequency patterns are different for
the three modes. The frequencies in the different magnetic
and electric field components are not the same. Schumann
resonance frequencies determined separately for N-S and
E-W magnetic component differ by 0.5–1.8 Hz (Sentman,
1987, 1989). The variation in first and second mode Schu-
mann resonance frequency occurred during the intense solar
X-ray burst by∼0.2 Hz and 0.3 Hz, respectively (Roldugin
et al., 2004b). Hayakawa et al. (2008) showed the short term
spectral modification associated with the Moshiri (Japan)
earthquake, in the Schumann resonance frequency band of
2.5–40 Hz.

The study of the Schumann resonance frequency variation
has become an important tool for ionospheric characteriza-
tion in terms of electron density variations and monitoring
a sudden disturbance in the ionosphere during solar proton
events (Roldugin et al., 2001, 2003). The precise measure-
ments of the resonance frequencies, with high spectral reso-

lution, were carried from the audiomagnetotelluric and mag-
netotelluric data (Beamish and Tzanis, 1986; Melnikov et al.,
2004; Tulunay et al., 2008) to monitor sudden ionospheric
disturbances.

In the present paper, we have carried out a spectral analy-
sis of magnetotelluric data, recorded from the Garhwal Hi-
malayan region, India, during 10 March–23 May 2006 to
study diurnal variation in Schumann resonance frequency
with a special focus on the study of day-night, morning-
sunrise and solar-terminator effects in the region. The SR
frequency variations are also used to determine ionospheric
electron density distribution assuming constant source distri-
bution in the Indian Garhwal Himalayan region.

2 Magnetotelluric data recording and analysis

Magnetotelluric (MT) raw data recorded in the form of time
varying orthogonal horizontal components of electric and
magnetic field in the Garhwal Himalayan region, India, in
a frequency range from 0.001 to 1000 Hz, were used to de-
termine the electrical structure of Garhwal Himalayan crust
(Israil et al., 2008). To cover the desired frequency range,
the data were recorded in various bands, identified by their
sampling frequency. For the present study, the data recorded
at 8 stations during 10 March–23 May 2006, in the Garhwal
Himalayan region, were used. The GPS locations of these
stations are given in Table 1. These stations were located
away from cultural noise. A 24 bits Metronix MT system,
which has a high dynamic range and is sensitive to measuring
the field adequately with high precision, was used. A brief
description of the magnetotelluric data recording system and
sensors used in the present investigation are discussed below.

Description of MT system and sensors

The horizontal electric field components (Ex andEy) were
derived by measuring the voltage drop between pairs of non-
polarisable electrodes deployed in the ground. These pairs
of electrodes were configured orthogonal to each other, with
one pair of electrodes oriented in the magnetic north-south
(N-S), measuring theEx component, and the other in the
magnetic east-west (E-W) direction, measuring theEy com-
ponent. The typical separation between the electrodes was
kept between 60 to 90 m. Non-polarisable lead/lead chlo-
ride electrodes (EFP06) were used to avoid distortion in the
recorded signal. In order to have an optimum common mode
rejection ratio of disturbing radio transmitters, the data log-
ger (ADU06), the control and storage unit, was located in the
center of the electric field dipoles.

The induction coil magnetometer (MFS06) was used to
measure the horizontal orthogonal time varying magnetic
field components (Bx andBy). The induction coil magne-
tometer consists of a loop of copper wire wound into a high
permeability core and sealed within a shock-resistant casing.
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Table 1. GPS location of stations, at which data were recorded from the Garhwal Himalayan region of India along with the duration of
record, at each station.

Station no. Latitude Longitude Elevation Start date Stop date
(m) & time & time

1 30:45:2.30 78:26:28.00 1493 10 March 2006 & 13 March 2006 &
2:19 p.m. 9:00 a.m.

2 30:44:18.65 78:29:53.58 1228 11 March 2006 & 14 March 2006 &
2:26 p.m. 4:30 p.m.

3 30:49:9.62 78:36:37.13 1895 14 March 2006 & 17 March 2006 &
11:36 a.m. 10:00 a.m.

4 30:50:30.7 78:36:57.91 2015 16 March 2006 & 19 March 2006 &
2:16 p.m. 12:30 p.m.

5 30:46:22.27 78:36:9.22 1404 18 March 2006 & 20 March 2006 &
1:25 p.m. 4:00 p.m.

6 30:54:10.84 78:40:55.20 2038 13 May 2006 & 16 May 2006 &
3:07 p.m. 10.00 a.m.

7 31:02:22.42 78:47:56.37 2591 17 May 2006 & 20 May 2006 &
8:15 p.m. 11.00 a.m.

8 31:02:14.82 78:51:21.31 2747 20 May 2006 & 23 May 2006 &
3:18 p.m. 10.00 a.m.

The output voltage of an induction coil is proportional to the
number of loops in the coil and their cross-sectional area.
The response of the induction coil is governed by the rate
of change of magnetic flux within the coil (Kaufmann and
Keller, 1981). The voltage response recorded by the induc-
tion coil is transformed into the magnetic field units using
transfer function of the coil. A separate coil was deployed
for each horizontal component with a separation of 6–8 m
between them in order to avoid any cross-talk.

The ADU06 is the central core unit of the Metronix MT
system. It contains the complete circuitry for analog signal
conditioning, the 24 Bit A/D converter, the data storage as
well as a very precise GPS controlled time base.

The magnetotelluric data are recorded in the 5 bands: HF,
LF1, Free, LF2 and LF3, each band is characterized by a dif-
ferent sampling rate. All these bands together constitute a
complete time series data to cover a frequency range from
0.001 to 1000 Hz. However, in the Schumann resonance
study, we require the data for the frequency interval of 1 to
30 Hz, to cover the first three resonance mode frequencies,
which were obtained from the time series data recorded in
the LF2 band, with a sampling frequency of 64 Hz. Time se-
ries data in the LF2 band was recorded continuously for 24 h
or more. According to the sampling theory, Fourier trans-
formation of 2048 sample points recorded at 64 Hz sampling
frequency (LF2 band), generates a frequency spectrum be-
tween 0.03–32 Hz with a frequency resolution of 0.03 Hz.
Thus, the frequency band obtained, includes the first three
Schumann resonance modes. Figure 1 shows an example of
the hourly frequency spectrum of two magnetic field compo-
nents recorded in the form of time series, in LF2 band, from

the Garhwal Himalayan region at Dharali (lat. 31:02:22.42;
long. 78:47:56.37) on 18 May 2006. Figure 1 shows that
generally the first three resonance frequencies are success-
fully recovered from the data.

3 Spectral analysis of MT data

The time domain record of the electromagnetic field de-
scribes the temporal response of earth-ionospheric cavity.
The data are transformed into the frequency domain using
FFT algorithms by using 2048 points (32 s) in each window
length. Individual power spectra, obtained from a segment
of 2048 sample points, are averaged over N segments to im-
prove the signal to noise ratio. This stabilization of the power
spectrum for varying N is displayed in Fig. 2. The horizontal
axis shows the frequency and vertical axis is shifted verti-
cally for each N value, to represent power spectra in arbi-
trary scale. Schumann resonance modes are not clearly vis-
ible by using only one segment (N=1). When the number N
of segments increases, the SR modes become visible. The
spectrum is stabilized and the first three SR modes frequen-
cies are clearly visible in the power spectra of the magnetic
field (Hx) component for N=32 (Fig. 2). The objective was
to find out the minimum value of N, for the visibility of SR
modes frequencies. Figure 3 shows the amplitude spectral
variation with frequency during the night, sunrise, noon and
solar-terminator (sunset) in horizontal electric and magnetic
field components. It is clear, from Fig. 3, that the amplitude
spectral variation shows its maximum value during the noon
and its minimum value during the night. The analysis was
done for one hour LT data: night (00:00–01:00 h), sunrise

www.ann-geophys.net/27/3497/2009/ Ann. Geophys., 27, 3497–3507, 2009



3500 R. Chand et al.: Schumann resonance frequency variations observed in magnetotelluric data

� ���

Figure 1: 
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Fig. 1. The hourly variation in amplitude-frequency spectrum of two magnetic field components (Hx andHy ), from the Garhwal Himalayan
region recorded at Dharali (lat. 31:02:22.42; long. 78:47:56.37) on 18 May 2006.Hx andHy components are shown in black and red,
respectively.

(06:00–07:00 h), noon (13:00–14:00 h) and sunset (18:00–
19:00 h) and the frequency spectrum was obtained for each
of the above time intervals. It has been observed that the
frequency and amplitude variations are different in N-S and
E-W electric and magnetic field components. Generally, di-
urnal variations of SR frequencies, for the first three modes
in electric and magnetic field components, indicate that the

pair of field components belonging to the same polarization
(e.g.Ex & Hy , or Ey & Hx) have similar frequency varia-
tion. It means that the information content in the two field
components (Ex & Hy , or Ey & Hx) corresponding to the
same polarization are the same. However, frequency vari-
ation in the two field components, belonging to the differ-
ent polarization, show opposite phase, which means that the
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Figure 1Continued 
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Fig. 1. Continued.

frequency variations are opposite in the two field compo-
nents. Figure 4 demonstrates diurnal variation in SR fre-
quencies for mode 3 for the different polarization compo-
nents (Ex , Ey andHx , Hy). It is observed that during sunrise
theEx component shows a decrease in frequency, whereas in
Hx the frequency is increased (Fig. 4), hence the frequency
variation in Ex & Hx components are opposite in phase.
This feature is generally observed in the entire set of data

that has been analyzed. To improve the statistics, average
diurnal frequency variation in the first three SR modes, in
the data recorded from 10 March–23 May 2006, in electric
and magnetic field components along with standard devia-
tion is shown in Fig. 5. Generally, periodic frequency vari-
ations are observed in all field components. For example
Hx component shows maximum frequency during LT sun-
rise (06:00 h) and sunset (18:00 h) in first mode, similarly,
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Figure: 2 
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Fig. 2. Natural stabilization of stacked spectral estimates at first
three Schumann Resonance (SR) modes for magnetic field (Hx )
component in the Garhwal Himalayan region. The horizontal axis
represents the frequency and vertical axis, the amplitude, in shifted
arbitrary scale for a different number of stacked segment (N).

Hy component shows minimum frequency during LT sunrise
and sunset (Fig. 5). It may also be mentioned here that in
some components, the periodicity is not so clearly visible.
The frequency variation in different components varies from
1.9 to 4.2%, 1.5 to 3.1% and 1.8 to 3.4% in first, second and
third SR modes.

4 Estimation of electron density in lower ionosphere

Electromagnetic resonance frequencies, mainly excited by
lightning discharge in the cavity formed by the earth and the
ionosphere, were estimated by Schumann (1952) using the
simplest vacuum model confined within two concentric per-
fectly conducting spheres. Subsequently, it was investigated
that SR frequency depends on the dielectric permeability of
ionospheric D-region and the focus was shifted to use more
realistic dielectric permeability models to explain the ob-
served SR frequencies (Balser and Wagner, 1962; Bliokh et
al., 1980). Greifinger and Greifinger (1978); Sentman (1983,
1990) considered the ionospheric model, in which dielectric
permeability increases exponentially with altitude, which has
generated resonance frequencies, in good agreement with the

observations. Sentman and Fraser (1991) showed the de-
pendence of the observed resonance power on the effective
height of the ionospheric D-region at the observation point.
Ionospheric dielectric permeability is mainly determined by
the electron density and the collision frequency between neu-
tral particles and electrons within the lower ionosphere (D-
layer). The electron density changes regularly with the po-
sition of the sun, during geomagnetic storm and solar flares
etc. Any change in the electrons density in lower ionosphere
modifies its dielectric permeability, which plays an important
role in modifying the SR frequency.

Roldugin et al. (1999) showed that the SR frequency de-
pends both on the electron density in the ionospheric D-
region and on the base height of this region. For the inter-
pretation of our data, we now consider, in some detail, the
simple model of Roldugin et al. (2003), for which the au-
thors establish a quantitative relation between SR frequencies
and the ionospheric parameters. Considered is a two-layer
model, where the discontinuous relative electrical permittiv-
ity assumes the values [takingz from the Earth’s surface pos-
itive upwards and assuming a time factor exp (iωt)]

ε(z)=

{
1,0 ≤ z < a,
ω2

02
iωνe2

exp[(z−a)/h]=
σ2

iωε0
exp[(z−a)/h], z>a.

(2)

The first layer is the non-conducting air layer and the second
layer models the D-region with its base atz=a. It is char-
acterized either by the plasma frequency (ω02) and electron
collision frequencyνe2 at z=a or by the electrical conduc-
tivity (σ2) at that level. These parameters can be defined as
(Nickolaenko and Hayakawa, 2002; Bliokh et al., 1980)

ω2
02 =

N2e
2

meε0
, σ2 =

N2e
2

meνe2
=

ω2
02ε0

νe2
, (3)

whereN2 is the electron density atz=a, e the electric unit
charge,me the electron mass andε0 the vacuum permittivity.
The model in Eq. (2), assumes that in the D-layer the ratio
Ne(z)

/
νe(z) or equivalently the electrical conductivityσ(z)

increases exponentially with the scale heighth. The iono-
spheric model defined by Eq. (2), is a low-frequency approx-
imation based on the valid relationsω�νe2 andω�ω2

02/νe2.
The latter condition means that at the base of the ionosphere,
the conduction current is greater than the displacement cur-
rent.

From this model of the lower ionosphere, Roldugin et
al. (2003) determine the SR frequencies in terms of the iono-
spheric parameters. We believe, however, that their cor-
responding formula is incorrect and propose the following
slightly modified alternative for the SR frequency,

ω =
c
√

n(n + 1)

RE

.
1√

1 −
2h
a

[
γ + ln

(
ω02h

c

√
iω
νe2

)] , (4)

n=1, 2,. . . , whereγ =0.577 is Euler’s constant. Our formula
given by Eq. (4), differs from the corresponding formula of
Roldugin et al. (2003) in two important details:
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Figure: 3 
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Figure: 4 
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a) The sign in front ofγ has been changed from− to +.
With this correction, the electron densityN2 as estimated
from RE(ω) (with a, h andνe2 given), is reduced by a factor
of exp(4γ )≈10.

b) Also the sign in front of the imaginary uniti has been
changed from− to +. This change is required when con-
sidering the more complete small argument expansion of the
Hankel function as,

H
(2)
0 (χ) = 1 −

2i

π
[γ + ln(χ/2)] + O(χ2), (5)

with χ=2kh
√

ε2, where the first term is missing in Eq. (21)
of Roldugin et al. (2003). The correction changes the sign
of the imaginary part ofω and renders Im(ω) positive. This
positivity is required in order that the time factor exp(iωt)
describes a decaying dissipative signal. On the other hand,
the negative imaginary parts of the SR resonances, produced
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Fig. 5. The average diurnal frequency variation observed in the first three SR modes frequency of magnetic field components during, 10
March–23 May 2006. Error bar indicates standard deviation.

by the Roldugin et al. (2003), are incompatible with this time
factor.

After inserting reasonable ionospheric parameters into
Eq. (4), we also arrive at a reasonable set of SR frequencies.
Assuming for example

a = 55 km, h = 7 km, N2 = 4 × 107 m−3, νe2 = 107 s−1,

the first three SR resonances are:

f1 = (7.71+ 0.43i) Hz, f2 = (13.62+ 0.78i) Hz,

f3 = (19.51+ 1.15i) Hz. (6)

Sinceω occurs also on the right-hand side of Eq. (4), a few
iterations are required to get the final values. Apart from the
sign, the imaginary parts of the SR frequencies Eq. (6) are
about a factor two greater than those predicted by Roldugin

et al. (2003), Eqs. (25) and (27), and are, thus, closer to the
experimentally determined values displayed in their Fig. 5.

Equation (4) is now used to determine the daily varia-
tion of electron densityN2 from the experimental values
of Re(fn), given a, h and νe2. From Eqs. (2) and (3) or
Eqs. (4) and (3) it is inferred that only the ratioN2/νe2 can
be resolved. With the parametersa=61.00 km,h = variable,
νe2=107 s−1, the estimated electron densityN2 is obtained
from Eq. (4) after solving a simple nonlinear equation. For
n=2 the results are displayed in Fig. 6, for four values (5.0,
6.0, 6.5 and 7.0 km) of scale height (h), where they are com-
pared with the values derived from the IRI model. It has been
observed that forh=6.5 km, electron densityN2 matches
closely with the values derived from IRI model. The method
discussed by Ishisaka et al. (2005), to determine electron
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Fig. 6. Electron density estimated from second mode (n=2) Schumann resonance frequency for varying scale height (h) along with values
derived from IRI model in lower ionospheric layer (D-layer).

density in lower ionosphere, has been used to obtain elec-
tron density from IRI model in lower ionosphere. It may
also be mentioned, that the IRI values are shown only in day
time as the IRI model in not applicable in nighttime for lower
ionosphere.

Finally, Fig. 7 shows a corresponding display of the ob-
served and calculated quality factor,Q=Re(fn)/[2Im(fn)],
which gives the number of periods, after which the energy is
decreased by a factor of 1/e=0.37. Observed quality factor
is obtained from the data presented in Fig. 1. The imaginary
part [Im(fn)] is the half width of spectral peak.

5 Conclusions

In the present study, the spectral analysis of magnetotelluric
data recorded from the Garhwal Himalayan region, India, has
been conducted to study the Schumann resonance frequency
variation. Orthogonal horizontal (N-S and E-W) time vary-
ing electric and magnetic field components data recorded in
the Himalayan region, at 8 stations during 10 March–23 May
2006, have been used for this purpose. Fast Fourier Trans-
form (FFT) algorithm has been used to obtain a frequency
spectrum with a resolution of 0.03 Hz. Same polarization
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components, show a similar variation in SR frequencies. Dif-
ferent frequency variations have been obtained for the north-
south (N-S) and east-west (E-W) magnetic field components
in the SR mode frequencies. Spectral analysis shows an aver-
age periodic variation in SR frequencies, however, the varia-
tion in the two magnetic field components are not in the same
phase. The frequency variation is related to the effective size
of the thunderstorm and associated ionospheric conductivity.
The frequency variation in different components varies from
1.9 to 4.2%, 1.5 to 3.1% and 1.8 to 3.4% in the first, second
and third SR modes.

Finally, electron density variation and the corresponding
attenuation factor in lower ionosphere are estimated from SR
frequency, observed in the Indian region, assuming a con-
stant lightning source distribution.
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