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Abstract. In the context of ESA’s Cluster mission, four-point
array techniques are widely used to analyze space plasma
phenomena such as shocks and discontinuities, waves and
turbulence, and spatial gradients. Due to failures of single
instruments on the Cluster spacecraft fleet, there is also need
for array processing of three-point measurements. In this pa-
per we identify planar reciprocal vectors as a generic tool
for this purpose. The class of three-point techniques intro-
duced here includes methods for discontinuity analysis, wave
identification, and spatial gradient determination. Parameter
vectors can be resolved fully in the spacecraft plane but fur-
ther assumptions or physical constraints have to be specified
to estimate the normal components. We focus on the gra-
dient estimation problem where we check and illustrate our
approach using Cluster measurements.

Keywords. Magnetospheric physics (Current systems; In-
struments and techniques) – Space plasma physics (Exper-
imental and mathematical techniques)

1 Introduction

The Cluster spacecraft mission triggered numerous efforts
to develop and tailor special techniques for the analysis of
multi-point measurements in near-Earth space plasmas. Ma-
jor analysis tasks are (a) the analysis of spatial inhomo-
geneities through the estimation of derivative operators such
as grad, curl, and div (generally referred to also as spa-
tial gradients), (b) the examination of waves and turbulence
through wave vector identification, and (c) the analysis of
plasma discontinuities and shocks through the determination
of boundary parameters. Four-point analysis techniques for
these three problem classes were given already byDunlop
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et al.(1988). A comprehensive summary of the efforts made
in the preparation phase of the Cluster mission was published
by Paschmann and Daly(1998) as the first volume of the
ISSI Scientific Report series. An update of this standard
reference came out recently (Paschmann and Daly, 2008).
More specifically, multi-spacecraft methods developed for
the different analysis categories are briefly reviewed below
in Sects.3 (gradient estimation),6.1 (wave identification),
and6.2(boundary analysis).

Without further assumptions and constraints, four is the
minimum number of measurements to resolve fully the
spatio-temporal ambiguity. Due to instrument failures there
are, however, several experiments (EDI, EFW, CIS) that
function only on three of the four Cluster spacecraft. Suit-
able array techniques for the analysis of three-point measure-
ments would allow, e.g., to estimate pressure gradients from
ion measurements (CIS) or make use of electric field data
(EDI, EFW) to identify wave vectors. Furthermore, three-
spacecraft array configurations occur regularly in the course
of the THEMIS mission.

This paper offers a unifying approach to the major analy-
sis tasks given above for the case of three-spacecraft array
data. We choose a least-squares formulation to introduce
and identify planar reciprocal vectors as a generic tool for
three-point analyses in space plasmas (Sect.2). The con-
struction of a spatial gradient estimator is discussed in some
detail (Sect.3). The planar reciprocal vector approach al-
lows to estimate the in-plane components of spatial gradi-
ents, and for the out-of-plane components we have to specify
and test additional conditions, assumptions, or physical con-
straints. In Sect.4, the three-spacecraft gradient estimation
method is tested using Cluster magnetic field measurements
where all four instruments work, and a comparison with the
results of established four-spacecraft techniques is possible.
The technique is also applied to data from the Cluster/CIS
instruments. Accuracy, implementation, and other practical
aspects of the gradient estimation scheme are addressed in
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Sect.5. Three-spacecraft analysis methods for wave vector
and boundary parameter estimation are briefly discussed in
Sect.6. The wave vector estimation scheme is based on the
wave surveyor technique (Vogt et al., 2008a), and the bound-
ary analysis technique makes use of the crossing times (Har-
vey, 1998). We conclude in Sect.7 with a summary of our
findings and an outlook.

2 A common approach to different analysis tasks

The least-squares approach allows to address diverse multi-
point analysis tasks such as the estimation of spatial gradients
and boundary parameters (Harvey, 1998; De Keyser et al.,
2005, 2007) as well as wave vectors (Vogt et al., 2008a). In
the case of four spacecraft, and if no further constraints are
taken into account, the homogeneous least-squares approach
to spatial gradient estimation is equivalent to the reciprocal
vector method that allows to write down estimators for vari-
ous analysis parameters in a very transparent way (Chanteur,
1998; Chanteur and Harvey, 1998). If the numberS of space-
craft is larger than four, the reciprocal vector concept can be
generalized by means of a least-squares formulation (Vogt
et al., 2008b). We review the basic steps of that approach
first, and then extend the concept to the case of three-point
measurements.

2.1 Notation

To ease the use of dyadic notation, vectorsa,b,c,... are al-
ways understood as column vectors. The superscriptt de-
notes the transpose which implies that, e.g.,at is a row vec-
tor, and the dot product of two vectorsa andb can be written
in the forma ·b = atb. Unit vectors are indicated bŷ·, for
example,â or b̂. Matrices are typeset in upright bold. The
symbolI denotes the identity matrix.

The spacecraft position vectors are denoted byrα,α =

1,...,S. Except in the general part of this Sect.2 or when
explicitly stated otherwise, the total number of spacecraft in
this paper isS = 3. Relative position vectors are written in
the formrαβ = rβ −rα. The mean position ormesocenterof
the spacecraft array is given by

rmc =
1

S

∑
α

rα . (1)

We call a reference framemesocentricif the mesocenter co-
incides with the origin of our coordinate system. In such a
frame we havermc = 0 and thus∑

α

rα = 0 . (2)

Throughout this paper, except when explicitly mentioned,
coordinate systems are chosen to be mesocentric.

Of key importance for the analysis methodology intro-
duced here is the so-calledposition tensordefined through

R =

∑
α

rαr t
α . (3)

2.2 Least-squares approach to multi-point analysis

The problems that we are addressing can all be formulated
by means of cost functions of the type

C =

∑
α

[m ·rα −dα]2 (4)

that have to be minimized with respect to a model parameter
vectorm for a given set of datadα,α = 1,...,S. In the three
categories of analysis tasks mentioned in the introduction,
the parameter vectorm and the datadα have the following
meanings.

Spatial gradient estimation.If the gradient of a scalar ob-
servableg is to be estimated, thedα are the measurements
gα at positionsrα, and the model parameterm = ∇g is the
gradient vector (Harvey, 1998; Vogt et al., 2008b).

Wave surveyor approach to wave vector identification.At
a particular (angular) frequencyω, the problem of identifying
the wave vectork of a dominant harmonic plane wave in the
observed signal can be formulated as a minimization problem
where the model parameter ism = k, and the data are the
phases of the (complex) eigenvector to the largest eigenvalue
of the array cross spectral density matrix (Vogt et al., 2008a).

Boundary analysis using crossing timestα. A one-
dimensional boundary between two plasma regimes can be
characterized by its normal unit vectorŝ and the speedU .
The model parameterm = ŝ/U , and the data are the crossing
timestα − t0 wheret0 is the time origin (Harvey, 1998; Vogt
et al., 2008b).

2.3 The caseS ≥ 4: Generalized reciprocal vectors

As discussed byHarvey (1998), the minimization problem
(Eq.4) leads to the following linear equation

Rm =

∑
α

rαdα (5)

for the model parameter vectorm, see alsoVogt et al.
(2008a). If the S ≥ 4 spacecraft are not located all in one
plane, the position tensorR can be inverted (Vogt et al.,
2008b), and the solutionm can be written in the form

m =

∑
α

qαdα . (6)

where

qα = R−1rα , α = 1,...,S . (7)

E.g., the least-squares estimator for the spatial gradient∇g

of a scalar observable can be written as
∑

αqαgα.
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In the caseS = 4, the vectorsqα coincide with the recip-
rocal vectors of the spacecraft tetrahedron defined through

kα =
rβγ ×rβλ

rβα ·(rβγ ×rβλ)
(8)

(Chanteur, 1998) where(α,β,γ,λ) must be a cyclic permu-
tation of (1,2,3,4). When we wish to distinguish this case
more clearly from the planar case (S = 3) discussed later, we
call the vectorskα also tetrahedral reciprocal vectors. The
identities

∑
αkα = 0,

∑
αkα ·rα = 3,

∑
αkα ×rα = 0, and∑

α

kαr t
α = I =

∑
α

rαkt
α (9)

(Chanteur, 1998; Chanteur and Harvey, 1998) remain valid
in the general caseS ≥ 4, kα → qα, seeVogt et al.(2008b).
Hence the vectorsqα can be understood asgeneralizedre-
ciprocal vectors.

2.4 The caseS = 3: Planar reciprocal vectors

In the caseS = 3, all spacecraft are in one planeP. In Ap-
pendix A it is shown that the position tensorR is singular,
and its nullspaceN is the subspace of vectors that are per-
pendicular to the spacecraft planeP. For brevity, we refer to
vectors in the planeP asplanar vectors, and to those inN
asnormalvectors.

As R is not invertible, generalized reciprocal vectors can-
not be defined on the basis of Eq. (7). Nonetheless, the solu-
tion m of Eq. (5) and hence of the minimization problem can
still be written in the form

m =

∑
α

qαdα (10)

as long as the vectorsqα satisfy the equations

Rqα = rα , α = 1,2,3 . (11)

The solutions of the latter equations and that of Eq. (5), how-
ever, are no longer unique but determined only up to an arbi-
trary contribution from the nullspaceN .

To extend the reciprocal vector concept to the caseS = 3,
we consider the minimum norm solution, i.e., the shortest
vectorm that satisfies Eq. (5). In Appendix A it is demon-
strated that there is a one-to-one correspondence between
minimum norm solutions and planar solutions, and that the
vectors

qα =
n×rβγ

|n|2
, α = 1,2,3 , (12)

satisfy the Eqs. (11). Here(α,β,γ ) is the cyclic permutation
of (1,2,3) with α in the first position, andn is the normal
vector defined through

n = r12×r13 . (13)

Note thatn is not normalized. The corresponding unit vector
is denoted aŝn = n/|n|.

The vectorsqα are obviously planar vectors, hence min-
imum norm solutions of Eqs. (11) and thus the generalized
reciprocal vectors for the caseS = 3. For brevity, we refer
to them asplanar reciprocal vectors. The definition implies
that their geometrical properties are completely analogous to
those of the tetrahedral reciprocal vectors. E.g.,qα is perpen-
dicular to the side of the triangle that opposes the spacecraft
atrα, and the length|qα| is inversely proportional to the dis-
tance from the spacecraft to the opposing side.

The algebra of planar reciprocal vectors is presented in
Appendix A. Useful identities are:

qα ·(rβ −rγ ) = δαβ −δαγ , (14)

qα ·rβ = δαβ −
1

3
, (15)

I − n̂n̂t
=

∑
α

qαr t
α =

∑
α

rαq t
α , (16)

I − n̂n̂t
= RQ = QR . (17)

Here δαβ is the Kronecker symbol (= 1 if α = β and = 0
otherwise), and the so-called planar reciprocal tensor is given
by Q =

∑
αqαq t

α. Finally, if the three spacecraft are part of
a tetrahedral configuration, the planar reciprocal vectorsqα

are related to the tetrahedral reciprocal vectorskα (defined
through Eq.8) as follows:

qα = n̂×(kα × n̂) (18)

for α ∈ {1,2,3}, andk4‖n̂.

3 Spatial gradient estimation

The gradient of an observable (scalar or vector field) com-
prises all information about the linear part of its spatial vari-
ations. Other spatial derivatives such as the divergence or
the curl of a vector field can be constructed from its gradi-
ent matrix, so it is both convenient and appropriate to refer
to the problem of spatial derivative determination asgradi-
ent estimation. In the preparation phase of the Cluster mis-
sion,Dunlop et al.(1988) introduced the so-called curlome-
ter technique to determine the curl and the divergence of a
vector field from multi-spacecraft data. The least squares es-
timator presented byHarvey(1998) allows to take additional
constraints like∇ ·B = 0 into account. Note that without
such constraints, the problem of linear gradient estimation
from four-point measurements is expected to yield a unique
solution (Vogt et al., 2008b). Assuming a certain degree
of homogeneity in both space and time,De Keyser et al.
(2007) presented a comprehensive method also based on a
least squares formulation that allows to carry out detailed
error analysis and an assessment of the quality of the gra-
dient estimates, see alsoDe Keyser(2008). A related ap-
proach was taken byHamrin et al.(2008) to construct the
so-called GALS scheme that is able to resolve convecting
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structures on spatial scales smaller than the typical space-
craft separation distance.Chanteur(1998) based his estima-
tor on a linear interpolation scheme within the Cluster tetra-
hedron using barycentric coordinates, and then constructed
gradient estimators on the basis of the tetrahedral recipro-
cal vectors defined through Eq. (8). The accuracy of lin-
ear gradient estimators was studied, e.g., byChanteur and
Harvey(1998), Robert et al.(1998a), Vogt and Paschmann
(1998), andChanteur(2000). A number of papers on Clus-
ter data have applied the curlometer or the reciprocal vector
technique to compute spatial derivatives such as grad, div, or
curl. With the FGM instruments being fully operational on
all four spacecraft, a number of studies to estimate the elec-
trical current density (through the curl of the magnetic field)
have been carried out in various regions of geospace such
as the magnetopause (e.g.,Dunlop et al., 2002), the mag-
netotail (Runov et al., 2005, 2006), and the ring current re-
gion (Vallat et al., 2005). SeeDunlop and Eastwood(2008)
andVogt et al.(2008b) for an overview.

Without prior information or physical assumptions, only
the planar component of the spatial gradient is accessible
from three-point measurements in space. Using the results
from the previous Sect.2, we first formulate a planar gra-
dient estimator before we present different options to make
up for the missing information from the normal direction.
For notational convenience, we make frequent use of the pla-
nar component∇p and the normal component∇n of the del
(nabla) operator∇ formally defined through

∇n = n̂(n̂ ·∇) ≡ n̂
∂

∂n
(19)

∇p = ∇ −∇n (20)

wheren̂·∇ ≡ ∂/∂n is the directional derivative along the unit
vectorn̂.

3.1 Three-point estimation of the planar gradient

On the basis of the concepts introduced in Sect.2, an estima-
tor ∇̃pg for the planar component∇pg of the spatial gradient
of a scalar observableg is defined through

∇pg ' ∇̃pg =

∑
α

qαgα (21)

wheregα are the measured values at positionrα. For a vec-
tor field V , the corresponding planar gradient estimator is a
matrix:

∇pV ' ∇̃pV =

∑
α

qαV t
α . (22)

The divergence of a vector field is the trace of its gradient
matrix. Hence the planar contribution to the divergence can
be estimated through

∇p ·V ' ∇̃p ·V =

∑
α

qα ·V α . (23)

So far the analogy with the tetrahedral case is rather straight-
forward. In order to see which part of the curl operator can be
estimated from three-point measurements, we consider the
decompositionV = V p +V n of V into planar and normal
components to write

∇ ×V = (∇p +∇n)×(V p +V n)

= ∇p ×V p +∇p ×V n

+∇n ×V p +∇n ×V n . (24)

Here∇p ×V p ∈N , ∇p ×V n ∈P, ∇n ×V p ∈P, and∇n ×

V n = 0. The terms involving∇p can be estimated using pla-
nar reciprocal vectors. This applies to the normal component
of the curl operator:

(∇ ×V )n ' ∇̃p ×V p =

∑
α

qα ×V p,α . (25)

Using elementary vector calculus, the planar component can
be further rearranged to yield

(∇ ×V )p = ∇p ×V n +∇n ×V p

= ∇pVn × n̂+(n̂ ·∇)(n̂×V p) (26)

whereVn = V n · n̂. The first term can be estimated through

∇p ×V n ' ∇̃p ×V n =

∑
α

qα ×V n,α (27)

or, equivalently,

∇pVn × n̂ ' ∇̃pVn × n̂ = (
∑
α

qαVn,α)× n̂ . (28)

The second term involves the normal derivativen̂ ·∇ ≡ ∂/∂n

that is accessible only if further information or assumptions
are given.

3.2 Different options to estimate the normal gradient

In order to make up for the missing normal component of the
gradient operator, some kind of redundancy must be present
in the data. We consider three options. The gradient may
be geometrically constrained to be (a) parallel or (b) perpen-
dicular to a given vector. This approach leads to algebraic
relations between the normal and planar components of the
gradient. Alternatively, (c) there may be physical reasons to
assume that the gradient structure is stationary in the plasma
frame. In the latter case we can disregard possible temporal
contributions to the variability of the signal, and attribute all
non-planar variations to the changes induced by the normal
component of the gradient. Of key importance in this context
is the normal derivative defined through

∂g

∂n
≡ n̂ ·∇g (29)

whereg denotes a scalar observable, or one component of a
vector field. Once the normal derivative is determined using
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any of the three options, the full gradient vector (or matrix)
can be reconstructed:

∇g = ∇pg+
∂g

∂n
n̂ . (30)

Gradient parallel to a given vector. We first look at
situations when the spatial gradient∇g of an observable
g is parallel to a given unit vector̂e. E.g., in a quasi-
magnetohydrostatic configuration, the pressure gradient is
balanced by theJ ×B force. In the case of the Cluster mis-
sion, pressure data are not available from all four spacecraft
but magnetic field data are. Hence it is possible to estimate
the current density, and the resulting proxy ofJ ×B can be
normalized to yieldê. The condition∇g‖ê eliminates two
degrees of freedom while effectively only one is left (the
normal component of the gradient), so we are dealing with
an overdetermined problem. The misalignment of∇g andê

can be measured through the magnitude of the vectorê×∇g

that we wish to minimize. The rearrangements

|ê×∇g|
2

= |ê×∇pg|
2
+2(ê×∇pg) ·(ê×∇ng)

+|ê×∇ng|
2

= |ê×∇pg|
2
−2(ê ·∇pg)(ê · n̂)

∂g

∂n

+|ê× n̂|
2
(

∂g

∂n

)2

(31)

yield a quadratic equation that can be differentiated with re-
spect to the parameter∂g/∂n ≡ n̂ ·∇g. The resulting linear
relation is set to zero to obtain

∂g

∂n
=

(ê ·∇pg)(ê · n̂)

|ê× n̂|2
. (32)

The denominator|ê× n̂|
2 on the right-hand side of the for-

mula should not become too small, soê should not be too
close to±n̂. We also note that the full gradient∇g is lo-
cated in the plane spanned by the vectorsn̂ and∇pg, thusê

should be close to that plane to be consistent with the con-
straint∇g‖ê imposed here.

Gradient perpendicular to a given vector.We now turn to
the case∇g ⊥ ê. The resulting condition

0= ê ·∇g = ê ·∇pg+(ê · n̂)
∂g

∂n
(33)

can be solved for the normal derivative to yield

∂g

∂n
= −

ê ·∇pg

ê · n̂
. (34)

Here the value of|ê ·n̂| can be taken as a quality indicator that
should not be too small. If|ê · n̂| � 1, then the small denom-
inator on the right-hand of the formula may introduce large
errors. Geometrically, this means that the vectorê should not
be too close to the spacecraft plane. Note that by construc-
tion, the geometric constraint∇g ⊥ ê can be satisfied exactly,

so we cannot apply an additional consistency check as in the
case∇g‖ê.

Stationarity assumption.The third condition can be un-
derstood as a kind of dynamical rather than a geometric con-
straint. If the structure that carries the spatial gradient is mov-
ing with the plasma, and the velocityU = Up +Unn̂ of the
plasma frame relative to the spacecraft array is known (e.g.,
using bulk velocity measurements of ions or even electrons),
the temporal rate of change in the spacecraft frame is given
by

∂g

∂t
= −U ·∇g = −

(
Up ·∇pg+Un

∂g

∂n

)
(35)

because the plasma frame derivative dg/dt vanishes:
dg/dt = ∂g/∂t +U · ∇g = 0. Hence the normal derivative
can be obtained from

∂g

∂n
= −

1

Un

(
∂g

∂t
+Up ·∇pg

)
. (36)

The term∂g/∂t is the slope of the measured time series and
can be estimated through a linear fit of

gmc(t) =
1

3

∑
α

gα(t) (37)

in an interval around the time of interest.
The stationarity constraint can be formulated is a slightly

more general way as it builds on the condition dg/dt = 0 in
a reference system moving at velocityU that, however, does
not have to be the plasma bulk velocity. If there is evidence
that a stationary structure is moving at a constant velocity
with respect to the plasma frame, the same approach would
work. Note that in the four-point GALS scheme introduced
by Hamrin et al.(2008), their stationarity condition uses a
frame velocityU that does not need to be specified in ad-
vance but is a parameter of the optimization procedure.

Other conditions.The three constraints given above can
be considered prototypes for the kind of conditions that are
to be supplemented to construct the normal gradient esti-
mates. Other types of conditions may also work. For mag-
netic fields, it is tempting to make use of∇ ·B = 0 which as
a single equation makes up for one degree of freedom. The
problem of estimating the gradient matrix∇B (and a con-
stant ambient magnetic field value, yielding 12 free param-
eters) from three-point measurements of magnetic field vec-
tors B (providing 9 data points), however, is short of three
degrees of freedom and would thus still be underdetermined
even if the condition∇ ·B = 0 was taken into account. Fur-
thermore, only the diagonal of the gradient matrix∇B can
be constrained that way but the dynamically interesting terms
are the off-diagonal entries which (combined into the curl of
B) yield the electrical currents. Thus in this paper we have
made no attempt to take advantage of the condition∇·B = 0.
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4 Cluster case studies of gradient estimation

The three-point gradient estimation method introduced in the
previous Sect.3 is now demonstrated and validated using
data from the Cluster mission. The events have been studied
and published already before (Dunlop et al., 2002; Marghitu
et al., 2006; Hamrin et al., 2006) and thus may serve as
benchmark cases. This kind of reanalysis is meant to pro-
vide a proof of concept for and also illustrate the use of the
new method.

4.1 Comparison of three-point and four-point estimates
of magnetic field gradients

In our first case study, we use data from the Fluxgate Mag-
netometer (FGM) experiment that is operational on all four
Cluster satellites (see, e.g.,Balogh et al., 2001). Gradient es-
timates using any three-point subset of the spacecraft array
obtained with our planar reciprocal vector approach can then
be compared with the results of an established four-point
method. We are using FGM measurements at spin resolution
(four seconds) from the Cluster spacecraft 1, 2, and 3 (all ex-
cept Cluster Tango) taken on 4 February 2001. This magneti-
cally quiet day (Kp = 1) was studied already byDunlop et al.
(2002) using the curlometer approach. The selection of this
particular subset of spacecraft was partly motivated by the re-
sulting array geometry: the GSE position vectors of the Clus-
ter spacecraft 1, 2, and 3 differ much less inz than in theirx
andy components, hence the three-spacecraft plane is almost
parallel to the GSE (x,y) plane, and the three-spacecraft nor-
mal is close to the GSEz-axis. This kind of configuration
allows to assess the analysis results more conveniently as if
normal and planar contributions to the gradient enter all GSE
components simultaneously. Other subsets of the Cluster ar-
ray have also been tested, with minor effects on the analysis
results.

The time interval considered here is 05:50–06:25 UT of
4 February 2001, when the Cluster spacecraft were located
in the magnetosheath. An inbound magnetopause crossing
occured later at around 07:15 UT. During this interval, the
geometry of the Cluster array remained close to a regular
tetrahedron. Thus gradient estimation using the four-point
method ofChanteur(1998) is expected to yield small errors
and can be employed as a reference for comparison with the
three-spacecraft method.

As described above at the beginning of Sect.3, we de-
compose the (total) gradient of the magnetic field∇B into a
planar component∇pB and a normal component∇nB. The
planar part∇pB can be readily obtained from the planar re-
ciprocal vector formalism introduced in this paper, and the
results are expected to be consistent with the planar projec-
tion of the four-point estimate of∇B because of the rela-
tionships between planar and tetrahedral reciprocal vectors
given in Appendix A. The estimates of the normal deriva-
tive ∂B/∂n and thus the normal part∇nB of the gradient

matrix depend on which of the three options is selected: the
stationarity assumption, or one of the geometric conditions
where the gradient (of a cartesian component ofB) is con-
strained to be perpendicular or parallel to a given unit vec-
tor ê. Here we choosêe to be either the normalized mag-
netic field vectorB̂, or the eigenvector̂xmin corresponding
to the minimum eigenvalue of the magnetic covariance ma-
trix. The vectorx̂min is obtained through Minimum Vari-
ance Analysis (MVA). When a plasma boundary such as the
magnetopause is crossed by spacecraft, the minimum vari-
ance direction̂xmin can be taken as a proxy for the boundary
normal. For a discussion of MVA in the context of multi-
spacecraft missions, the reader is referred toSonnerup and
Scheible(1998). If the stationarity assumption is chosen, the
plasma frame velocityU is taken to be the average ion bulk
velocity measured by the Cluster Ion Spectrometry (CIS) ex-
periment. For each of the three options, we obtained the mag-
netic field gradient and curl estimates for the parallel and per-
pendicular directions to the three-spacecraft plane using the
three-spacecraft method, and compared them with the corre-
sponding four-point estimates.

Displayed in the upper three panels of Fig. 1 are the GSE
components of the∇ × B estimates obtained through the
three-point method with the stationarity assumption, together
with the results of the reference four-point method. Included
are also the normal and the planar components of the three-
point curl estimates. Planar and normal flow speeds are
shown in the bottom panel. Thex- andy-components of the
(∇ ×B)n estimate (normal component of the curl, Eq.25)
are close to zero, and the total curl estimate is given largely
by the(∇ ×B)p estimate (see Eq.26). The third panel from
above shows that for thez-component of the curl the situ-
ation is reversed, i.e., the dominant contribution to the curl
estimate is(∇ ×B)n. The terms∂Bj/∂t (see Eqs.36 and
37) were computed using a sliding window of 20 data points
corresponding to a time interval of 80 s. We observe a good
overall match of the three-point estimates and the reference
four-point results except for a time interval around 06:03 UT
(hatched in the figure). Here we find small values of the nor-
mal flow speed|Un|, producing large errors in the three-point
curl estimates through Eq. (36).

Figure 2 separates the planar and normal components of
the gradient in the form of scatter plots where three-point es-
timates are drawn versus their four-point counterparts. Since
most of the magnetic variation is seen in they-component,
estimates of∇By are shown. Excluded from the analy-
sis were the outliers around 06:03 UT caused by small val-
ues of the normal plasma flow speed. Thex-component of
the planar part(∇pBy)x and thez component of the nor-
mal part(∇nBy)z are displayed in the upper panel and the
lower panel, respectively. Linear regression analyses were
performed to obtain the slopesm and the Pearson correlation
coefficientsR. On the diagonal line (solid blue, slopem = 1),
the three-point estimates coincide with the four-point refer-
ence results. As expected, the match is perfect for the planar
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Fig. 1. 4 February 2001, 05:50–06:25 UT: GSE components of∇ ×B (first three upper panels) as well as normal and planar components of
the plasma flow velocity (lowest panel). Shown are profiles that have been averaged over 20 s. The estimates obtained using our three-point
method with the stationarity assumption (solid blue line) are compared against the four-point estimates (dotted black line). The normal
component(∇ ×B)n (Eq. 25) and the planar component(∇ ×B)p (Eq. 26) of the curl with respect to the three-spacecraft plane are also
given (dot-dashed green line and dashed red line, respectively). A significant mismatch of the three-point and four-point estimates occurs
around 06:03 UT when the normal plasma flow speed takes very small values.

components of the gradient. The three-point estimates of the
normal gradient component deviate from the four-point ref-
erence values typically by several 10% and tend to be smaller
in magnitude.

Normal derivative estimates that result from the two ge-
ometric constraints are displayed in Figs. 3 and 4 for the
same time interval as before, and also in the form of scatter
plots. The panels show the z-component of the three-point
estimates of∇nBy versus the corresponding four-point esti-
mates. The constraints∇By‖x̂min and∇By ⊥ B̂ give reason-
able estimates whereas the opposite cases∇By ⊥ x̂min and
∇By‖B̂ yield wrong results. Since during the time inter-
val considered here, the Cluster spacecraft are in the vicinity
of the magnetopause where the minimum variance direction
can be taken as a proxy for the boundary normal and thus
the large-scale gradient of magnetic pressure, the assumption
∇By‖x̂min makes physical sense whereas the opposite case
∇By ⊥ x̂min does not. The condition∇By ⊥ B̂ means that

the large-scale magnetic field gradient is perpendicular to the
ambient magnetic field direction. This is consistent with the
geometry of a wide range of discontinuities where the mag-
netic field is tangential, and it implies that the two conditions
that give reasonable estimates (∇By‖x̂min and∇By ⊥ B̂) are
in fact identical. The reader is referred to studies on dis-
continuity analysis (e.g.,Siscoe et al., 1968; Sonnerup and
Scheible, 1998; Knetter et al., 2004; Bargatze et al., 2005,
2006; Haaland et al., 2006; Weimer and King, 2008) for fur-
ther information.

4.2 Estimation of pressure gradients

In this subsection, the planar component of the gradient op-
erator is denoted as∇‖ (instead of∇p as elsewhere in the
paper) to avoid confusion with the (full) pressure gradient
∇p, and the normal component of the gradient operator is
written as∇⊥.
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Fig. 2. 4 February 2001, 05:50–06:25 UT: Scatter plots of thex

component of∇pBy (upper panel) and thez-component of∇nBy

(lower panel) in GSE coordinates, calculated using the stationar-
ity assumption. Measurements during the time interval around
06:03 UT with small normal plasma flow speeds were excluded
from the analysis. The horizontal axis represents the gradient com-
ponent estimate using the reference four-point method. The vertical
axis represents the estimate using our three-point method. The slope
m of the linear regression (dotted red line) and the Pearson corre-
lation coefficientR are given. The perfect match in the case of the
∇pBy estimate is due to the construction of the planar reciprocal
vectors.

The Cluster/CIS experiment (Rème et al., 2001) provides
ion data that enables the computation of macroscopic param-
eters, like the density, velocity, pressure, and temperature.
However, because the instrument on spacecraft 2 (SC2) is not
operational, only three measuring points are available, there-
fore the gradients cannot be estimated by four-spacecraft
tools. In order to check the three-spacecraft approach, we
computed the ion pressure gradient,∇p, and the work of
the ion pressure forces,WK = −v ·∇p (with v the ion bulk
velocity), for a few concentrated generator regions (CGRs),

Fig. 3. 4 February 2001, 05:50–06:25 UT: Three-point normal
derivative estimates∇nBy using the geometric constraint∇By‖ê

versus the corresponding four-point estimates. The unit vectorê is
chosen to be the normalized ambient magnetic field directionB̂ (up-
per panel) and the minimum variance directionx̂min (lower panel).
Notation as in Fig. 2.

formerly investigated byMarghitu et al.(2006) andHamrin
et al.(2006). In all these events, located near midnight in the
plasma sheet boundary layer (PSBL), at∼19RE geocentric
distance, it was found thatE ·J < 0 (with E the electric field
andJ the current density). This implies that mechanical en-
ergy is locally converted into electromagnetic energy. Based
on the orientation of the plasma sheet boundary, it was also
possible to obtain a rough estimate of the pressure gradient
and it was further inferred thatWK > 0, consistent with the
sense of the energy conversion.

Here we shall apply the three-spacecraft method to CGR1,
the most intense CGR among those investigated in more de-
tail. The geometry of the Cluster tetrahedron at 22:15 UT,
the time of the peakE ·J andWK (equal, respectively, to
−5 pW/m3 and 6 pW/m3), is presented in Fig. 5. The (SC1,
SC3, SC4) plane is slightly tilted with respect to the GSM
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x axis (∼15◦), and cuts the GSMy–zplane along a line that
makes an angle of∼30◦ with the z-axis (see also Fig. 7). In
the magnetospheric tail, where the magnetic field and plasma
pressure have little variation in thex-direction, the a priori
expectation is to have the pressure gradient dominated by the
component in they–z-plane. In terms of the three-spacecraft
approach, we expect both a planar and a normal component,
whose sum is presumably normal to the plasma sheet/lobe
interface.

The pressure gradients obtained by imposing the geomet-
ric constraints∇p ‖ J ×B, ∇p ⊥ J , and∇p ⊥ B, as well
as the respective work of the pressure forces, are shown
in Fig. 6. The planar pressure gradient (c) is obtained by
Eq. (21) and, as expected, its x-component is small. The
three geometric constraints result in similar normal compo-
nents (d, e, f), by using Eq. (32) in the first case and Eq. (34)
in the other two cases. We note that the first constraint,
∇p ‖ J ×B, implies that∇p is normal to bothJ and B,
therefore the results obtained provide a consistency check for
the three approaches.

In the PSBLJ is often dominated by the diamagnetic
current carried by ions,J d = −∇p × B/B2, and ∇p, J ,
B are orthogonal to each other. A schematic configuration
of the three vectors, that includes the projections of the 3-
spacecraft plane, and of the plasma sheet/lobe interface in
the GSM (y,z) plane, is sketched in Fig. 7. For simplicity,
B is aligned with the x-axis, whose tilt with respect to the
spacecraft plane is neglected. The pressure gradient and its
components reflect the results in Fig. 6 and∇p is assumed to
be normal to the plasma sheet/lobe interface, which is close
to the GSM (x,y)-plane. The magnetic field lines thread the
interface in the x-direction, while the current is close to the
y-direction. Note that, although the current is plotted normal
to B, a field-aligned component (as it is actually the case for
CGR1) would not change∇p – forced to be normal to the
same (J ,B) plane.

It is instructive to check in more detail the conditions
under which the geometric constraint∇p ‖ J ×B is valid.
In order to have the magnetohydrostatic condition fulfilled,
∇p ' J × B, one needs to disregard the inertial term,
nmdv/dt (where n is the particle density andm the ion
mass). Withm equal to the proton mass,m ' 10−27 kg, and
typical values ofn ' 0.3 cm−3, v ' 50 km/s,j ' 1 nA/m2,
B ' 30 nT, one obtains that for time scales longer thanT =

nmv/jB ' 1 s the inertial effects are less important. Since
the time resolution of the CIS measurements is, at best, 4 s
(equal to the spin period), it appears as reasonable to assume
that the magnetohydrostatic condition is fulfilled. The data
used to investigate the CGRs were actually averaged over
24 s (roughly, the time needed by the plasma to cross the
Cluster tetrahedron), therefore the magnetohydrostatic ap-
proximation is sound, and valid not only in the PSBL. The
setup with∇p, J , andB orthogonal to each other is more
peculiar to the PSBL but, as discussed above, the presence of
a field-aligned current is not expected to change the results.

Fig. 4. Same as Fig. 3 but based on the geometric constraint
∇By ⊥ ê (instead of∇By‖ê).

Consequently, the three geometric constraints should provide
similar∇p results irrespective of the Cluster location.

A different approach is based on the stationarity assump-
tion, Eq. (36), which can be interpreted as a dynamic con-
straint. If the stationarity condition is indeed observed, this
approach can be used also with vector operators, likediv and
curl, where imposing geometric constraints is less straight.
On the other hand, the stationarity assumption can be diffi-
cult to fulfill on the time scales required by the experimental
data. For example, with the CIS data averaged over 24 s,
if one uses a sliding window of widthw equal to at least 3
points in order to compute∂p/∂t (see Eq.37), the investi-
gated structure should be stationary on a time scale of 72 s
or more. In our case we checked the stationarity assump-
tion for several values ofw ≥ 3 and the results forw = 3 and
w = 7 (168 s) are presented in Fig. 8. The power density in
the bottom panel is less negative than in Fig. 6, becoming
more flat with the increase ofw, which indicates that the sta-
tionarity assumption becomes progressively less successful
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Fig. 5. Projections of the Cluster satellites in the GSM coordinate planes on 19 September 2001, at 22:15 UT.

for longer time scales. Unlike in Fig. 6, the components of
∇⊥p are now negative (c, d), andWK has a flat maximum of
.2 pW/m3 (h).

A closer examination of the stationarity assumption is pro-
vided in Fig. 9, where the various contributions to dp/dt =

∂p/∂t +v ·∇p are computed for two estimates of∂p/∂n –
based on the geometric constraint∇p ‖ J ×B and on the dy-
namic constraint dp/dt = 0. When the geometric constraint
is used, dp/dt is negative inside the CGR (e), possibly con-
sistent with a magnetosonic wave. Thev ·∇p term (d), equal
to −WK , can be compared to panel (i) in Fig. 6 (where, how-
ever,WK is not smoothed withw = 3 as in Fig. 9), and to
panel (h) in Fig. 8. For the geometric constraint, there is lit-
tle contribution tov ·∇p from the normal direction, and the
positive peak ofWK inside the CGR is related to the neg-
ative peak ofv‖ ·∇‖p (b). When the dynamic constraint is
imposed,WK = −v ·∇p = ∂p/∂t , which is a rather smooth
function (a), slightly positive inside the CGR. In this case,
the negative peak ofv‖ ·∇‖p is almost canceled by a positive
peak ofv⊥ ·∇⊥p (c).

5 Practical aspects of gradient estimation

After the theoretical framework of three-point gradient es-
timation was formulated in Sect.3, and analysis examples
were given in Sect.4 to demonstrate the validity of the over-
all concept, we now look at a few important practical issues.
We start with reviewing the accuracy of four-point techniques
to provide a reference for assessing the quality of the three-
spacecraft gradient estimation scheme.

5.1 Error classification, accuracy of four-point
estimates

In the preparation phase of the Cluster mission, a number
of studies were carried out on the accuracy of spatial gradi-
ent estimators, and to quantify the influence of geometrical

factors on the analysis schemes. In the first volume of the
ISSI Scientific Report series (Paschmann and Daly, 1998),
chapters 12–17 deal with this subject (Harvey, 1998; Robert
et al., 1998b; Chanteur, 1998; Chanteur and Harvey, 1998;
Robert et al., 1998a; Vogt and Paschmann, 1998). We adopt
the convention used there and classify the errors as follows.

(a) Measurement (physical) errors.These are intrinsic in-
accuracies of the measurements taken by the various in-
struments onboard the spacecraft of the array.

(b) Positional (geometrical) errors.The positions of the
spacecraft are not known precisely. These inaccura-
cies affect the inter-spacecraft distances and thus also
the gradient estimates as they are formed by finite dif-
ferences of measurements and positions. The quality of
the gradient estimates is affected by the intrinsic length
scale and the shape of the spacecraft configuration.

(c) Deviations from linearity. Most gradient estimation
schemes implicitly assume that the observables vary
linearly in space. Nonlinear variations in general,
and structures with scale sizes smaller than the inter-
spacecraft distance in particular, impose systematic er-
rors that are difficult to assess.

In the three-spacecraft case, we are dealing with a fourth po-
tential source or error.

(d) Uncertainties in the imposed condition.The normal
component of the gradient cannot be determined di-
rectly from measurements in the three-spacecraft plane,
and additional assumptions (dynamical or geometric
constraints) have to be made that in general are not sat-
isfied exactly.

Some consequences of the errors in (d) are illustrated in the
next subsection5.2, and they are more thoroughly discussed
in Appendix C. We do not attempt to quantify the (negative)
effects of (c) but only note that they are expected to decrease
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Fig. 6. Pressure gradients and the work of the pressure forces for
three different geometric constraints.(a) H+ energy spectrogram
for SC1. (b) H+ pressure for SC1 (black), SC3 (cyan), and SC4
(magenta), averaged over 24 s.(c) Pressure gradient parallel to the
3-spacecraft plane (SC1, SC3, SC4),∇‖p, computed via Eq.21.
(d, e, f) Pressure gradient normal to the 3-spacecraft plane,∇⊥p,
computed via Eq. (32) (d) and Eq. (34) (e, f), with the geomet-
ric constraints∇p ‖ J ×B, ∇p ⊥ J , and∇p ⊥ B, respectively.
(g) Quality indices|ê× n̂|

2 (for panel d) and̂e · n̂ (for panels e and
f), with thick, thin, and dashed-dotted line, respectively.(h) H+

velocity, averaged over spacecraft and over 24 s.(i) The work of
the pressure forces,WK = −v ·∇p, with ∇p = ∇‖p+∇⊥p, corre-
sponding to the three estimates of∇⊥p. Same linestyles as for the
quality indices. Note the peak at 22:15 and the spikes associated
with low quality indices. (j) The power density,E ·J , indicating
the energy conversion rate. The energy conversion reaches a neg-
ative peak at 22:15, simultaneous with the peak inWK , consistent
with a generator process.

with decreasing inter-spacecraft distance, and refer to the dis-
cussion inRobert et al.(1998a). We first focus on (a) and (b)
that affect gradient estimation in the opposite sense: with de-
creasing spacecraft separation, the gradient estimates tend to
get worse.

Various indicators such as the ratio of|∇ ·B|/|∇ ×B| in
magnetic field measurements, or tetrahedron geometric fac-

P

P

P

ZGSM

PS / Lobe Interface
3 s/c plane

J

YGSMXGSM B

Fig. 7. Parallel, perpendicular, and total pressure gradient, together
with the current density,J , and the magnetic field (into the page),
B. The 3-spacecraft plane and the plasma sheet/lobe interface are
shown as well.

tors have been suggested to assess the quality of gradient es-
timates but none of them has proven to work perfectly in all
cases (Robert et al., 1998b,a; Chanteur and Harvey, 1998).
A noteworthy approach to characterize the geometry of the
Cluster tetrahedron was presented byRobert et al.(1998b).
On the basis of the three eigenvaluesR

(1)
vol ≥ R

(2)
vol ≥ R

(3)
vol of

the volumetric tensor, they defined an intrinsic length scale
Lt and the two shape parameters planarityPt and elongation
Et as follows:

Lt = 2
√

R
(1)
vol =

√
R(1) , (38)

Pt = 1−

√
R

(3)
vol /R

(2)
vol = 1−

√
R(3)/R(2) , (39)

Et = 1−

√
R

(2)
vol /R

(1)
vol = 1−

√
R(2)/R(1) . (40)

Note that the tensorRvol = (1/S)
∑

α rαr t
α is related with the

position tensorR throughRvol = (1/S)R, S = 4 is the num-
ber of spacecraft in the configuration, andLt is a measure of
the inter-spacecraft distance.

Algebraic error formulas for four-point gradient estimates
are reviewed in Appendix B. To illustrate the key depen-
dencies, we consider the gradient of a scalar variableg, as-
sume the positional and measurement errors to be isotropic
and mutually uncorrelated, and write the resulting covariance
matrix in the following form:

〈δ[∇g]δ[∇g]
t
〉 =

[
(δg)2

+|∇g|
2(δr)2

]
K . (41)
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Fig. 8. Pressure gradients and the work of the pressure forces under
the stationarity assumption, dp/dt = 0. (a, b) Running average of
the pressure gradient parallel to the 3-spacecraft plane,∇‖p, and
pressure gradient normal to the 3-spacecraft plane,∇⊥p, for w = 3.
(c, d) Same as (a, b), but forw = 7. (e) The normal component of
the H+ velocity, proxy for the normal velocityUn from Eq. (36),
equivalent to a quality index for the normal gradient. The thick
and thin lines correspond to the estimates in the panels (b) and (d),
respectively.(f, g) Running average of the H+ velocity, averaged
over spacecraft, forw = 3 (f) andw = 7 (g). (h, i) WK andE ·J ,
with the same linestyles as in panel (e).WK has a flat maximum of
.2 pW/m3, while E ·J reaches a peak minimum of−4 pW/m3 for
w = 3 and a flat minimum of -2 pW/m3 for w = 7. Unlike in the
panels (d), (e), and (f) of Fig. 6, the components of the normal gra-
dient are now negative (b, d), reflecting the fact that the stationarity
assumption is not consistent with the geometric constraints.

Here the geometry of the spacecraft tetrahedron enters only
through the reciprocal tensorK . The trace of this error for-
mula gives the square magnitude error

〈|δ∇g|
2
〉 =

[
(δg)2

+|∇g|
2(δr)2

]
trace(K) (42)

which demonstrates the meaning of the term

trace(K) =

4∑
α=1

|kα|
2 (43)

as an error amplification factor due to the geometry of the
spacecraft tetrahedron. The expression

∑
α |kα|

2 was iden-
tified by Vogt and Paschmann(1998) as a key factor in

Fig. 9. Time derivative of the pressure in the plasma frame, dp/dt =

∂p/∂t + v · ∇p, and the contributing terms, when∂p/∂n is esti-
mated based on∇p ‖ J ×B (solid lines), respectively on dp/dt = 0
(dashed lines). All the quantities are computed forw = 3. (a) Time
derivative in the satellite frame,∂p/∂t . (b, c)Contributions tov ·∇p

from the spacecraft plane,v‖ ·∇‖p, and from the normal direction,
v ·∇⊥p = vn∂p/∂n. (d) Totalv ·∇p, the sum of (b) and (c).(e)To-
tal dp/dt , the sum of (a) and (d). As required, when stationarity
is assumedv ·∇p = −∂p/∂t (compare the dashed line in panel (d)
with panel a).

the error formulas of various spatial derivatives. Its im-
portance was confirmed in the thorough analysis presented
by Chanteur(2000) who further studied the dependency on
Lt , Pt , andEt . UsingR−1

= K , one finds that

L2
t trace(K) = 1+

1

(1−Et )2
+

1

(1−Et )2(1−Pt )2

= A2
t (Et ,Pt ) . (44)

The functionAt (Et ,Pt ) is implicitly defined through the lat-
ter equation.Chanteur(2000) explained that the algebraic
error formulas and the numerical approach ofRobert et al.
(1998a) yield consistent results. For further details the reader
is referred to the original publications and toVogt et al.
(2008b).

If we combine the (isotropic) inaccuracies in position (δr)
and observable (δg) into a single effective primary error vari-
able defined through

δtg =

√
(δg)2+|∇g|2(δr)2 , (45)

then the root mean square error of the gradient magnitude
can be expressed in the following convenient form√

〈|δ∇g|
2
〉 =

δtg

LK

=

(
δtg

Lt

)
At (Et ,Pt ) (46)

where LK =

(∑4
α=1|kα|

2
)−1/2

denotes a characteristic

length scale imposed by the set of tetrahedral reciprocal vec-
tors. SinceLt is a measure of spacecraft separation, the ratio
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δtg/Lt can be understood as a reference value for the inac-
curacy in gradient estimation which is further amplified by
the shape functionAt (Et ,Pt ). Note that for planarity val-
ues close to one, the functionAt is well approximated as
At ' (1−Et )

−1(1−Pt )
−1.

5.2 Accuracy of three-point gradient estimation

To assess the quality of three-point gradient estimates, we
have to consider both the planar component and the nor-
mal component. Due to the formal similarity of the gradi-
ent estimator based on tetrahedral reciprocal vectors with the
estimator for the planar component in the three-spacecraft
case, the quality of the latter is assessed using the same ap-
proach as for the four-point estimation scheme. Details are
explained in Appendix B. The quality of the normal gradient
estimate is mainly affected by the geometric or dynamical
constraint of interest, see Appendix C. In this subsection we
summarize the most important findings.

Accuracy of the planar component.If the measurement
errors and the positional inaccuracies are mutually uncorre-
lated and isotropic, the covariance of the planar gradient vec-
tor of a scalar variableg is given by

〈δ[∇pg]δ[∇pg]
t
〉 =

[
(δg)2

+|∇pg|
2(δr)2

]
Q , (47)

and for the square magnitude error we obtain

〈
∣∣δ∇pg

∣∣2〉 =

[
(δg)2

+|∇pg|
2(δr)2

]
trace(Q) . (48)

Primary inaccuracies in spacecraft positions and measure-
ments are thus amplified by the factor

trace(Q) =

3∑
α=1

|qα|
2
=

A2
p(Ep)

L2
p

(49)

where in analogy to the four-spacecraft case an intrinsic
scaleLp, the (planar) elongationEp, and the shape func-
tionAp(Ep) of the three-spacecraft configuration are defined
through

Lp =

√
R(1) , (50)

Ep = 1−

√
R(2)/R(1) , (51)

A2
p = L2

p trace(Q) = 1+
1

(1−Ep)2
. (52)

HereR(1)
≥ R(2)

≥ R(3)
= 0 are the eigenvalues of the (sin-

gular) position tensorR =
∑3

α=1rαr t
α. For the root mean

square error of the planar gradient magnitude we obtain√
〈
∣∣δ∇pg

∣∣2〉 =
δpg

LQ

=

(
δpg

Lp

)
Ap(Ep) (53)

with the combined measurement/positional inaccuracy

δpg =

√
(δg)2+|∇pg|2(δr)2 , (54)

and the length scaleLQ =

(∑3
α=1|qα|

2
)−1/2

.

Accuracy of the normal component.The gradient estimate
in the direction normal to the spacecraft plane is constructed
not only from measurements but also from additional dynam-
ical or geometric constraints. If these conditions are not sat-
isfied, the quality of the normal gradient estimate will be af-
fected. Appendix C makes this statement quantitative in the
following sense. The unit vectorê used in the geometric con-
straints is assumed to deviate from the ideal choiceê◦ (that
fulfills the constraint exactly) by an angleε. The resulting in-
accuracy in the gradient estimateG̃ = ∇̃g is quantified using
two error measures, namely, the relative error in magnitude

δG

G
=

G̃−G

G
(55)

and the directional mismatch

sin1 =

∣∣∣∣∣G̃×G

G̃G

∣∣∣∣∣ (56)

where1 ≥ 0 is the angle between the true gradient and the
estimator, andG = ∇g denotes the true gradient. The error
analysis aims at the susceptibility of the gradient estimate
to small errors (ε � 1), so the formulas are expanded, and
only the leading order inε is kept. The angleγ between the
normal directionn̂ and the true gradientG = ∇g turns out to
be of key importance in the discussion.

If the constraint̂e‖G is applied, and̂e is varied only in the
plane spanned byG and n̂, then the magnitude estimate is
most susceptible to errors in̂e if γ is small. Hence|ê× n̂|

may serve as an error indicator, see also the analysis exam-
ples in Sect.4. The directional estimate turns out to be more
robust. In fact, to lowest order inε, the directional mismatch
does not depend on the value ofγ at all. For the same con-
straint but variations of̂e in the direction perpendicular to the
plane spanned byG andn̂, the error formulas are quadratic
in ε which means that the gradient estimate is less affected
by this class of uncertainties in̂e.

For the second condition̂e ⊥ G, the unit vector̂e may be
freely varied in the plane perpendicular toG without affect-
ing the geometric constraint at all, and the gradient estimate
is perfectly robust. With respect to uncertainties ofê in the
direction parallel toG, the gradient magnitude estimate turns
out to be very susceptible ifγ is small but the gradient direc-
tion may still be determined rather reliably. For this kind of
geometric constraint also the orientation ofê with respect to
the normal direction̂n comes into play: uncertainties in̂e
are amplified strongly if̂e ⊥ n̂. This motivates the use of the
term|ê · n̂| as an error indicator in this case.

If the stationarity assumption is used as a constraint, the
uncertainty in the proper choice of the velocityU is associ-
ated with a residual rate of change in the co-moving reference
system which in turn can be understood as an effective error
of the time derivative in the spacecraft frame. This error is
amplified through the term 1/Un to yield the uncertainty in
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the normal derivative. Hence the gradient estimate should be
interpreted with care if the plasma frame velocity vectorU

is close to the three-spacecraft plane. This behavior was il-
lustrated in the analysis of the Cluster magnetic field data in
Sect.4.1.

5.3 Implementation of the three-point gradient
estimator

To implement and use the three-point gradient estimation
scheme, we recommend to proceed as follows. The proce-
dure is given for the gradient vector∇g of a scalar observ-
able but applies also to the gradient matrix∇V of a vector
field V .

(a) Compute the planar gradient estimate.
From the spacecraft position vectorsrα, compute the
normal vectorn̂ (Eq. 13), the three planar reciprocal
vectorsqα (Eq. 12), and then, using the measurements
dα, the planar gradient estimatẽ∇pg (Eq.21).

(b) Check the quality of the planar gradient estimate.
Combine the uncertainties in measurement (δg) and
spacecraft position (δr) into a single effective error vari-
ableδpg (Eq. 54), and multiply with the inverse length
scaleL−1

Q =
√

trace(Q) to yield a proxy for the error
in the planar gradient estimate. Of course, the error
should only be a fraction of the actual estimate∇̃pg.
Alternatively, one may take the eigenvalues of the po-
sition tensor to compute the planar elongationEp and
the intrinsic scaleLp of the three-spacecraft configu-
ration, and assess the quality of the planar gradient es-
timate through Eq. (53). Note that this kind of quality
check is valid for the idealized case of isotropic and mu-
tually uncorrelated errors in measurement and position.
If more information is available (full covariance matri-
ces), a more detailed error analysis may be carried out
following the approach discussed in Appendix B.

(c) Select the constraint to be used in normal gradient esti-
mation. This step requires careful consideration of the
specific physical situation of interest. General recipes
are difficult to formulate. The geometric and dynami-
cal constraints given in Sect.3.2 are prototypes for al-
gebraic or differential equations reflecting some kind of
redundancy in the data that can be exploited to construct
a normal gradient estimate. If possible, the result should
be checked for internal consistency, see below.

Examples: In the vicinity of quasi-planar discontinuities
such as the magnetopause, the boundary normal is ex-
pected to be aligned with large-scale gradients. Prox-
ies for the boundary normal vector can be the minimum
variance direction of the magnetic field, or the maxi-
mum variance direction of the electric field, seeSon-
nerup and Scheible(1998). In the vicinity of tangen-
tial discontinuities (seemingly the dominant type in the

solar wind, seeKnetter et al., 2004), one may also im-
pose that the magnetic field gradient is perpendicular
to the ambient magnetic field. In the Earth’s magne-
totail under slow-flow conditions, the inertial terms in
the magnetohydrodynamic equation of motion are rel-
atively small, and pressure gradient estimates can be
obtained from the magnetohydrostatic conditions as de-
scribed in Sect.4.2. To test the validity of the station-
arity assumption, one may transform the data into the
plasma frame of reference (e.g.,Hamrin et al., 2008)
and check if the temporal rate of change in that frame is
small.

(d) Compute the normal gradient estimate.The selected
constraint is numerically evaluated, and the estimate for
the normal derivative∂g/∂n is multiplied with the nor-
mal unit vectorn̂ to yield the normal gradient estimate
∇̃ng.

(e) Check the quality of the normal gradient estimate.The
accuracy and the significance of the normal gradient es-
timate depends on the quality of the planar gradient es-
timate, and on how exactly the imposed constraints are
fulfilled. The normal gradient estimate should be taken
with care if the denominators in the respective condition
for the estimate of the normal derivative∂g/∂n is small,
i.e., the normal speed|Un| in the case of the stationarity
assumption, the term|ê× n̂| in the case of the geomet-
ric condition ê‖∇g, or the term|ê · n̂| if the condition
ê ⊥ ∇g is imposed.

(f) Combine normal and planar components to obtain the
full gradient. Here we simply add̃∇pg and∇̃ng to de-
termine the full gradient estimatẽ∇g.

(g) Perform consistency checks.Like the four-point equiv-
alent, the planar gradient estimation scheme exploits
only the linear variation in the data which implies that
the gradient is implicitly assumed to be homogeneous
over the spatial extent of the spacecraft array. Thus for
internal consistency of the method, the results should
not vary too much over an equivalent temporal range,
i.e., the time interval required by the spacecraft to cover
the spatial extent. This consistency check is particu-
larly useful for the geometric constraints that in prin-
ciple allow for a point-wise (in time) reconstruction of
the normal gradient component. Furthermore, the con-
dition ê‖∇g may be checkeda posteriori as the esti-
mation scheme minimizes the|ê×∇g|

2 but it does not
enforce∇g to be parallel tôe. This is different from the
conditionê ⊥ ∇g that is satisfied by construction. In the
case of the stationarity assumption, the time derivative
is computed from an averaged valuegmc(t). With the
reconstructed gradient, the model allows to predict also
the observables at the three spacecraft which may then
be compared with the actual measurements.
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5.4 Comparison with other gradient estimation
schemes

Unconstrained linear gradient estimation schemes using si-
multaneous measurements from four spacecraft are expected
to yield the same results because the number of observations
matches exactly the number of unknowns (in the scalar case,
three components of the gradient vector and a constant), see
also Vogt et al. (2008b). The curlometer approach (Dun-
lop et al., 1988), the unconstrained least squares estima-
tor presented byHarvey (1998), and the reciprocal vector
method (Chanteur, 1998) fall into this class of analysis tech-
niques. A comparison of the latter with the planar part of
our three-spacecraft method was implicitly given already in
Sects.5.1 and 5.2. Here we highlight only the role of the
geometric error amplification factors that are related by

trace(Q) = trace(K)−

4∑
α=1

(n̂ ·kα)2 , (57)

see statement A10 in Appendix A. If in the four-point esti-
mation scheme the term trace(K) is too large due to planarity
valuesPt that are close to one, and the resulting gradient es-
timate turns out to be useless, the value of trace(Q) may still
be moderate enough to allow for a meaningful analysis. Then
one may eliminate the measurement that corresponds to the
longest of the reciprocal vectorskα, and apply the three-point
method to the remaining observations.

Instead of using at each time step individually a single
set of four-spacecraft data,De Keyser et al.(2007) based
their method on a sequence of multi-point observations that
do not need to be synchronized (see alsoDe Keyser, 2008).
Their least squares estimator can be characterized as an in-
verse modeling effort that allows for rigorous error control.
Measurement errors are specified on input, and they are usu-
ally assumed to vary isotropically with distance from a point
in space-time, but can in principle be also anisotropic. The
method was demonstrated for the four-point case but the ap-
proach is far more general, and can be applied also to three-
spacecraft observations. Constraints can be taken into ac-
count, and are their use is recommended in particular if a
spatial direction turns out to be ill-resolved. In summary, the
estimator ofDe Keyser et al.(2007) offers most of the com-
ponents of our three-point method in a flexible and powerful
framework. The three-spacecraft approach introduced in the
present paper, however, should be easier to implement and
to use in practice than the mathematically more complex in-
verse modeling apparatus, and thus may be better suited for
routine analyses. Furthermore, the planar reciprocal vector
formalism allows more explicit control of the decomposition
into planar and normal components.

The GALS approach presented byHamrin et al.(2008)
also takes a sequence of measurements as input. The crucial
ingredient of the method is the choice of a special frame of
reference where the measurements are stationary. Unlike the

stationarity assumption in our three-point method,Hamrin
et al. (2008) do not prescribe the velocityU of this special
coordinate system but determine it as part of an iterative op-
timization procedure. Another important variable optimized
in the process is an intrinsic physical scale (3) which enters a
weight function in the least squares estimator, and effectively
makes the method sensitive to structures that are smaller than
the inter-spacecraft separation scale. The key control param-
eter of the GALS scheme is the lengthTc of the time interval
(the so-called coherence time), so the method requires little
user input. Since GALS is formulated so far only for the
case of four spacecraft, a direct comparison with our planar
reciprocal vector scheme is not yet possible.

6 Wave vector and boundary parameter estimation

Just like their tetrahedral counterparts, the planar reciprocal
vectors presented in Sect.2 allow to carry out not only spatial
gradient estimation but they also facilitate wave and bound-
ary analysis. Below we briefly sketch how to construct wave
vector and boundary parameter estimators from three-point
data. Details of the analysis schemes are beyond the scope of
this first three-spacecraft data analysis paper, and will be left
for future work.

6.1 Wave surveyor technique for three-spacecraft data

The problem of wave vector identification from multi-
spacecraft data has been studied by several groups. Thewave
telescopeintroduced byDunlop et al.(1988) andNeubauer
and Glassmeier(1990) was based on a linear filter bank for-
mulation. Thek-filtering techniqueconstructed by Pinçon
and co-workers (e.g.,Pinçon and Lefeuvre, 1991, 1992) by
means of a minimization principle is based on an estimator
for the spatio-temporal power spectrumP(ω,k). The two
approaches can be combined, and the two terms are now of-
ten used interchangeably (Pinçon and Motschmann, 1998;
Motschmann et al., 1998; Pinçon and Glassmeier, 2008). On
the basis of thek-filtering/wave telescope technique,Con-
stantinescu et al.(2007) constructed a wave detection scheme
using spherical waves instead of plane waves to identify not
only wave vectors but also the location of the wave source. A
different class of multi-point wave analysis methods can be
characterized asphase differencing techniques. Projections
of the wave vectork onto the spacecraft separation vectors
are estimated from phase differences of the signal measured
between the corresponding pairs of sensors (e.g.,Balikhin
and Gedalin, 1993; Dudok de Wit et al., 1995; Walker et al.,
2004). Still another wave vector estimation scheme, thewave
surveyor technique, was suggested recently byVogt et al.
(2008a), and can be characterized as a direct method that
does not require any peak search like the other categories
of analysis techniques. It makes use of the eigenstructure of
the cross spectral density matrix (e.g.,Samson et al., 1990;
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Santoĺık et al., 2003), and is applicable to wave fields where
at a particular frequency a single wave mode dominates. For
further details on the different categories of multi-point wave
analysis techniques, seePinçon and Glassmeier(2008), Hor-
bury and Osman(2008), andVogt et al.(2008a).

The methodological framework introduced in Sect.2 al-
lows to construct a three-point variant of the wave sur-
veyor technique because the algebra presented byVogt et al.
(2008a) translates directly to our case. Of course, only the
planar componentkp of the full wave vectork is accessible
but otherwise the estimation scheme remains the same. In
particular, dot products of the wave vectork with the space-
craft position vectorsrα are not affected because the posi-
tion vectors are planar vectors, thusk · rα = kp · rα. Since
the spacecraft geometry enters the steering vectorh(k) (for
scalar data) or the steering matrixH(k) (for vector data) only
through such dot products, all components of the estimator
for the amplitude (polarization) vectora = a(ω) are accessi-
ble from three-point measurements, see Eqs. (34) and (35) in
the paper ofVogt et al.(2008a).

To determine the normal componentkn = k · n̂ of the wave
vectork, however, additonal information is required, as in
the case of spatial gradient estimation. If the observable is
the magnetic field vectorB, we may take advantage of the
condition∇·B which implies thatk ·a = 0 for the pair of vec-
torsk(ω) anda(ω) at the angular frequencyω. The missing
normal component of the wave vector can then be computed
from

kn = −
kp ·a

n̂ ·a
(58)

at each angular frequencyω of interest. Another option
would be the curl-free constraint that applies, e.g., to elec-
trostatic wave modes:∇ ×E = 0. Here we obtain

|kn| =
|kp ×a|

|ap|
. (59)

6.2 Boundary analysis using crossing times

Plasma boundaries such as discontinuities and shocks can be
characterized by a set of parameters including orientation,
velocity, curvature, and thickness. Depending on the physi-
cal question of interest, a variety of methods exist to estimate
subsets of the boundary parameters. The celebrated mini-
mum variance analysis (MVA) (Sonnerup and Cahill, 1967;
Sonnerup and Scheible, 1998) is a single spacecraft tech-
nique that takes advantage of conservation laws to estimate
the boundary normal. The discontinuity analyzer (DA) (Dun-
lop et al., 1988; Dunlop and Woodward, 1998) combines the
MVA results of several spacecraft to analyze boundary mo-
tion and surface topology. A crossing time approach was
presented byHarvey (1998). For a recent summary of the
various techniques that have been applied in the context of
the Cluster mission, seeSonnerup et al.(2008).

Following up on the least-squares approach to boundary
parameter estimation explained in Sect.2, planar reciprocal
vectors allow to construct an estimator for the planar compo-
nentmp of the slowness vectorm = ŝ/U from the boundary
crossing timestα through

mp =

∑
α

qα(tα − t0) . (60)

This information can be combined with other boundary anal-
ysis techniques in a variety of ways. E.g., if the bound-
ary normal unit vector̂s is constrained by means of single-
spacecraft MVA results to be parallel or perpendicular to a
given unit vector̂e, we can proceed as in Sect.3.2 to obtain
mn = m · n̂, i.e., the slowness vector component perpendicu-
lar to the spacecraft plane. In the caseŝ ⊥ ê when the bound-
ary normal is known to lie in the plane perpendicular to a
given vectorê, we find

mn = −
ê ·mp

ê · n̂
. (61)

When the boundary normalŝ is known to be parallel to the
vectorê, then

mn =
(ê ·mp)(ê · n̂)

|ê× n̂|2
. (62)

The full slowness vector can then be constructed asm =

mp +mnn̂, and the boundary velocityU = 1/|m|.

7 Summary and outlook

This paper introduced the set of planar reciprocal vectors as
a generic and convenient tool to extract the information con-
tained in three-point measurements. As the minimum norm
solutions of a least-squares problem, planar reciprocal vec-
tors yield robust and efficient estimators of model parameters
in the spacecraft plane. Additional information, e.g., in the
form of geometric constraints or physical assumptions, has
to be provided to estimate the out-of-plane component of the
model parameter vector.

Our approach to the analysis of three-spacecraft data al-
lows to address major problem classes such as spatial gra-
dient estimation, wave identification, and boundary analysis.
The gradient estimation problem was chosen to demonstrate
the practical applicability of the new method. Our three-
point technique and the reference four-point method perform
equally well in the reconstruction of the in-plane component
of the gradient vector. The quality of the out-of-plane com-
ponent estimate depends on the type of additional informa-
tion that is provided. For the events considered here, the out-
of-plane component of the gradient could be reasonably well
reconstructed if the proper constraint was used. The accuracy
of the new method and other practical aspects were discussed
in some detail.

This study brought us from four-point measurements to the
three-spacecraft analysis case where the missing information
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was compensated by one additional condition. If we go one
step further and combine two conditions, we may be able to
address the case of two-spacecraft configurations. However,
the balance between the actual measurements and the im-
posed constraints would be moved towards the constraints,
which makes the analysis more susceptible to uncertainties
in the constraints. Another avenue could be more interest-
ing, namely, taking measurements from three spacecraft and
combining the planar reciprocal vector formalism with the
GALS scheme (Hamrin et al., 2008): if in addition to the
stationarity assumption a geometric constraint is taken into
account, one should be able to exploit the resulting redun-
dancy in the data and resolve structures on scales that are
smaller than the inter-spacecraft separation. This and other
possible extensions of the planar reciprocal vector approach
(like the implementation of a three-spacecraft wave surveyor
technique, see Sect.6) are planned for the future.

Appendix A

Algebra of planar reciprocal vectors

We now formally justify the statements and identities given
in Sect.2, and include the algebra of planar reciprocal vectors
for future reference. Although the results could be derived
more directly from general principles of inverse theory, we
gave preference to a basic linear algebra approach for reasons
of completeness and internal consistency.

The number of spacecraft isS = 3, we presume that they
are not collinear, and we use a mesocentric coordinate frame.
The planar subspace spanned by the three spacecraft position
vectors is denoted byP. In this context, vectorsw are called
normal if they are perpendicular to the spacecraft plane, i.e.,
w ⊥ P. A vector v is calledplanar if it is located in that
plane:v ∈P. We are concerned with equations of the type

Ru = b (A1)

that are to be solved foru. Hereb ∈P is a given data vector,
andR is the position tensor of the spacecraft array.

A1. The nullspaceN of the position tensorR is the
subspace of normal vectors. In short,P ⊥N .

To demonstrate the statement, we note that if all spacecraft
are located in one planeP, then also the mesocenter that co-
incides with the origin of our coordinate system, and so are
the three position vectorsr1,r2,r3. Hence for any normal
vectorw ⊥P we obtain

r t
αw = rα ·w = 0 , α = 1,2,3, (A2)

and this implies

Rw =

∑
α

rαr t
αw = 0 . (A3)

Therefore, normal vectors are in the nullspace ofR.

On the other hand, if we take a vectorw that solvesRw =

0, then also

0 = w†Rw = w†

(∑
α

rαr†
α

)
w

=

∑
α

w†rαr†
αw =

∑
α

|w†rα|
2 (A4)

which can be satisfied only if

w†rα ≡ w ·rα = 0 (A5)

for α = 1,2,3. This implies that all position vectorsrα must
be perpendicular to the vectorw. If the S = 3 spacecraft are
not collinear, the position vectors span the planeP, thus we
can also conclude that vectors in the nullspaceN of R are
normal vectors.

A2. A planar solutionv of Eq. (A1) is the minimum
norm solution.

This is evident from statement A1. In detail, ifv ∈P is a
given particular solution, then any other solutionu 6= v can
be expressed in the formu = v+w wherew 6= 0 is a normal
vector. Sincev is also a planar vector, the (Euclidean) norm
of u satisfies

|u|
2

= |v|
2
+|w|

2 > |v|
2 (A6)

and hence|v| < |u|.

A3. The normal vectorn = r12× r13 can alter-
natively be written in the formsn = r23 × r21,
n = r31×r32, andn = r1×r2+r2×r3+r3×r1.

The skew-symmetry of the cross-product implies that

n = r12×r13 = (r2−r1)×(r3−r1)

= r2×r3−r2×r1−r1×r3−r1×r1

= r2×r3+r1×r2+r3×r1 . (A7)

The cross-productsr23×r21 andr31×r32 can be evaluated
in the same way and also yield the latter expression.

A4. The planar reciprocal vectorsqα satisfy∑
αqα = 0 and alsoq t

α · rγβ = δαβ − δαγ for all
α,β,γ ∈ {1,2,3}.

Adding all three planar reciprocal vectors gives∑
α

qα =
n

|n|2
×(r23+r31+r12) = 0 . (A8)

The second relation can be rewritten as

qα ·(rβ −rγ ) ≡ q t
α(rβ −rγ ) = δαβ −δαγ . (A9)

We simply check this identity by going through the different
possibilities for the triple of indices(α,β,γ ). For any given
α, both sides of the equation are zero ifβ = γ . If α = β 6= γ ,
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then the right-hand sideδαβ −δαγ = 1, and also the left-hand
side

qα ·rγα =
1

n2
(n×rγµ) ·rγα =

1

n2
n ·(rγµ ×rγα)

=
1

n2
n ·n = 1 (A10)

whereµ is chosen such that(α,γ,µ) becomes a cyclic per-
mutation of(1,2,3). The caseα = γ 6= β is demonstrated
in a similar way. Finally, if all three indices are different,
the right-hand side is zero because both terms vanish indi-
vidually, and the left-hand side is zero because thenqα is
perpendicular torβγ = −rγβ by construction.

A5. The planar reciprocal vectorsqα satisfy
qα ·rβ = δαβ −

1
3 for all α,β ∈ {1,2,3}.

The symmetry of the dot product implies that this relation
can be rewritten as

q t
αrβ ≡ qα ·rβ ≡ r t

βqα = δαβ −
1

3
. (A11)

Since we are working in a mesocentric coordinate frame, we
may subtract the mesocenterrmc = 0 from rβ on the left-
hand side of the equation to yield

q t
αrβ = q t

α(rβ −rmc)

= q t
α

(
1

3

∑
γ

rβ −
1

3

∑
γ

rγ

)

=
1

3

∑
γ

q t
α(rβ −rγ )

=
1

3

∑
γ

(δαβ −δαγ ) = δαβ −
1

3
. (A12)

A6. The planar reciprocal vectorqα is the mini-
mum norm solution of the equationRqα = rα.

This result is shown by means of statement A5:

Rqα =

∑
β

rβr t
βqα =

∑
β

rβ

(
δαβ −

1

3

)
= rα −

1

3

∑
β

rβ = rα . (A13)

Since the solution vectorqα is planar by construction, it is
also the minimum norm solution according to statement A2.

A7. The planar reciprocal vectorsqα satisfy∑
αqαr t

α = I − n̂n̂t
=
∑

α rαq t
α.

In order to demonstrate the identity involving the left-hand
side and the central part of the equation, we let the tensors
operate onn̂ and the set{qα} which taken together form a
basis of the three-dimensional space. We obtain(∑

α

qαr t
α

)
n̂ =

∑
α

qαrα · n̂ = 0 (A14)

becauserα ⊥ n̂, and also(
I − n̂n̂t

)
n̂ = n̂− n̂(n̂ · n̂) = 0 . (A15)

Furthermore,(∑
α

qαr t
α

)
qβ =

∑
α

qαrα ·qβ

=

∑
α

qα[δαβ −(1/3)]

= qβ −(1/3)
∑
α

qα

= qβ , (A16)

and also(
I − n̂n̂t

)
qβ = qβ − n̂n̂ ·qβ = qβ (A17)

becausên ⊥ qβ . The second half of the identity (involving
the central part and the right-hand side) is demonstrated in a
similar manner by letting the tensors operate onn̂ and the set
{rα}.

Note that by taking the trace of the operators involved in
identity A7 one further finds that

∑
αqα · rα = 2. Since the

skew-symmetric part of the operatorI − n̂n̂t vanishes, one
can also conclude that

∑
αqα ×rα = 0.

A8. The product of the position tensorR and the
so-called planar reciprocal tensorQ =

∑
β qβq

†
β

is given byRQ = QR = I − n̂n̂t.

This is demonstrated by means of the statements A7 and
A5 as follows:

RQ =

(∑
α

rαr†
α

)(∑
β

qβq
†
β

)
=

∑
αβ

rαr†
αqβq

†
β

=

∑
αβ

rα

[
δαβ −(1/3)

]
q

†
β

=

∑
α

rαq
†
β −(1/3)

(∑
α

rα

)(∑
β

qβ

)†

=

∑
α

rαq
†
β = I − n̂n̂t . (A18)

The identityQR = I − n̂n̂t is shown in the same way.

A9. If the three spacecraft are part of a tetrahe-
dral configuration, the planar reciprocal vectors
qα are related to the tetrahedral reciprocal vectors
kα throughqα = n̂× (kα × n̂) for α ∈ {1,2,3}, and
k4‖n̂.
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The relationk4‖n̂ is evident from the definitions ofk4 and
n̂. The first relation is now shown forα = 1, the casesα = 2
andα = 3 are obtained by cyclic permutation of the indices.
Since

kα ×n = (k1× n̂)(n̂ ·n)− n̂[(k1× n̂) ·n]

=
[
n̂×(k1× n̂)

]
×n (A19)

(note thata× (b×c) = b(a ·c)−c(a ·b) for arbitrary triples
of vectorsa,b,c) and both sides of the relation to be proven
are planar vectors, it is sufficient to demonstrate that

q1×n = k1×n . (A20)

After multiplication with

V = r21·(r23×r24) = (r21×r23) ·r24

= −(r23×r21) ·r24= −n ·r24 , (A21)

we are left with the relation

(n ·r24)(q1×n) = (r23×r24)×n (A22)

that will be shown now. The right-hand side can be rear-
ranged to yield

− [n×(r23×r24)] = −[r23(n ·r24)−r24(n ·r23)]

= −r23(n ·r24) . (A23)

The left-hand side can be reduced to the same result:

q1×n = −
1

|n|2
[n×(n×r23)]

= −
1

|n|2

[
r23|n|

2
−n(r23·n)

]
= −r23 (A24)

which completes the proof.

A10. If the three-spacecraft array with planar re-
ciprocal vectorsqα is part of a tetrahedral con-
figuration with tetrahedral reciprocal vectorskα,
then

3∑
α=1

|qα|
2
=

4∑
α=1

|kα|
2
−

4∑
α=1

(n̂ ·kα)2

or, equivalently,

trace(Q) = trace(K)−

4∑
α=1

(n̂ ·kα)2 .

To prove this statement, we begin with A9:

qα = n̂×(kα × n̂) = kα −(n̂ ·kα)n̂ (A25)

for α ∈ {1,2,3}, and thus

Q =

3∑
α=1

qαq t
α

=

3∑
α=1

[
kα −(n̂ ·kα)n̂

][
kt

α −(n̂ ·kα)n̂t
]

=

3∑
α=1

{
kαkt

α −(n̂ ·kα)
[
n̂kt

α +kαn̂t
]

+ (n̂ ·kα)2n̂n̂t
}

= K −k4k
t
4−

3∑
α=1

(n̂ ·kα)
[
n̂kt

α +kαn̂t
]

+

3∑
α=1

(n̂ ·kα)2n̂n̂t . (A26)

Noting that the trace of a dyadabt is the scalar product of
the two vectors, i.e., trace

(
abt
)
= atb = a ·b, it is straightfor-

ward to form the traces of the matrices on both sides of the
equation:

trace(Q) = trace(K)−|k4|
2
−2

3∑
α=1

(n̂ ·kα)2

+

3∑
α=1

(n̂ ·kα)2n̂n̂t

= trace(K)−|k4|
2
−

3∑
α=1

(n̂ ·kα)2 . (A27)

Sincek4‖n̂, we have|k4|
2
= (n̂ ·k4)

2 and thus

trace(Q) = trace(K)−

4∑
α=1

(n̂ ·kα)2 . (A28)

Appendix B

Accuracy of planar gradient estimation

Using planar reciprocal vectorsqα, the planar components
of the spatial gradients of a scalar observableg and a vector
field V can be estimated through

∇pg ' ∇̃pg =

∑
α

qαgα , (B1)

∇pV ' ∇̃pV =

∑
α

qαV t
α . (B2)

The estimators are of the same functional form as in the four-
point case studied in detail by several authors in the first
volume of the ISSI Scientific Report series (Paschmann and
Daly, 1998). Algebraic accuracy analyses were carried out
by Chanteur(1998, 2000), Chanteur and Harvey(1998), and
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also byVogt and Paschmann(1998). Many of their error es-
timates translate directly to the three-spacecraft case consid-
ered here as they are based on the list of algebraic relation-
ships for reciprocal vectors that are valid in both the tetrahe-
dral and the planar case. We expect, e.g., the inverse length
scale

L−1
Q =

√√√√ 3∑
α=1

|qα|2 (B3)

to play a key role in the error analysis of three-point gradient
estimates because the corresponding four-point expression

L−1
K =

√√√√ 4∑
α=1

|kα|2 (B4)

allows to write down handy formulas for directionally aver-
aged errors of various spatial derivatives in the presence of
isotropic and uncorrelated measurements inaccuracies (Vogt
and Paschmann, 1998; Chanteur, 2000; Vogt et al., 2008b).

One key step in the error estimation process, however, re-
quires special attention and careful interpretation. We adopt
the approach taken byChanteur(1998, Sects. 14.3.1 and
14.3.2) who based part of his analysis on the equation∑

α

(
δkα r t

α +kα δr t
α

)
= 0 (B5)

which is the (linear) variation of∑
α

kαr t
α = I = const. (B6)

The right-hand side of the corresponding expression in the
planar case, namely,∑

α

qαr t
α =

∑
α

rαq t
α = I − n̂n̂t (B7)

is constant only if the vector̂n, or, equivalently, the orien-
tation of the three-spacecraft plane does not change in the
variational process. So for the sake of simplicity, and to be
able to make direct use of the results obtained for the four-
point case, we adopt the idealized but somewhat unrealis-
tic assumption that the three spacecraft position vectors vary
only in the plane perpendicular to the vectorn̂.

Using Eq. (B5) and the algebra of reciprocal vectors,
Chanteur(1998) derived the following general expression for
the covariance matrix of reciprocal vectors:

〈δkαδkt
β〉 =

4∑
µ=1

4∑
ν=1

(
kt

α〈δrµδr t
ν〉kβ

)
K , (B8)

see Eq. (14.26) inChanteur(1998). The covariance tensor
〈δGij δGmn〉 of the linear estimatorG =

∑
αkαV t

α for the

gradient of a vector fieldV is given in the same publication
(Eq. 14.30):

〈δGij δGmn〉 =

4∑
α=1

4∑
β=1

(
〈δVα,iδVβ,m〉kα,jkβ,n

+ 〈kα,jkβ,n〉Vα,ikβ,m

)
(B9)

(note thatGij is an estimator of∂Vi/∂xj ).
To study the dependency of physical and geometric er-

rors on the shape parameters (elongation and planarity) of
the Cluster tetrahedron,Chanteur(2000) assumed mutually
uncorrelated spacecraft position vectors and measurements,
and the errors to be isotropic. More precisely, for the covari-
ance matrices he wrote

〈δrµδr t
ν〉 = δµν(δr)

2I and (B10)

〈δV αδV t
β〉 = δαβ(δV )2I (B11)

whereδr andδV denote the inaccuracies in position and field
measurements, andδαβ as well asδµν are Kronecker delta
symbols. These assumptions yield the following error for-
mula

〈δGij δGmn〉 =

[
(δV )2δim +∇Vi ·∇Vm(δr)2

]
Kjn , (B12)

see Eq. (11) inChanteur(2000). Here the geometry of the
spacecraft tetrahedron enters only through the reciprocal ten-
sor K . To illustrate the fundamental dependencies, we may
reduce the complexity by considering the gradient estimator
G ' ∇g of a scalar variableg, so Gij → Gj , and we can
write the covariance of the gradient vector as follows:

〈δ[∇g]δ[∇g]
t
〉 =

[
(δg)2

+|∇g|
2(δr)2

]
K . (B13)

The trace of this error formula gives the square magnitude
error

〈|δ∇g|
2
〉 =

[
(δg)2

+|∇g|
2(δr)2

]
trace(K) (B14)

where the term

trace(K) =

4∑
α=1

|kα|
2 (B15)

is a function of the spacecraft array geometry, and can be
understood as an amplification factor for the primary errors
due to positional and measurement inaccuracies. For further
details the reader is referred toVogt and Paschmann(1998);
Chanteur(2000); Vogt et al.(2008b).

Armed with the arsenal of error formulas for tetrahedral
configurations, we now approach the three-point gradient es-
timation case. The correspondence of algebraic relations
suggests the following replacement scheme

kα → qα , (B16)

(δr)2I → (δr)2
(
I − n̂n̂t

)
, (B17)

4∑
α=1

→

3∑
α=1

, (B18)

∇Vi → ∇pVi (B19)
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in the four-point error formulas to find the corresponding ex-
pressions for the planar case. Assuming mutually uncorre-
lated and isotropic errors in spacecraft positions and mea-
surements, the error formula for the covariance of the planar
gradient vector of a scalar variableg reads

〈δ(∇pg)δ(∇pg)t
〉 =

[
(δg)2

+|∇pg|
2(δr)2

]
Q , (B20)

and for the square magnitude error we obtain

〈
∣∣δ∇pg

∣∣2〉 =

[
(δg)2

+|∇pg|
2(δr)2

]
trace(Q) . (B21)

Hence in the three-point gradient estimation case, the array
geometry amplifies the primary inaccuracies in spacecraft
positions and measurements through the factor

trace(Q) =

3∑
α=1

|qα|
2 . (B22)

In a similar way as trace(K) can be written in terms of the
shape parameters and an intrinsic scale of the four-spacecraft
array (Chanteur, 2000), we may express the trace of the pla-
nar reciprocal tensorQ as a function of an intrinsic scale and
the (planar) elongationEp of the three-spacecraft configura-
tion. In analogy with the concept of planarity and elonga-
tion in the tetrahedral case (Robert et al., 1998b), we take the
eigenvaluesR(1)

≥ R(2)
≥ R(3)

= 0 of the (singular) position
tensorR =

∑3
α=1rαr t

α of the three-spacecraft configuration
to define

Ep = 1−

√
R(2)/R(1) , (B23)

and use the largest eigenvalueR(1) to identify an intrinsic
scale

Lp =

√
R(1) . (B24)

Note thatRobert et al.(1998b) based their definitions on the
eigenvalues of the volumetric tensor which differs from the
position tensor by a constant factor, and thatR(3)

= 0 im-
plies 1−

√
R(3)/R(2) = 1, so the concept of planarity cannot

be applied here. WithLp andEp defined that way, the non-
zero eigenvalues of the position tensor areR(1)

= L2
p and

R(2)
= L2

p(1−Ep)2. Since in the three-spacecraft planeP
the productRQ is the identity operation, the non-zero eigen-
values ofQ areQ(1)

= 1/R(1)
= L−2

p andQ(2)
= 1/R(2)

=

L−2
p (1−Ep)−2. We finally write the trace of the planar re-

ciprocal tensor in terms of the parametersLp andEp as fol-
lows:

trace(Q) = Q(1)
+Q(2)

=
1

L2
p

(
1+

1

(1−Ep)2

)
. (B25)

For the mean square error of the planar gradient magnitude
we obtain

〈
∣∣δ∇pg

∣∣2〉 =
(δpg)2

L2
p

(
1+

1

(1−Ep)2

)
(B26)

where the positional inaccuracies and the measurement er-
rors have been combined into a single error variable:

δpg =

√
(δg)2+|∇pg|2(δr)2 . (B27)

Appendix C

Accuracy of normal gradient estimation

The component of a spatial gradient in the direction nor-
mal to the three-spacecraft plane cannot be estimated directly
from measurements within that plane. Additional informa-
tion in the form of dynamical or geometric constraints must
be considered. Such conditions are never satisfied exactly.

In the following we focus on geometric constraints, and
study how the estimation quality depends on small deviations
from ideal geometries. IfG denotes the true gradient andG̃

the estimator, we evaluate the relative error in magnitude

δG

G
=

G̃−G

G
(C1)

(G = |G|, G̃ = |G̃|) and the directional mismatch

sin1 =

∣∣∣∣∣G̃×G

G̃G

∣∣∣∣∣ (C2)

where1 ≥ 0 is the angle between the true gradient and the
estimator. The geometric constraints of interest areê‖G and
ê ⊥ G. The deviation from ideal geometry is quantified by
the angleε between the error-free unit vectorê◦ that fulfills
the constraints exactly, and the unit vectorê that is actually
used in the analysis:

cosε = cos6 (ê,ê◦) = ê · ê◦ . (C3)

The deviations from the ideal geometry considered here are
assumed to be small:ε � 1.

True gradient and estimator are decomposed into planar
and normal components:

G = Gp +Gn = Gp +Gnn̂ , (C4)

G̃ = G̃p +G̃n = G̃p +G̃nn̂ . (C5)

Since in this section we are concerned with the quality of the
normal gradient estimate, we assume that the planar compo-
nent of the gradient is known exactly:

G̃p = Gp , (C6)

and write the normal component in the form

G̃n = Gn(1+ν) (C7)

whereν quantifies the relative deviation of the normal gradi-
ent estimator from its true value. It is straightforward to show
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that to lowest order inν � 1, the relative error in magnitude
and the directional mismatch are given by

δG

G
' ν

G2
n

G2
, (C8)

sin1 '

∣∣∣∣ν GpGn

G2

∣∣∣∣ . (C9)

Here and in the following the symbol “'” indicates that
higher-order contributions inν or ε are neglected.

The coordinate system is chosen such that the true gradient
points into thez-direction, and the normal unit vectorn̂ is in
the (x,z)-plane:

G = Gẑ , (C10)

n̂ = sinγ x̂ +cosγ ẑ . (C11)

The angle betweenG andn̂ is γ . The components of the true
gradient are

Gn = n̂ ·G = Gcosγ , (C12)

Gn = Gnn̂ = Gcosγ sinγ x̂ +Gcos2γ ẑ , (C13)

Gp = G−Gn = −Gsinγ cosγ x̂ +Gsin2γ ẑ . (C14)

The geometric constraint̂e‖G is studied first which means
that the normal gradient estimator is given by

G̃n =
(ê ·Gp)(ê · n̂)

|ê× n̂|2
. (C15)

We consider two types of̂e-variations around the exact vector
ê◦ = ẑ.

(a) The unit vector̂e varies only in the (x,z)-plane:

ê = sinε x̂ +cosε ẑ , (C16)

i.e., in the plane spanned byG andn̂.

(b) The unit vector̂e varies only in the (y,z)-plane:

ê = sinε ŷ +cosε ẑ , (C17)

i.e., in the direction perpendicular to the plane spanned
by G andn̂.

We have to evaluate the scalar productsê ·Gp and ê · n̂ as
well as the square modulus of the cross product|ê× n̂|

2 in
terms of the anglesε andγ , then expand the resulting expres-
sions inε � 1 and neglect terms of higher than the leading
order. Since the calculations are straightforward, details can
be omitted, and only the end results are given.

For case (a) we obtain

G̃n ' Gn

(
1+

ε

sinγ cosγ

)
= Gn(1+ν) (C18)

thusν = ε ·(sinγ cosγ )−1. With Gn/G = cosγ andGp/G =

sinγ we get

δG

G
' ν

G2
n

G2
= ε

cosγ

sinγ
, (C19)

sin1 '

∣∣∣∣ν GpGn

G2

∣∣∣∣= ε . (C20)

The magnitude estimate is most susceptible to errors inê if
γ is small, i.e., if the true gradient is close to the normal
direction. To lowest order inε, the magnitude estimate is
rather robust if the gradient is close to the three-spacecraft
plane, and the directional mismatch does not depend onγ at
all.

Case (b) yields

G̃n ' Gn

(
1−ε2

[
1

2
+

1

sin2γ

])
(C21)

which givesν = −ε2
[1/2+1/sin2γ ], and

δG

G
' −ε2cos2γ

[
1

2
+

1

sin2γ

]
, (C22)

sin1 ' ε2cosγ

[
sinγ

2
+

1

sinγ

]
. (C23)

The expansions inε both lack the linear order which means
the corresponding estimates are more robust with respect to
uncertainties of the vector̂e in the direction perpendicular to
the plane spanned byG andn̂.

Now we study the second type of geometric constraint,
namely,ê ⊥ G where the normal gradient estimator is given
by

G̃n = −
ê ·Gp

ê · n̂
. (C24)

As before we distinguish two types ofê-variations around
the exact vector which now resides somewhere in the (x,y)-
plane:

ê◦ = cosφ x̂ +sinφ ŷ . (C25)

Hereφ is the angle between̂e◦ and thex-axis.

(c) The unit vector̂e varies only in the (x,y)-plane:

ê = cos(φ+ε)x̂ +sin(φ+ε)ŷ , (C26)

i.e., in the plane perpendicular toG.

(d) The unit vector̂e varies only in thez-direction:

ê = cosεcosφ x̂ +cosεsinφ ŷ +sinε ẑ . (C27)

i.e., in the direction parallel toG.
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For the type of variation given in (c) we obtain

G̃n = Gn (C28)

thusν = 0, and there is no error in gradient magnitude or di-
rection associated with this kind of variation inê. This is not
surprising as the geometric constraintê ⊥ G is preserved if̂e
is varied only in the(x,y)-plane, i.e., in the plane perpendic-
ular to the true gradientG.

The configuration in (d) yields

G̃n ' Gn

(
1−

ε

sinγ cosγ cosφ

)
(C29)

thusν = −ε ·(sinγ cosγ cosφ)−1, and

δG

G
' −ε

cosγ

sinγ cosφ
, (C30)

sin1 ' ε
1

cosφ
. (C31)

As in case (a), the magnitude estimate is affected heavily by
uncertainties in̂e if γ is small, i.e., if the gradient is perpen-
dicular to the three-spacecraft plane, whereas to lowest order
in ε, the directional mismatch is not sensitive to the value of
γ . A new aspect is the orientation ofê with respect to the
normal directionn̂: uncertainties in̂e are amplified strongly
if cosφ ≈ 0, i.e., if ê ⊥ n̂ or, equivalently, ifê is in the three-
spacecraft plane.

Finally, we look at the dynamical constraint which is based
on the assumption that the time derivative d/dt vanishes in a
frame of reference moving with the velocityU . A known
residual time derivative d/dt 6= 0 could easily be taken into
account in Eq. (36) by replacing∂/∂t → ∂/∂t −d/dt . There-
fore, to simplify the error analysis, the uncertainty in dg/dt

can be combined with the error of∂g/∂t if we interpret
δ[∂g/∂t] as the deviation of the estimated∂g/∂t from the
true (∂g/∂t −dg/dt). The resulting uncertainty in the nor-
mal derivative estimate can be written as

δ

[
∂g

∂n

]
= −

1

Un

δ

[
∂g

∂t

]
. (C32)

The error is amplified through the term 1/Un which assumes
large values ifUn is small.
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