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Abstract. Aliasing is a general problem in the analysis of
any measurements that make sampling at discrete points.
Sampling in the spatial domain results in a periodic pattern
of spectra in the wave vector domain. This effect is called
spatial aliasing, and it is of particular importance for multi-
spacecraft measurements in space. We first present the theo-
retical background of aliasing problems in the frequency do-
main and generalize it to the wave vector domain, and then
present model calculations of spatial aliasing. The model cal-
culations are performed for various configurations of the re-
ciprocal vectors and energy spectra or distribution that are
placed at different positions in the wave vector domain, and
exhibit two effects on aliasing. One is weak aliasing, in
which the true spectrum is distorted because of non-uniform
aliasing contributions in the Brillouin zone. It is demon-
strated that the energy distribution becomes elongated in the
shortest reciprocal lattice vector direction in the wave vec-
tor domain. The other effect is strong aliasing, in which
aliases have a significant contribution in the Brillouin zone
and the energy distribution shows a false peak. These results
give a caveat in multi-spacecraft data analysis in that spectral
anisotropy obtained by a measurement has in general two ori-
gins: (1) natural and physical origins like anisotropy imposed
by a mean magnetic field or a flow direction; and (2) aliasing
effects that are imposed by the configuration of the measure-
ment array (or the set of reciprocal vectors). This manuscript
also discusses a possible method to estimate aliasing contri-
butions in the Brillouin zone based on the measured spectrum
and to correct the spectra for aliasing.
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1 Introduction

Recent progress in our understanding of near-Earth space
environments such as the solar wind or the Earth’s mag-
netosphere benefits greatly from multi-spacecraft missions
that enable us to distinguish between temporal and spatial
variations in the observations, and allows us to determine
three-dimensional structures in space. The Cluster mission
(Escoubet et al., 2001; Balogh et al., 2001) performs four-
point measurements with its tetrahedron configuration and
the THEMIS mission (Angelopoulos, 2008; Auster et al.,
2008) performs five point measurements. There exist a num-
ber of data analysis methods that are developed particularly
for such multi-point measurements, parts of which are sum-
marized in Glassmeier et al.(1995) and Paschmann and
Daly (1998, 2008). One of the unique and powerful anal-
ysis methods in studying dynamics of space plasma is to
determine the energy distribution directly in the wave vec-
tor domain, referred to as the wave telescope technique (or
k-filtering) (Neubauer and Glassmeier, 1990; Pinçon and
Lefeuvre, 1991; Motschmann et al., 1996; Glassmeier et al.,
2001). This technique is based on the minimum variance
method ofCapon(1969) estimating the energy spectrum or
distribution in the frequency and wave vector domain using
only several points of measurements.

Energy distributions for fluctuating magnetic field in the
wave vector domain have been determined using Cluster
and have been presented by several authors such asGlass-
meier et al.(2001); Narita et al. (2006, 2007); Sahraoui
et al. (2006). Dispersion relations of plasma normal modes
can also be determined experimentally from the Cluster data
(Narita et al., 2003; Narita and Glassmeier, 2005; Vogt,
2008). Figure 1 displays an example of the energy spec-
trum in the wave vector domain, observed by Cluster space-
craft in the shock-upstream region. The fluctuation energy
is anisotropically distributed between two directions: away
from the shock toward the sun (E+ in the spectrum), and
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Fig. 1. Example of anisotropic energy spectrum as a function of
the wave number parallel to the mean magnetic field, taken from
the Cluster observation in the shock-upstream region afterNarita
et al.(2007). The solid curve represents the spectrum for magnetic
field fluctuations in the direction away from the bow shock (E+)
and the dotted curve represents that in the direction toward the bow
shock (E−).

from the sun toward the shock (E−). While the larger energy
contribution inE+ can be physically interpreted as the ex-
citation of the waves propagating away from the bow shock,
one may also ask how important the aliasing effect is in eval-
uating the energy spectrum.

It is worthwhile to note that spatial structures can not al-
ways be resolved and identified in the multi-point measure-
ments. For example, one can not identify the spatial struc-
ture when its characteristic scale (e.g. wavelength) is smaller
than the sensor separation distance. In that case the measure-
ment makes under-sampling and the result is subject to alias-
ing problem.Neubauer and Glassmeier(1990) presented the
concept of spatial aliasing under multi-point measurements
in space, and measurements using the four Cluster spacecraft
indeed suggest the existence of spatial aliasing (Sahraoui
et al., 2003; Tjulin et al., 2005).

The configuration of the sensor array can be represented
as a set of reciprocal vectors in the wave vector domain, and
the analysis in the wave vector domain can be performed
within the first Brillouin zone or Wigner-Seitz cell (hereafter
referred to as the Brillouin zone or simply the cell) spanned
by the half-length reciprocal vectors (Kittel, 1996). Beyond
the Brillouin zone the determined spatial structures do not
reflect the true structure any more, instead its aliases appears
periodically in the wave vector domain.

Aliasing is a general problem not only in science but also
in engineering so far as discrete measurements sample a con-
tinuous function. The goals of this paper are (1) to general-
ize aliasing theory from the frequency domain to the wave
vector domain, and (2) demonstrate various cases of spatial
aliasing in the wave vector domain. It is concluded that the

configuration of sensor arrays may significantly influence the
measurement of spatial structures due to the aliasing problem
even though the analysis is limited within the Brillouin zone.
We also discuss a remedy to correct for the aliasing part in
the measurement.

2 Theoretical background

2.1 Sampling formulas in time domain

Sampling formulas, their mathematical foundation, and the
aliasing problem have been developed and studied in a num-
ber of papers, not only in the celebrated work ofNyquist
(1928) and Shannon(1949) but also in recent papers such
asUnser(2000) andKirchner(2005). We briefly discuss the
relation between sampling in the time domain and the associ-
ated aliasing in the frequency domain. This is essentially an
aliasing problem in a one-dimensional system and provides
a basis for understanding the aliasing in the wave vector do-
main.

Spectral aliasing in some under-sampled time series can be
understood in the following fashion. Consider a continuous
function g(t) in the time domain and its Fourier transform
G(f ) in the frequency domain. The functiong(t) is mea-
sured at discrete points, yielding our sampled signalh(t)

h(t) = g(t)III (t), (1)

where III(t) is called the comb distribution (Bracewell, 2000)
which represents an array of delta functions

III (t) =

∞∑
m=−∞

δ(f0t −m). (2)

Here f0 denotes the sampling ratef0 = 1/1t . The comb
distribution is a periodic function and can be expressed as a
Fourier series

III (t) =

∞∑
n=−∞

cne
i2πnf0t . (3)

Furthermore, it turns out that the Fourier coefficientscn are
all unity:

cn =
1

1t

∫ 1t
2

−
1t
2

δ(f0t)e
−i2πnf0tdt = 1, (4)

where one of the properties of the delta function,δ(f0t) =

δ(t)/f0 was used. The Fourier transform of the sampled sig-
nalh(t) is obtained by combining Eqs. (1), (3), and (4).

H(f ) =

∫
∞

−∞

h(t)e−i2πf0tdt (5)

=

∫
∞

−∞

g(t)III (t)e−i2πf0tdt (6)

=

∞∑
n=−∞

∫
∞

−∞

g(t)e−i2π(f −nf0)tdt (7)
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=

∞∑
n=−∞

G(f −nf0). (8)

In the last equation one sees the essence of the aliasing prob-
lem, that is the Fourier transform of the sampled signal con-
tains not only the Fourier transform of the original func-
tion G(f ) but also contributions from then-th harmonics of
the sampling frequencyG(f −nf0). The power spectrum is
proportional to the expectation value of the squared Fourier
transform. On the assumption that the phase between any
two frequency components is random, the power spectrum is
also a sum of the respective alias component,

P(f ) = E
[
|H(f )|2

]
=

∞∑
n=−∞

|G(f −nf0)|
2, (9)

where the symbolE[···] denotes the operation of the expec-
tation value. Figure2 displays the periodic pattern of power
spectrum. In this example the contribution from aliases is
significant and the true spectrum (top panel) becomes en-
hanced and distorted in the aliased spectrum (bottom panel)
that takes account of the true spectrum and its alias contribu-
tions, even within the Nyquist frequencyfN = f0/2.

2.2 Sampling formulas in spatial domain

The above sampling formulas can be generalized to the spa-
tial domain. Consider now a continuous function of vector in
real space,g(r), and its Fourier transform in the wave vec-
tor domain,G(k). The sampled signal is a filtering of the
functiong(r) by the set of the delta functions III(r), namely

h(r) = g(r)III (r). (10)

The comb distribution in the spatial domain is expressed as

III (r) =

∞∑
m3=−∞

∞∑
m2=−∞

∞∑
m1=−∞

δ

(
k3 · r
2π

−m3

)
δ

(
k2 · r
2π

−m2

)
δ

(
k1 · r
2π

−m1

)
(11)

=

∞∑
m3=−∞

δ

(
k3 · r
2π

−m3

) ∞∑
m2=−∞

δ

(
k2 · r
2π

−m2

)
∞∑

m1=−∞

δ

(
k1 · r
2π

−m1

)
(12)

or as a Fourier series

III (r) =

∞∑
n3=−∞

ein3k3·r
∞∑

n2=−∞

ein2k2·r
∞∑

n1=−∞

ein1k1·r (13)

=

∞∑
n3=−∞

∞∑
n2=−∞

∞∑
n1=−∞

ei(n1k1+n2k2+n3k3)·r , (14)

wherek1, k2, andk3 are the reciprocal vectors of the primi-
tive vectors of the sensor array (or spacecraft separation vec-
tors)r1, r2, andr3. Equation (12) is a grouping of the sums

Fig. 2. Illustration of aliasing in the frequency domain. A true
spectrum (top panel) appears periodically as aliases in the frequency
domain with the frequency shiftnf0 (middle panel). This results in
distortion of the original spectrum (bottom panel) even within the
Nyquist frequencyfN (shaded area).

in Eq. (11) with respect tom1, m2, andm3. Equation (13) is
obtained by Fourier series expansion of the three delta func-
tions in Eq. (12) (cf. Eqs. 2–4). Equation (14) combines three
exponential functions in Eq. (13) together.

The reciprocal vectors are obtained by the primitive vec-
torsr1, r2, andr3 as

k1 = 2π
r2×r3

r1 ·(r2×r3)
(15)

k2 = 2π
r3×r1

r2 ·(r3×r1)
(16)

k3 = 2π
r1×r2

r3 ·(r1×r2)
, (17)

satisfying the orthogonality condition:

ki ·rj = 2πδij , (18)

whereδij represents Kronecker’s delta. The set of these three
reciprocal vectors used in this study are the canonical choice
in solid state physics. An alternative set of reciprocal vectors
is also in use (Chanteur, 1998). The Fourier transform of
h(r) is given as

H(k) =

∫
h(r)e−ik·rd3r (19)
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Fig. 3. Aliasing in the wave vector domain. The shaded disks rep-
resent the energy distribution with its aliases. The hatched area with
dash-lines is the first Brillouin zone (Wigner-Seitz cell) spanned by
the half-length reciprocal vectors.

=

∑
n1,n2,n3

∫
g(r)e−i(k−n1k1−n2k2−n3k3)·rd3r (20)

=

∑
n1,n2,n3

G(k−n1k1−n2k2−n3k3) (21)

Again on the assumption of random phase, one obtains the
spectrum in the wave vector domain as

P(k) = E
[
|H(k)|2

]
(22)

=

∑
n1,n2,n3

|G(k−n1k1−n2k2−n3k3)|
2 (23)

Therefore the spatial sampling results in a periodic struc-
ture of the spectrum in the wave vector domain, containing
both the true spectrum|G(k)|2 and its aliases|G(k−n1k1−

n2k2−n3k3)|
2. Figure3 displays an illustration of the spec-

trum with aliasing in the wave vector domain.
As Neubauer and Glassmeier(1990) state, the periodic

structure in the wave vector domain is avoided if we restrict
the analysis to a small subvolume of the wave vector space.
For example, one can use a sphere in the wave vector do-
main with the radius equal to the minimum reciprocal vector
length, or one can use a right square or cube with this length.
It is important that the analysis should be limited to within
the Brillouin zone, otherwise the spectrum exhibits a peri-
odic alias pattern in the wave vector domain. However, we
stress here that the original spectrum may be enhanced and
distorted as shown in Fig.2 even if we restrict ourselves to
the Brillouin zone.

3 Aliasing in the wave vector domain

3.1 An example

Figure 4 displays an example of aliasing in a two-
dimensional wave vector domain. The data (the true spec-
trum) are generated numerically and the associated aliasing
effect is studied. The wave vector domain is spanned by
the half-length reciprocal vectorsk1 = (0.02,0.00) km−1 and
k2 = (0.00,0.01) km−1. The true spectrum (left panel) repre-
sents an isotropic energy distribution, centered almost at the
origin (kx,ky) = (0.0001,0.000) km−1 and decaying toward
larger wave numbers by a power-lawP(|k|) ∝ k−α with the
index α = 5/3. Contribution from the nearest neighboring
aliases with(n1,n2) = (±1,±1), (0,±1), (±1,0) in the first
Brillouin zone is displayed in the middle panel. A large part
of the alias contribution comes from the alias(n1,n2) = (0,1)

and (0,−1), since the magnitude of the second reciprocal
vectork2 is smaller than that of the first one and the alias
partnersG(k −n1k1 −n2k2) are spaced in the wave vector
domain more closely to each other in the direction tok2. The
right panel in Fig.4 displays the aliased spectrum which is
a sum of the true spectrum (left panel) and the aliased part
(middle panel). The aliased spectrum is what we expect to
obtain from multi-point measurements. It is interesting that
the aliased spectrum does not present an isotropic distribu-
tion any more, but is elongated in the direction tok2 which
is the shortest lattice vector direction in the reciprocal space.
It is clear at this stage that the elongation or anisotropy in the
energy spectrum or distribution is imposed by the the con-
figuration of the reciprocal vectors, especially how close or
different the magnitudes of the vectors|k1| and|k2| are from
each other. Another effect is that the spectrum is enhanced
at various positions in the Brillouin zone. On the other hand,
the isotropy in the spectrum is only slightly broken around
the peak. The reason for this is that the spectral energy is
larger near the peak and furthermore it is at enough distance
from the border of the Brillouin zone such that the contribu-
tion from the aliases is the smallest there.

Distortion of the spectrum due to aliasing is investigated
using two parameters: an enhancement parameterE and an
anisotropy parameterA. The enhancement parameter is de-
fined as a ratio of the aliased spectrumPals to the true spec-
trum Ptrue as a function of wave number from the spectral
peak in a given direction,

E(k) =
Pals(k)

Ptrue(k)
. (24)

We choose the maximum and the minimum enhancement
direction in this study. Figure5 displays the enhancement
parameter in the example case in these two directions (de-
noted as “max” and “min” in the aliased spectrum). In
the maximum enhancement direction this quantity increases
from E=1.00 at the spectral peak (which isk=0.0000 km−1

in Fig. 5) to E=2.51 at the largest deviation wave number
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Fig. 4. True spectrum (left), aliased part from the neighboring cells (middle), and aliased spectrum that is a sum of the true spectrum and its
aliases (right).

Table 1. Enhancement parameter and anisotropy parameter in the
example case.

k (km−1) 0.0000 0.0020 0.0040

max(E) 1.00 1.26 1.99
min(E) 1.00 1.25 1.77

A(%) 0 2 12

k=0.0048 km−1. In the minimum enhancement direction it
also increases but more moderately than in the maximum di-
rection,E=1.00 at the spectral peak,E=2.02 at 0.0048 km−1,
andE=4.34 at 0.095 km−1. Some more values of the en-
hancement parameter are listed in Table 1 and plotted in
Fig. 5.

We then investigate the aliased spectrum with the
anisotropy parameter that measures a relative difference in
the aliased spectrum between the maximum and the mini-
mum enhancement directions:

A =
max(Pals)−min(Pals)

min(Pals)
. (25)

Alternatively one may use the enhancement parameterE =

Pals/Ptrue instead of the aliased spectrumPals if the true spec-
trum is isotropic, i.e.,Ptrue is independent from the choice of
direction from the spectral peak and only a function of the
magnitude of the wave number. We evaluate the anisotropy
parameter at two different wave numbers (Table 1 bottom).
Anisotropy increases as the wave number becomes larger, up
to A=24% at the largest wave number available in the max-
imum enhancement direction, which isk=0.0048 km−1 (at
the right edge of the “max” curve in Fig.5).

Fig. 5. Enhancement parameter (ratio of aliased to true spectrum)
in the maximum (dotted line) and minimum distortion directions
(solid line) for the spectrum in Fig.4. The x-axis measures distance
from the peak of the spectrum in the wave number domain.

3.2 Effect of spectral peak positions and reciprocal
vectors

Here we study how aliasing affects the true spectrum under
different conditions: (case 1) the peak position is shifted in
the true spectrum; (case 2) the lengths of the reciprocal vec-
tors are changed for the rectangular Brillouin zone; (case 3)
the shape of the Brillouin zone is changed from a rectangular
to a diamond-shaped cell; and (case 4) the peak position is
shifted in the diamond-shaped cell.

Case 1: Peak position

The effect of the peak position in the Brillouin zone is first
investigated. Figure6exhibits three cases of the aliased spec-
trum for the same Brillouin zone configuration as the ex-
ample case in Fig.4. The true spectrum is again the same
isotropic, power-law distribution but its peak is displaced to
different positions in the Brillouin zone, near the origin at
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Fig. 6. Aliased spectra in the wave vector domain including both the true and the aliases spectrum for different peak positions of the true
spectrum shifted in the Brillouin zone. Peak near the origin (left), at an intermediate distance to the border of the Brillouin zone (middle),
near the border (right). Reciprocal vectors are orthogonal to each other and the Brillouin zone forms a rectangular cell.

kc = (0.0015,0.0015) km−1 in case (1a); at an intermediate
distance from the origin and the border of the Brillouin zone,
(0.0030,0.0030) km−1, in case (1b); and almost at the border
at (0.0045,0.0045) km−1 in case (1c).

In all three cases the distribution can be divided into
two parts: the distribution is isotropic near the peak, and
anisotropic in its surrounding in the sense that the contour
lines are elongated and aligned with the shortest lattice vec-
tor direction, parallel tok2. In case (1a), the distribution
exhibits a distortion in the lower half plane in the Bril-
louin zone, a neck-shaped contour line, due to the alias from
(n1,n2) = (0,−1). In case (1b), the peak is shifted closer
to the upper border of the Brillouin zone. The top part of
the true spectrum is not measurable any more as it is beyond
the Brillouin zone. Instead its alias(n1,n2) = (0,−1) enters
the Brillouin zone. This part of the spectrum corresponds to
the missing part of the spectrum at the top of the Brillouin
zone. In case (1c), the peak is again shifted even closer to the
border of the Brillouin zone. The distribution exhibits now
two peaks, one at the top of the cell (which reflects the orig-
inal spectrum) and the other at the bottom which is the alias
(n1,n2) = (0,−1). The transition from the case (1a) to (1c)
suggests that the true spectrum is distorted and elongated un-
der a moderate alias contribution, while a false peak appears
from the opposite side of the Brillouin zone under strong
aliasing. The elongation is roughly aligned with the short-
est lattice vector direction, and the distortion of the spectrum
is largest where the aliasing contribution is largest in the Bril-
louin zone.

Case 2: Rectangular cell shape

Not only the peak position but also the shape of the Bril-
louin zone is important in the spatial aliasing. Figure7
compares three different rectangular Brillouin zones and the
aliased spectra, while the true spectrum is the same in case

case, centered atkc = (0.0005,0.0005) km−1 with the same
isotropic, power law distribution as the former examples.
The case (2a) exhibits the Brillouin zone spanned by the
half-length of reciprocal vectorsk1 = (0.020,0.000) km−1

andk2 = (0.000,0.016) km−1, where the magnitude of the
two reciprocal vector is not much different from each other.
The measured distribution is almost isotropic. The distor-
tion or elongation of the spectrum can be identified only near
the border of the Brillouin zone. The case (2b) exhibits the
second reciprocal vector with half-length of the first one,
k1 = (0.020,0.000) km−1 and k2 = (0.000,0.010) km−1.
Anisotropy in the aliased spectrum becomes clearer and the
distribution is elongated to the shortest lattice vector, in the
direction tok2. The isotropic distribution can also be identi-
fied but its area in the Brillouin zone is smaller than case (2a).
The second reciprocal vector is more shortened in case (2c),
with k1 = (0.020,0.000) km−1 andk2 = (0.000,0.04) km−1.
The anisotropy is even stronger in this case and the contour
lines are almost aligned with thek2 direction. The isotropic
distribution can be identified only near the peak.

Case 3: Diamond-shaped cell

Reciprocal vectors are not always mutually orthogonal but
have in general various angles. In such a case the Brillouin
zone forms a diamond-shaped cell in the wave vector do-
main. Figure8 compares the Brillouin zones with three dif-
ferent angles of the reciprocal vectors: 50◦ (3a), 30◦ (3b),
and 20◦ (3c). Again, the true spectrum is the same as the rect-
angular cell case in Fig.7, isotropic, power law distribution
with α=5/3 centered atkc = (0.0005,0.0005) km−1. The re-
ciprocal vectors in case (3a)–(3c) have all the same magni-
tude. In case (3a) the Brillouin zone is spanned by the half-
length of the reciprocal vectorsk1 = (0.0147,0.0053) km−1

an k2 = (0.0053,0.0147) km−1 with the mutual angle 50◦.
The distribution is only moderately distorted and almost
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Fig. 7. Aliased spectra for different rectangular cell shapes of the Brillouin zone, close to right square (left), moderately narrow in the
vertical reciprocal vector length (middle), even narrower in that length (right). The dotted lines are parallel to the reciprocal vectors.

Fig. 8. Aliased spectra for different diamond-shaped Brillouin zones, with the angle between the two reciprocal vectors 50◦ (left), 30◦

(middle), and 20◦ (right).

isotropic except for the region near the corner of the Brillouin
zone. The distribution is weakly elongated in the direction
to the left-top and right-bottom corners which represents the
shortest lattice vector direction,−k1 +k2 (toward the left-
top corner of the cell) or−k1+k2 (toward the right-bottom
corner). Case (3b) exhibits the mutual angle 30◦ between
the two reciprocal vectors,k1 = (0.0127,0.0073) km−1 an
k2 = (0.0073,0.0127) km−1. The area of the isotropic distri-
bution becomes smaller and the contour line are more aligned
with the shortest lattice vector direction. Aliasing contribu-
tion can also be found near the right-top and the left-bottom
corners (in the direction to longest lattice vector directions,
k1 + k2) and the spectral energy increases near these cor-
ners. Case (3c) exhibits even narrower angle, 20◦ with k1 =

(0.0118,0.0082) km−1 and k2 = (0.0082,0.0118) km−1.
The isotropic distribution area is again small and the distribu-
tion is overall anisotropic, though the elongation of the dis-
tribution is not very much different from case (3b). At the
right-top and the left-bottom corners the distribution exhibits

an enhanced contribution from the aliases such that the spec-
tral energy first decreases and then increases near the corner
of the cell in the longest lattice vector directions.

Case 4: Peak position in diamond-shaped cell

Peak position of the true spectrum is shifted in the diamond-
shaped Brillouin zone with the angle 30◦, the same con-
figuration as Fig. 8 middle panel. The shift direc-
tion is toward the upper border of the cell. Figure9
compares the peak position shifted to the upper side of
the Brillouin zone, fromkc = (0.0005,0.0010) km−1 in
case (4a), to(0.0005,0.0020) km−1 in case (4b), and then
to (0.0005,0.0030) km−1 in case (4c). In case (4a) the
isotropic distribution can be seen only near the peak, oth-
erwise the overall distribution is moderately anisotropic and
elongated to the shortest lattice vector direction (−k1+k2).
In case (4b) the distribution has again a small isotropic region
near the peak and an elongated structure in its surrounding.
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Fig. 9. Aliased spectra for different peak positions in a diamond-shaped Brillouin zone. The peak is shifted to the top side of the Brillouin
zone. Peak close to the origin in the cell (left), between the origin and the border of the cell (middle), and near the border (right).

Fig. 10. Enhancement parameter in the maximum (dotted lines) and the minimum distortion directions (solid lines) for the twelve spectra
presented in Figs.6 to 9.

There is an asymmetry in the distribution between the right-
top and left-bottom corners. The distorted distribution at the
left-bottom corner comes from the alias(n1,n2) = (0,−1).
In case (4c) this alias enters more in the Brillouin zone and
two populations are identified in the distribution, the origi-
nal peak at the top of the cell and its alias at the left-bottom
corner. The distribution is isotropic near these peaks, oth-
erwise the contour lines are elongated to the left-top corner
direction.

3.3 Quantitative analysis

The enhancement parameterE and the anisotropy parame-
ter A are determined for the twelve spectra (1a) to (4c) to

quantify the effect of aliasing. The enhancement parameter
in each case is summarized in Table 2 at three distinct wave
numbers from the spectral peak, and is also plotted in Fig.10.

Case 1

All the three spectra (1a), (1b), and (1c) exhibit very similar
enhancement: an increase fromE = 1.00 at the peak (k =

0.0000 km−1) to E = 3.85 atk = 0.0060 km−1 in the maxi-
mum direction, and also an increase from fromE = 1.00 to
E = 2.49 in the minimum direction. The anisotropy param-
eter increases fromA = 0% at 0.0020 km−1 to A = 12% at
0.0040 km−1 and toA = 55% at 0.0060 km−1 in the three
cases. The anisotropy parameter at 0.0060 km−1 is plotted
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Table 2. Enhancement parameter for the twelve spectra in Figs.6
to 9 in the maximum and the minimum distortion directions.

k (km−1) 0.002 0.004 0.006

case 1a max(E) 1.26 1.99 3.85
min(E) 1.25 1.77 2.49

1b max(E) 1.26 1.99 3.85
min(E) 1.25 1.77 2.49

1c max(E) 1.26 1.99 3.85
min(E) 1.25 1.77 2.49

case 2a max(E) 1.16 1.54 2.15
min(E) 1.16 1.53 2.06

2b max(E) 1.26 1.99 –
min(E) 1.25 1.77 2.49

2c max(E) 2.29 – –
min(E) 1.65 2.56 3.43

case 3a max(E) 1.24 1.82 2.74
min(E) 1.24 1.80 2.66

3b max(E) 1.43 – –
min(E) 1.38 2.18 3.35

3c max(E) 1.81 – –
min(E) 1.57 2.56 3.84

case 4a max(E) 1.43 – –
min(E) 1.38 2.18 3.35

4b max(E) 1.43 2.86 –
min(E) 1.38 2.18 3.35

4c max(E) 1.43 2.86 –
min(E) 1.38 2.18 3.35

in Fig. 11 (left top) as a function ofκ which is a relative
closeness of the spectral peak to the boundary of the Bril-
louin zone,

κ =

∣∣∣∣kc −kb

kb

∣∣∣∣. (26)

Herekb denotes the boundary wave vector of the Brillouin
zone closest from the spectral peakkc.

Case 2

In case (2a) the enhancement parameter almost degener-
ates between the maximum and the minimum directions,
and it increases fromE = 1.00 at the peak toE = 2.15
(maximum) andE = 2.06 (minimum) at the wave number
0.0060 km−1. Degenerated enhancement curves are a sign
of almost isotropic distribution, and in fact the anisotropy
parameter isA = 4% at 0.0060 km−1. In case (2b) the max-
imum enhancement increases fromE = 1.00 at the spectral
peak toE = 2.7 at 0.0050 km−1. The largest wave num-
ber in the maximum direction is diminished, reflecting the
fact that the second reciprocal vectork2 is shorter than that
in case (2a). The minimum enhancement in (2b) increases
from E = 1.00 at the peak toE = 2.49 at 0.0060 km−1.
In case (2c) the wave number range for the maximum en-
hancement is even shorter, and varies fromE = 1.00 at the

Fig. 11. Anisotropy parameter as a function of the closenessκ of
the spectral peak to the boundary of the Brillouin zone measured at
k = 0.0060 km−1 from the spectral peak (case 1), the ratio of the
two reciprocal vector magnitudes atk = 0.0024 km−1 (case 2), the
angle between the two reciprocal vectors atk = 0.0022 km−1 (case
3), and the peak-boundary closenessκ atk = 0.0036 km−1 (case 4).

peak toE = 3.33 at 0.0024 km−1, whereas the minimum en-
hancement varies fromE = 1.00 at the peak toE = 1.84
at 0.0024 km−1 and to E = 3.43 at 0.0060 km−1. The
anisotropy parameter measured atk = 0.0020 km−1 is A =

0% (2a), 1% (2b), and 38% (2c). The anisotropy parame-
ter increases more rapidly from (2a) to (2c) when measured
at a larger wave number. Figure11 displays the anisotropy
parameter 4% (2a) to 29% (2b) and to 81% (2c) measured
at k = 0.0024 km−1 (the maximum wave number available
in case (2c)) as a function of the ratio of the two reciprocal
vectors|k2/k1|. Anisotropy becomes stronger for a shorter
second reciprocal vectork2.

Case 3

In case (3a) the enhancement again almost degenerates
and varies from E = 1.00 at the spectral peakk =

0.0000 km−1 to E = 1.24 (both maximum and minimum) at
k = 0.0020 km−1, and toE = 2.74 (maximum) andE = 2.66
(minimum) at k = 0.0060 km−1. In case (3b) the max-
imum enhancement varies fromE = 1.00 to E = 1.43 at
k = 0.0020 km−1, and toE = 2.24 atk = 0.0034 km−1. The
minimum enhancement varies fromE = 1.00 toE = 1.38 at
0.0020 km−1, and toE = 1.90 atk = 0.0034 km−1. In case
(3c) the maximum enhancement varies fromE = 1.00 toE =

1.81 at 0.0020 km−1. The minimum enhancement varies
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Fig. 12. Reconstruction of the spectrum by correcting the aliases. The spectrum is extrapolated for the neighboring cells in the wave
vector domain (left panel), and then the alias of the extrapolated parts are estimated in the Brillouin zone (middle panel). The corrected or
reconstructed spectrum is displayed in the right panel.

from E = 1.00 toE = 1.57 at 0.0020 km−1. The anisotropy
parameter increases moderately toward larger wave numbers
in each case. For example, case (3a) exhibits the anisotropy
parameterA = 0%, 1%, and to 3% atk = 0.0020 km−1,
0.0040 km−1, and 0.0060 km−1, respectively. Anisotropy in-
creases a little more when the angle between the two recipro-
cal vectors becomes narrower when measured at a fixed wave
number. The anisotropy parameter is plotted as a function
of the angle between the two reciprocal vectors in Fig.11.
Anisotropy increases for smaller angles of reciprocal vec-
tors, and it varies from 0% (3a) to 4% (3b) and to 18% (3c)
atk = 0.0022 km−1 (largest wave number available in (3c)).

Case 4

Wave number range in the maximum enhancement direc-
tion is short in (4a) and largest in (4c), but the three cases
do not exhibit any significant difference in the enhance-
ment parameter. The maximum enhancement parameter in-
creases fromE = 1.00 at the spectral peak toE = 1.43 at
k = 0.0020 km−1 in (4a), (4b), and (4c), and then toE = 2.86
at k = 0.0040 km−1 in (4b) and (4c). The enhancement pa-
rameter in the minimum direction increases fromE = 1.00
at the peak toE = 1.38 at k = 0.0020 km−1, E = 2.18 at
k = 0.0040 km−1, andE = 3.35 atk = 0.0060 km−1 in (4a)
to (4c). The anisotropy parameter isA = 4% in the three
cases when measured at= 0.0020 km−1. Figure11plots the
anisotropy parameter measured at= 0.0036 km−1 (largest
wave number available in (4a)) as a function ofκ, the close-
ness of the spectral peak to the boundary of the Brillouin
zone.

4 Correction of spatial aliasing

The procedure of correcting the spectrum for aliasing effect
is mathematically to estimate in Eq. (9) or (23) the func-
tion G for given functionP . There is, however, an uncer-
tainty in this inverted-procedure because the true spectrum
G must first be known to estimate the contribution of the
aliases. The correction can in principle be achieved by an
iteration scheme, that is to guess a true spectrum and then es-
timate aliased spectrum using the reciprocal vectors and the
assumed true spectrum. If the guessed spectrum yields an
aliased spectrum which is close to the measured one, then
the guessed spectrum can be used to correct the spectrum
by subtracting the aliased part from the measured spectrum.
If the guessed spectrum yields a different aliased spectrum
from the measured one, then we modify the guessed spec-
trum and repeat fitting procedure of the measured spectrum
until the guessed spectrum provides a reasonably close spec-
trum to the measurement.

One of the ways to guess a true spectrum is to investi-
gate the measured spectrum near its peak. As the quantita-
tive analysis suggests, aliasing effect is smallest in this re-
gion and the spectrum near the peak can potentially be used
for an extrapolation of the energy distribution in the area ex-
terior of the Brillouin zone. Aliased spectrum is then es-
timated based on the extrapolated spectrum, and the mea-
sured spectrum is corrected for the aliases. Figure12 em-
ploys this concept and applies the correction method to the
example case of Fig.4. The extrapolation is performed for
the core distribution in the neighboring cells of the Brillouin
zone (Fig.12 left), where the peak and the power-law in-
dex for the core distribution are determined in the measured
distribution by a fitting procedure. The extrapolated distribu-
tion is displaced to the neighboring reciprocal lattice points
(aliasing atn1 = ±1,n2 = ±1), and the total contribution
from these aliases is estimated in the Brillouin zone (Fig.12
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middle). The measured spectrum is then finally corrected for
the aliases (Fig.12 right).

Our quantitative analysis suggests that anisotropy induced
by spatial aliasing is small, say a few %, near the spec-
tral peak under 20% of the longer reciprocal vector mag-
nitude |k1|, except for a small ratio between the two re-
ciprocal vectors|k2/k1| < 0.5 or a small angle of the two
vectorsθ < 30◦. Wave telescope technique developed for
multi-spacecraft measurements (Pinçon and Lefeuvre, 1991;
Motschmann et al., 1996; Glassmeier et al., 2001) provides
the wave vector resolution better than 1% of the reciprocal
vector (see Fig.1 ranging over two orders of magnitude of
wave number) and such a wave analysis technique is capa-
ble of resolving the spectrum near its peak for correction
of aliasing effect. Of course, there are always uncertainties
in the correction procedure, in guessing the true spectrum,
for example, if it is isotropic or anisotropic, or power-law or
Gaussian curve, or to which order the aliases are taken into
account (how many alias partners to be counted).

5 Conclusions

Aliasing is a general problem whenever discrete measure-
ments sample continuous quantities. Periodic sampling of
a continuous function results in a periodic structure in the
Fourier domain. In this paper we have generalized alias-
ing in the frequency domain to the wave vector domain, and
shown that this spatial aliasing not only distorts the true spec-
trum but also enters directly in the Brillouin zone. Aliasing
in the wave vector domain has two effects, as investigated
numerically in Sect. 3. One is weak aliasing, which yields
anisotropy and asymmetry in the distribution. The distor-
tion represents primarily elongation of the distribution in the
shortest lattice vector direction. Weak aliasing is determined
by the configuration of the reciprocal vectors and also by the
peak position of the energy distribution in the Brillouin zone.
Another effect is strong aliasing, in which the spectral en-
ergy becomes dominated by the alias in some parts of the
Brillouin zone. The distribution exhibits several peaks (orig-
inal peak and aliased peak) in the case of strong aliasing. A
possible method for correcting the spectrum for aliasing is
also discussed. Using several assumptions the true spectrum
can be recovered from the measured spectrum by estimating
the aliasing contribution in the Brillouin zone. We conclude
our study with a conjecture that if the correction method is
applied to the wave telescope technique for real spacecraft
data, spatial structures of the solar wind, the bow shock, and
the magnetosphere will be more precisely determined.

Acknowledgements.This work was financially supported by Bun-
desministerium f̈ur Wirtschaft und Technologie and Deutsches Zen-
trum für Luft- und Raumfahrt, Germany, under contract 50 OC
0901. Discussions with M. L. Goldstein and F. Sahraoui are grate-
fully acknowledged.

Topical Editor I. A. Daglis thanks J. Vogt and another anony-
mous referee for their help in evaluating this paper.

References

Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–
34, 2008.

Auster, H.-U., Glassmeier, K.-H., Magnes, W., Aydogar, O.,
Baumjohann, W., Constantinescu, D., Fischer, D., Fornaçon, K.-
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Balogh, A., Carr, C. M., Acũna, M. H., Dunlop, M. W., Beek, T.
J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-
H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.:
The Cluster Magnetic Field Investigation: overview of in-flight
performance and initial results, Ann. Geophys., 19, 1207–1217,
2001,http://www.ann-geophys.net/19/1207/2001/.

Bracewell, B. J.: The Fourier Transform and its Applications, 3rd
ed. McGraw-Hill, Boston, 2000.

Capon, J.: High Resolution Frequency-Wavenumber Spectrum
Analysis, Proc. IEEE, 57, 1408–1418, 1969.

Chanteur, G.: Spatial interpolation for four spacecraft: Theory, in
Analysis Methods for Multi-Spacecraft Data, G. Paschmann and
P. Daly (eds.), ISSI Scientific Reports Series, ESA/ISSI, Vol. 1,
pp. 349–370, 1998.

Escoubet, C. P., Fehringer, M., and Goldstein, M.: The Cluster mis-
sion, Ann. Geophys., 19, 1197–1200, 2001,
http://www.ann-geophys.net/19/1197/2001/.

Glassmeier, K.-H., Motschmann, U., and Schmidt, R. (Eds.): Data
Analysis Tools, Proc. CLUSTER Workshop, ESA-SP 371, Euro-
pean Space Agency, Noordwijk, 1995.

Glassmeier, K.-H., Motschmann, U., Dunlop, M., Balogh, A.,
Acua, M. H., Carr, C., Musmann, G., Fornaçon, K.-H., Schweda,
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D. J., and Pinçon, J. L.: Wavelength and direction filtering by
magnetic measurements at satellite arrays: generalized minimum
variance analysis, J. Geophys. Res., 101, 4961–4965, 1996.

Narita, Y., Glassmeier, K.-H., Schäfer, S., Motschmann, U., Sauer,
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