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Abstract. We examine the variation in the radius of the
auroral oval, as measured from auroral images gathered by
the Imager for Magnetopause-to-Aurora Global Exploration
(IMAGE) spacecraft, in response to solar wind inputs mea-
sured by the Advanced Composition Explorer (ACE) space-
craft for the two year interval June 2000 to May 2002. Our
main finding is that the oval radius increases when the ring
current, as measured by the Sym-H index, is intensified dur-
ing geomagnetic storms. We discuss our findings within the
context of the expanding/contracting polar cap paradigm, in
terms of a modification of substorm onset conditions by the
magnetic perturbation associated with the ring current.

Keywords. Magnetospheric physics (Magnetospheric con-
figuration and dynamics; Solar wind-magnetosphere interac-
tions; Storms and substorms)

1 Introduction

Contractions and expansions of the Earth’s auroral ovals, like
geomagnetic activity, are governed by the conditions within
the solar wind. As early as the Carrington Storm of 1859 a
link between extreme solar activity and the appearance of au-
rora at unusually low latitudes was established (e.g.,Cliver,
2006). Subsequently,Feldstein and Starkov(1967) showed
that the changing latitudinal location and extent of the au-
roral oval could be parameterized by theQ index of geo-
magnetic activity, and several authors demonstrated a link
between the location of the oval and theDst index (e.g.,Aka-
sofu and Chapman, 1963; Meng, 1982, 1984; Yokoyama et
al., 1998). The interplanetary magnetic field (IMF), and es-
pecially its north-south component IMFBZ, is also known to
control the location of the aurora (e.g.,Holzworth and Meng,
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1975; Hardy et al., 1981; Nakai et al., 1986), though asDst

is itself related to IMFBZ (e.g.,Russell et al., 1974; Bur-
ton et al., 1975) there is still some debate over which ulti-
mately controls the oval radius. Moreover, significant varia-
tions in the location of the aurora take place during the sub-
storm cycle, caused by the waxing and waning of open mag-
netic flux in the magnetosphere driven by magnetic recon-
nection at the dayside magnetopause and in the magnetotail
as part of the Dungey cycle of magnetospheric convection
(e.g.,Dungey, 1961; Siscoe and Huang, 1985; Craven and
Frank, 1988; Cowley and Lockwood, 1992; Lockwood and
Cowley, 1992; Milan et al., 2003, 2007, 2008). The present
paper investigates the factors influencing the radius of the au-
roral oval, specifically the intensity of the ring current mea-
sured by the Sym-H index, the solar wind conditions, includ-
ing solar wind speed and density, the orientation of the IMF,
and the substorm cycle. We employ auroral observations
from two years of operation of the Imager for Magnetopause-
to-Aurora Global Exploration (IMAGE) spacecraft (Burch et
al., 2000), constituting a statistical study of the radius of the
auroral oval of unprecedented size.

The expanding/contracting polar cap paradigm (ECPC)
provides a powerful conceptual framework within which to
understand coupling between the solar wind and the magne-
tosphere, the excitation of ionospheric convection, and the
role of substorms in the convection cycle. However, while
the rate at which the polar cap grows in response to solar
wind conditions has been investigated (e.g.,Milan, 2004; Mi-
lan et al., 2007, 2008), the ECPC does not address the fac-
tors that determine how far the polar cap must expand before
nightside reconnection is excited, that is before substorm ex-
pansion phase onset occurs, and the polar cap contracts. In-
deed, it has been shown that the open magnetic flux con-
tent of the magnetosphere (polar cap size) at substorm onset
is variable (e.g.,Milan, 2004; Shukhtina et al., 2005; Milan
et al., 2007, 2008; Boakes et al., 2009). In some cases this
variability may be attributed to the triggering of substorms
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by features in the solar wind, such as solar wind pressure
steps (e.g.,Boudouridis et al., 2003; Milan et al., 2004) or
northward turnings of the IMF (e.g.,Caan et al., 1977; Ros-
toker, 1983), which occur irrespective of the polar cap size.
However, probably the majority of substorms occur sponta-
neously as the polar cap is expanding – that is, they display
a growth phase prior to onset – and the size at which this
occurs is variable (e.g.,Milan et al., 2007, 2008; Boakes et
al., 2009). Shukhtina et al.(2005) demonstrated a relation-
ship between open flux at substorm onset and the integrated
southward component of the interplanetary magnetic field
(IMF BZ) in the 30 min prior to onset. This is consistent
with the accumulation of open flux during the growth phase,
but this still does not prescribe the open flux level at which
onset will occur.

One possible controlling factor is the intensity of the ring
current.Milan et al.(2008) demonstrated a clear dependence
of the latitude of substorm onset on the Sym-H index, a mea-
sure of the magnetic perturbation associated with the ring
current, indicating that the auroral oval expands to low lati-
tudes when the ring current is enhanced. Before this,Meng
(1982, 1984) andYokoyama et al.(1998), amongst others,
showed a link between the latitude of the auroral oval and
Dst , another measure of ring current intensity. As suggested
by Nakai and Kamide(2003), and reiterated byMilan et al.
(2008), the enhanced ring current found during geomagnetic
storms could alter the magnetic field geometry of the near-
Earth magnetotail, delaying substorm onset until the open
flux content of the magnetosphere grows unusually large.
This would naturally explain the observation of aurora at low
latitudes during periods of intense geomagnetic disturbance,
particularly geomagnetic storms.

The ring current is enhanced during geomagnetic storms,
which are usually initiated by the impact of a solar wind pres-
sure step on the magnetosphere, triggering the injection of
plasma from the magnetotail into the inner magnetosphere.
Sym-H measures the perturbation of the north-south mag-
netic field component observed by a ring of magnetometers
located around the Earth’s magnetic equator. A positive per-
turbation, the initial phase, is observed as the magnetosphere
is compressed by the high-pressure solar wind. This is fol-
lowed by a rapid decrease in Sym-H to negative values as
the enhanced ring current produces a southward perturba-
tion in the field, the main phase. Values of Sym-H of−100
and−300 nT indicate moderate and strong storm conditions.
There is then a gradual reduction of Sym-H to quiet-time val-
ues as the ring current plasma precipitates into the ionosphere
over the next few days, the recovery phase. This paper inves-
tigates changes in the radius of the auroral oval as Sym-H
progresses through this characteristic variation.

2 Methodology

In this study we use observations of the Northern Hemisphere
UV aurora from the 2-year period June 2000 to May 2002
provided by the Far Ultraviolet (FUV) instrument (Mende
et al., 2000a,b) onboard the IMAGE satellite. FUV com-
prised the Wideband Imaging Camera (WIC) and the Spec-
trographic Imager (SI). WIC was sensitive to auroral emis-
sions over a broad range of the UV spectrum, the primary
component of which is associated with precipitating elec-
trons. The SI12 channel imaged Doppler-shifted Lyman-
α emission associated with precipitating protons. The or-
bital geometry and spin of the IMAGE spacecraft was such
that images were captured by each camera with a cadence
of 2 min for approximately 10 h of each 14-h orbit. Due to
contamination of the WIC observations by dayglow we dis-
carded WIC images from the months May, June, and July.
Our Northern Hemisphere dataset thus comprised close to
350 000 images from SI12 and 260 000 images from WIC.

Several methods are available for determining the open
magnetic flux content of the magnetosphere from the size
of the dim region enclosed by the auroral oval, the polar
cap (e.g.,Carbary et al., 2003; Hubert et al., 2006; Boakes
et al., 2008). These methods identify the open/closed field
line boundary (OCB) as the poleward edge of the luminosity
associated with the main auroral oval. However, these meth-
ods tend to fail when dayglow encroaches on the auroral oval
(especially a problem when the oval has expanded to low lat-
itudes), when the auroral oval is dim, or where the latitudinal
profile of auroral luminosity in any local time sector departs
significantly from expectations. Here, we have developed a
more robust method of determining the radius of the oval in
each available image. This method is approximate, and does
not provide a quantitative estimate of the open magnetic flux
threading the polar cap. However, it greatly increases the
proportion of images that can be included in our statistics.

We perform the fitting on SI12 images of the proton auro-
ral oval as these are affected less by dayglow. Three exam-
ples are shown in the upper panels of Fig. 1, including a con-
tracted oval, an oval of roughly typical size, and an expanded
oval. Inspection of many SI12 images shows that the auro-
ral oval can usually be approximated by a circle displaced
antisunwards from the geomagnetic pole, as discussed pre-
viously byHolzworth and Meng(1975), Meng et al.(1977),
and references therein. For the proton aurora we find that this
antisunwards offset is approximately 5◦ of latitude. There
also tends to be a displacement duskwards by approximately
2◦, as previously discussed byBoakes et al.(2008) andMi-
lan et al.(2009). Circles centred on this point,O, with radii
between 8◦ and 35◦, are tested. For each circle we determine
the SI12 brightness at 200 points equally spaced around its
circumference, from which we calculate the mean brightness
I ; points where image data is missing do not contribute to
the mean. The lower panels of Fig. 1 show howI varies as
a function of radius for each image. The best-fit oval radius
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λ is that at whichI maximizes. If fewer than 100 points
contributed to the calculation of the mean, i.e. only a very
partial image is available, the measurement is discarded. The
best-fit oval is shown as a black and white dashed circle su-
perimposed on each image. We use the maximum value of
I , hereafter referred to as overall SI12 brightness orIoval,
as a general measure of the intensity of the auroral oval. Al-
though rather crude, this method of deterimining the radius is
surprisingly robust. As shown in the middle panel of Fig. 1,
a reasonable fit is provided even in the presence of dayglow,
in the case of only partial images, and for images in which
instrumental artefacts are present (in this case in the bottom
right hand corner of the panel).

As well as the overall brightness in each SI12 image,Ioval,
we determine the maximum brightness on the nightside of
each image,ISI12, which we also call the peak SI12 bright-
ness; the position of this peak is indicated in the three ex-
amples of Fig. 1, indicating that occasionally this can cor-
respond to artefacts. In addition we determine the maxi-
mum nightside brightness in each corresponding WIC image,
where WIC images are available,IWIC; the overall bright-
ness in WIC images is not used due to the contribution of
dayglow. Ioval represents the overall brightness of the oval,
whereasISI12 andIWIC indicate the brightness of nightside
auroral features such as the substorm auroral bulge.

Figure 2 shows the occurrence distribution of oval radius
λ, determined from over 308 000 images. The overall dis-
tribution (solid curve) peaks at an oval radius of 19◦, falling
at higher and lower radii. As will be discussed below, at the
extremes of the distribution, especially at the highest radii,
some points are probably associated with bad fits to the au-
roral oval. These appear to occur most often when the auroral
oval is extremely dim and the maximum inI corresponds to
the dayglow.

The inset panel of Fig. 2 shows a comparison between oval
radius and the simultaneous open magnetic flux content of
the polar cap,FPC, for a subset of the 2-year dataset. The
method ofBoakes et al.(2008, 2009) has been applied to
those WIC images which were not contaminated by dayglow
(i.e. images from dates near the winter solstices) to calcu-
late FPC. This method identifies the poleward boundary of
the auroral emission in all local time sectors, and assumes
that this is a proxy for the open/closed field line boundary
(OCB). FPC is then calculated by integrating the magnetic
flux through the polar cap, assuming that the field is dipo-
lar. The occurrence distribution of Fig. 2b contains approx-
imately 11 500 points, many fewer than our full oval radius
dataset, and comparisons betweenFPC andλ are only pos-
sible for λ < 26◦, otherwise the dayside portion of the oval
encroaches into the dayglow and the OCB connot be identi-
fied. However, even this limited comparison shows a clear
relationship betweenλ andFPC. Superimposed on Fig. 2b
is the magnetic flux contained in a circle centred onO as a
function of radiusλ (full line). The polar cap is obviously
smaller than our best-fit radius, so the dashed line shows the

variation ofFPC as a function of oval radius, assuming that
the OCB is 5◦ of latitude poleward of the best-fit circle at all
local times. This results in a good fit to the observations, not
only giving us confidence that the oval radius is a proxy for
the open flux content of the magnetosphere, but also allow-
ing an extrapolation of the relationship betweenλ andFPC to
larger oval radii. Hence, we find that oval radii of 15◦, 20◦,
25◦ and 30◦ correspond approximately to open flux values of
0.25, 0.5, 1.0, and 1.4 GWb.

For each FUV image we determine the concurrent value
of the Sym-H index. We also employ observations from the
Advanced Composition Explorer (ACE) spacecraft (Stone et
al., 1998) to determine the upstream solar wind conditions.
Solar wind velocity (VSW), density (NSW), and ram pres-
sure (PSW) were provided by the Solar Wind Electron, Pro-
ton and Alpha Monitor (SWEPAM) instrument (McComas
et al., 1998) and the GSM components of the IMF (BX, BY ,
BZ) by the MAG instrument (Smith et al., 1998). ACE ob-
servations were lagged to the magnetopause by considering
the solar wind velocity. From these we estimate the dayside
reconnection rate8D as (Milan et al., 2008):

8D = 2.75REVSW

√
B2

Y +B2
Z sin2 θ

2

whereθ is the IMF clock angle andRE=6371 km. The ob-
servations will be described in the next section.

3 Observations

We first discuss the variation of oval radius and Sym-H dur-
ing three example intervals, each 11 days in duration, pre-
sented in Figs. 3, 4, and 5. In each figure we present oval
radiusλ, oval brightnessIoval, Sym-H, IMF BZ, VSW and
NSW. Data-gaps in the two upper panels are caused by the
orbit of the IMAGE spacecraft. Note the presence of spo-
radic patches of high oval radius data points, especially in
Fig. 3; these are caused by the bad fits to the auroral oval
described above. We now describe Fig. 3 in detail.

Three main enhancements in solar wind speed and solar
wind density, which will each lead to a significant step in the
solar wind dynamic pressure, are seen during this interval,
marked by vertical dotted lines for clarity and labelledA, B,
andC. A andC were followed by periods of strongly south-
ward IMF, whereasB was associated with mainly northward
IMF. The impact on the magnetosphere ofA andC is clearly
apparent in Sym-H, which indicates the occurrence of two
geomagnetic storms. The first storm (A) had clear initial,
main and recovery phases. Sym-H indicates that the storm
re-intensified approximately a day into the main phase, as-
sociated with a period of strongly southward IMF. Initial,
main, and recovery phases are also apparent in the second
storm (C). The second solar wind pressure enhancement (B)
produced a storm initial phase, but the subsequent negative
excursion in Sym-H was very weak, and was delayed by 12 h

www.ann-geophys.net/27/2913/2009/ Ann. Geophys., 27, 2913–2924, 2009



2916 S. E. Milan et al.: Radius of the auroral oval

Fig. 1. Three example SI12 auroral images, demonstrating the fitting technique employed to determine the radius of the auroral oval. Lower
panels show the variation of integrated brightness as a function of radius. The best-fit oval is shown by a black and white dashed circle in
each panel. The peak of the nightside brightness is shown by small circles.

after the arrivel of the pressure step, only appearing once the
IMF turned southward, albeit weakly. The upper two panels
show that each pressure step was associated with an increase
in the radius of the auroral oval, most significantly forA and
C, associated with the clearest storm signatures in Sym-H.
In each case, the variation in oval radius closely mirrored the
variation in Sym-H. In the case ofB, the increase in oval
radius was delayed until the southward turning of the IMF,
again mirroring the behaviour of Sym-H.A andC were also
associated with very significant enhancements in the SI12 au-
roral brightness, though the duration of these enhancements
was limited to just a few hours after the solar wind step ar-
rival.

Turning to Fig. 4, we highlight four events,D, E, F and
G. D was associated with a sharp enhancement in solar wind
density and a northward turning of the IMF. A prolonged
initial phase was observed in Sym-H, there being a (weak)
negative excursion only 18 h after the arrival of the pressure
step when the IMF turned southwards. An enlargement in
oval radius accompanied this step, but only once the IMF
turned southwards.E was associated with enhanced solar
wind speed and a step in solar wind density. A clear initial
phase was observed in Sym-H, followed 4 h later by a deep
main phase once the IMF turned southwards. The oval ra-
dius was again elevated during this interval, but again only
after the southward turning of the IMF. A small step in so-
lar wind density, associated with a southward turning of the
IMF, eventF , lead to a re-intensification of the storm and a
re-enlargement of the oval radius. Finally, at the end of the
interval, a step in solar wind density and a southwards turn-

ing in the IMF, eventG, lead to the beginnings of a storm
main phase and an increase in oval radius.

In the final example, Fig. 5, geomagnetic activity was
driven by prolonged periods of southward IMF rather than
steps in solar wind pressure. Sym-H did not display the char-
acteristic storm behaviour, but showed a weak negative per-
turbation throughout much of the interval. However, as in
the previous examples, the variation in oval radius closely
mirrored the changes in the Sym-H index.

Before moving on, we examine the occurrence of sub-
storms during stormA of Fig. 3. Figure 6 focuses on a two-
day subset of Fig. 3, and includesIWIC as well asIoval and
the auroral electrojet indices AU and AL as well as Sym-H.
Highlighted by vertical dotted lines are the onsets of the ma-
jor substorms which occurred during this interval (for which
auroral images are available). Associated with most of these
was an increase in oval radius prior to onset, the substorm
growth phase when the open magnetic flux content of the
magnetosphere increases through dayside reconnection, and
a decrease in oval radius afterwards as magnetotail reconnec-
tion recloses open flux during the substorm expansion and
recovery phases. The decreases in oval radius were accom-
panied by enhancements inIWIC, indicating significant auro-
ral brightenings on the nightside, and also by substorm bays
in the AL index. These observations are highly reminiscent
of those reported byMilan et al. (2008) (see their Fig. 2),
indicating that our oval radius measurement is sensitive to
the change in the open flux content of the magnetosphere
which occurs during the substorm cycle. It also shows that al-
though the oval radius varies with the substorm cycle, during
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Fig. 2. (a)The distribution of oval radii for the two-year period June
2000 to May 2002. The solid curve shows the overall distribution.
The distributions for Sym-H> −75 nT, −75>Sym-H> −125 nT,
and Sym-H< −125 nT are also shown.(b) A comparison between
oval radiusλ and open magnetic fluxFPC, for a limited subset of
the two-year period. Superimposed is the magnetic flux contained
in a circle of radiusλ (full curve) and the open magnetic flux as-
suming that the OCB is located 5◦ poleward of the circle of best-fit
to the oval (dashed curve).

geomagnetic storms it remains considerably elevated above
its quiet-time value.

As a final test of the substorm control of the radius of the
auroral oval, we perform a superposed epoch analysis of oval
radius keyed to substorm onset times identified byFrey et al.
(2004), for the two-year period of our observations. The re-
sults are presented in Fig. 7. As described byMilan et al.
(2009), the substorms are separated into five categories (I–
V) by their onset latitude, as reported byFrey et al.(2004),
grouped in bins of 2◦ of latitude, from the highest-latitude
substorms (I, above 68◦) to the lowest (V, below 62◦). The
numbers in the upper panel of Fig. 7 indicate the number of
substorms which contributed to each category. In all cate-
gories except the highest-latitude onsets (I) there is a clear
substorm signature consisting of an increase in oval radius
prior to onset, followed by a decrease during the expansion
phase, as described above in relation to Fig. 6. Moreover,
the size of the variation depends on category, the lowest-

Fig. 3. The variation of oval radiusλ, oval brightnessIoval, Sym-
H, IMF BZ , VSW andNSW for the 11-day interval 20–30 October
2001. Vertical dotted lines indicate solar wind features described in
the text. Horizontal bars show the intervals studied in more detail
in Figs. 8 and 9.

latitude substorms having the most significant change in oval
radius. The lower panel of Fig. 7 presents a superposed
epoch analysis of theIWIC measurements in the same cat-
egories as the upper panel, showing a clear enhancement in
auroral brightness associated with the expansion phase, and
a greater increase in brightness for lower-latitude substorms.
These results are entirely consistent with the findings ofMi-
lan et al.(2009), who showed a greater variation in oval po-
sition and brightness for low latitude substorms, andWild
and Grocott(2008) and Grocott et al.(2009) who showed
similar substorm-related variations in the size of the iono-
spheric convection pattern, as derived from SuperDARN ob-
servations.

Returning to Figs. 3, 4, and 5, we conclude that oval radius
and the ring current intensity are closely related. We now ex-
amine the full two years of observations in a more statistical
fashion. Figure 8 explores the dependence of the oval ra-
dius on the other available observations. For each available
image we define the ordered pairP=(Sym-H,λ). Figure 8a
presents the occurrence distribution of pointsP in bins of the
oval radius of 1◦ and bins of Sym-H of 10 nT, on a logarith-
mic colour scale. Figure 8j provides a key in which different
areas within the parameter plane have been indicated to aid
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Fig. 4. Similar to Fig. 3 for the period 14–24 September 2000.

the following discussion. At this point we identify region
(v) which comprises bad fits occurring in images in which
the auroral oval is very dim and the maximum inI is as-
sociated with dayglow (large values ofλ) or features in the
background (lower values ofλ). In the remaining panels of
Fig. 8, cells with an occupancy greater than 10 are colour-
coded by the average value in that cell of (b)Ioval, (c) ISI12,
(d) IWIC, (e)VSW, (f) IMF BZ, (g)NSW, (h)8D, and (i)PSW.
Most panels comprise data from approximately 240 000 im-
ages, less than in Fig. 2 due to gaps in availability of the ACE
data. Figure 8d contains fewer points as WIC images from
summer months were discarded due to dayglow. The three
main populations in Fig. 8 correspond to increasingly nega-
tive Sym-H, which we term (i) relatively undisturbed con-
ditions, Sym-H> −75 nT, (ii) moderate storm conditions,
−125 nT>Sym-H> −75 nT, and (iii) intense storm condi-
tions, Sym-H< −125 nT. In addition, population (iv), having
mainly positive Sym-H, corresponds to storm initial phases.

Figure 8a supports our previous conclusion that there is a
strong dependence of oval radius on Sym-H, the oval grow-
ing in radius as Sym-H becomes increasingly negative, vary-
ing from a mean value of approximately 18◦ at Sym-H of
0 nT to close to 30◦ as Sym-H dips to−200 nT. This result
is reiterated in Fig. 2, where the occurrence distribution ofλ

has been subdivided by Sym-H into undisturbed conditions, a
combination of populations (i), (iv) and (v), moderate storm
conditons (ii), and intense storm conditions (iii).

Fig. 5. Similar to Fig. 3 for the period 6–16 May 2001.

The SI12 overall brightness (Fig. 8b) and peak bright-
ness (Fig. 8c) both increase with increasing oval radius, with
almost no dependence on Sym-H except that brightness is
also elevated for positive values of Sym-H corresponding to
storm initial phases, population (iv). The WIC peak bright-
ness (Fig. 8d) also increases with increasing oval radius, but
is also greatest for large negative Sym-H, corresponding to
population (iii). Proton aurora appear to respond strongly
during storm initial phases, population (iv), but electrons in
general do not.

We now examine each population ofP in turn. During
quiet conditions (i) we find low to moderate values of IMF
BZ (averaging to near 0 nT),8D, VSW , NSW , andPSW . It
is clear, however, that within this population IMFBZ be-
comes more negative and8D greater for increasing oval ra-
dius. There is also a tendence forVSW to increase towards
moderate values for more negative Sym-H.

During the initial phase of a storm, population (iv), we
find highNSW andPSW , as expected. However,VSW is not
particularly elevated, on average. Within this population we
find both positive and negative values of IMFBZ, and corre-
sponding low and high values of8D. PositiveBZ is associ-
ated with large, positive Sym-H but low oval radii, whereas
negativeBZ is associated with larger oval radii, but less pos-
itively enhanced Sym-H.
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Fig. 6. A two-day subset of the time interval shown in Fig. 3, fo-
cusing on stormA, indicating the variation in oval radiusλ, oval
brightnessIoval, IWIC, AU and AL indices, Sym-H, and IMFBZ .

During moderately disturbed periods (ii), there is a clear
dependence of oval radius on IMFBZ and8D, BZ being
strongly positive at low oval radii and strongly negative at
high oval radii. There also appears to be a positive correlation
between oval radius andNSW and, interestingly, a negative
correlation between oval radius andVSW.

Finally, during intense storm conditions (iii), IMF BZ is
strongly negative,8D is enhanced, andVSW is high. The
NSW andPSW variations are more confused, though with a
tendency towards higher densities at the largest oval radii.

On the whole we note that theNSW andPSW variations
within theP plane are very similar, and are markedly differ-
ent from the variation ofVSW. Although bothNSW andVSW
contribute to variations inPSW, the effect of varyingNSW
dominates, for instance to produce storm inital phases. On
the other hand, highVSW is necessary to produce a deep main
phase, through the contributions ofVSW and negative IMF
BZ to a strong reconnection rate8D. For example, moder-
ately disturbed conditions are possible for positive IMFBZ

as long asVSW is high, though oval radius remains low. Al-
ternatively, moderate conditions can be attained for lowVSW
as long as IMFBZ is strongly negative, in which case the
oval radius is high. For very disturbed conditions, highVSW

and strongly negative IMFBZ are necessary, and the oval
radius is high.

Fig. 7. A superposed epoch analysis of oval radiusλ and oval
brightnessIWIC keyed to substorm onset times reported byFrey
et al.(2004). The substorms are separated into five categories, I to
V, depending on decreasing onset latitude (see text andMilan et al.
(2009) for details). The numbers in brackets indicate the number of
substorms within each category.

Finally, to help further interpret Fig. 8, we include three
additional figures, Figs. 9, 10, and 11, presented in the same
format, but for limited intervals of data previously studied in
Figs. 3 and 5. Panel (j) of each figure shows the evolution
of the pointP in time, colour coded from blue at the start of
each interval to red at the end. These will be discussed in the
next section.

4 Discussion

Our results indicate that the radius of the auroral oval in-
creases for increasingly negative Sym-H (Fig. 8a). Such a
relationship was previously suggested byMilan et al.(2008),
who demonstrated an increase in magnetospheric open mag-
netic flux during geomagnetic storms. Specifically, in their
Fig. 8 they demonstrated a decrease in the latitude of the on-
set arcs of substorms for more negative Sym-H, indicating
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Fig. 8. A summary of oval radiusλ and Sym-H observations from
the two-year period June 2000 to May 2002.(a) Occurrence distri-
bution of the ordered pairP=(Sym-H,λ). (b–i) Brightness and solar
wind parameters binned and averaged within theP plane:(b) over-
all SI12 brightness,Ioval; (c) peak SI12 brightness,ISI12; (d) peak
WIC brightness,IWIC; (e) solar wind velocity,VSW; (f) IMF BZ ;
(g) solar wind density,NSW; (h) estimated dayside reconnection
voltage,8D ; (i) solar wind ram pressure,PSW. (j) A key indicat-
ing the regions (i) to (v) described in the text.

that substorms occur on an expanded auroral oval when the
ring current is intensified. Yokoyama et al.(1998) also
showed similar variations in the location of the equatorward
edge of the auroral withDst . In addition,Milan et al.(2008)
showed that the polar cap expands and contracts during the
substorm cycle, as also supported by our Fig. 7, but during
storm times remains enlarged above its quiet-time size; this
is supported by Fig. 6 of the present paper. Finally,Milan
et al. (2009) demonstrated that substorms occurring on ex-
panded auroral ovals, i.e., those occurring during geomag-
netic storms, are most intense and close the most open flux
(see alsoKamide et al., 1999); see also our Fig. 7.

Fig. 9. Similar to Fig. 8, for the time interval indicated in Fig. 3.
(j) The evolution of the position of pointP , colour-coded from blue
at the start of the interval to red at the end.

These observations are represented schematically in
Fig. 12. Panel a shows the characteristic storm-time pertur-
bation of Sym-H, indicating an enhanced ring current form-
ing after the brief initial phase associated with the arrival of
a pressure step in the solar wind. Panel b then shows the typ-
ical behaviour of oval radius, which we assume is a proxy
for polar cap size, that is the open flux content of the mag-
netosphere. Prior to the onset of the storm, the oval radius
increases and decreases during substorm growth and expan-
sion phases. The oval radius rises sharply at the onset of the
storm, associated with intense dayside reconnection as the
IMF turns strongly southward. Thereafter, the oval radius
decreases gradually, mirroring the decay in Sym-H. How-
ever, during this decline the oval radius continues to expand
and contract in response to continued southward IMF and the
occurrence of substorms. Indeed, the substorm-associated
fluctuations in oval radius are greater during the storm than
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Fig. 10. Similar to Fig. 9, for the time interval indicated in Fig. 3.

before or after, as substorms occurring on an expanded oval
have been shown to close more flux than substorms occurring
during quieter conditions (Milan et al., 2009). We interpret
these observations as indicating that there is an upper thresh-
old in open flux above which reconnection is favoured in the
magnetotail (dashed curve in Fig. 12b) and a lower threshold
(dot-dashed curve) below which reconnection, if on-going,
ceases. That is, if IMFBZ is negative, the oval radius in-
creases until the upper threshold is reached, at which point
tail reconnection is initiated and the oval radius decreases;
once the lower threshold is attained tail reconnection ceases
and the oval can expand again, ifBZ continues to be negative.
Moreover, these upper and lower reconnection thresholds are
modulated by the intensity of the ring current.

As summarized bySlavin et al.(2002), substorms can be
thought of as the magnetospheric response to increasing so-
lar wind pressure on the magnetotail. As open flux is created
by reconnection with the IMF at the dayside during substorm
growth phase, the magnetotail becomes more flared, increas-

Fig. 11. Similar to Fig. 9, for the time interval indicated in Fig. 5.

ing the stress exerted by the solar wind on the tail magne-
topause. This compresses the tail, leading to a stretched, tail-
like magnetic configuration and an intense cross-tail current.
At some upper open flux threshold, the tail configuration be-
comes favourable for the onset of reconnection and substorm
expansion occurs. Reconnection continues until the stress in
the tail is relieved, that is when some lower open flux thresh-
old is reached.

We interpret the increase in oval radius during storms as
a stabilization of the magnetotail to the onset of reconnec-
tion and substorms by the magnetic perturbation associated
with the westward-directed ring current (see alsoNakai and
Kamide, 2003; Milan et al., 2008, 2009). Inside the ring cur-
rent region a negativeBZ perturbation is produced, measured
at the surface of the Earth as the negative Sym-H perturba-
tion. Outside the ring current region a positiveBZ pertur-
bation dipolarizes the near-Earth tail, such that the onset of
nightside reconnection is not favoured. In this situation the
polar cap can expand to large values of open flux, moving
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Fig. 12.A schematic indicating the expected variations of(a) Sym-
H and(b) oval radiusλ during the course of a geomagnetic storm.
(c) The corresponding variation of the position of the ordered pair
P=(Sym-H,λ) during the storm. See text for details.

the auroral oval to unusually low latitudes. It is only when
the flaring angle of the magnetotail has grown to the point
where the tail field is forced into a sufficiently stretched con-
figuration that nightside reconnection and the occurrence of
substorms are possible, that the polar cap can contract once
again. In other words, the presence of the enhanced ring cur-
rent increases the open flux threshold at which substorm on-
set is favoured. Under these conditions, contraction of the
polar cap will cease while it is still enlarged, due to the con-
tinued dipolarizing effect of the ring current. That is, the
lower open flux threshold is also increased. Hence, we inter-
pret the increase in polar cap size during storms as a combi-
nation of increased coupling at the dayside, necessary for the
polar cap to expand at all, but also as a modulation of the tail
reconnection rate by the presence of an enhanced ring cur-
rent. Enhanced dayside coupling, in itself, is not sufficient
to explain the increase in oval radius during storms, as with-
out the increase in the substorm threshold, tail reconnection
would respond promptly and efficiently close open flux as
quickly as it was produced.

Turning now to our other findings, Fig. 8b and c shows
that the SI12 oval brightness is controlled mainly by the ra-
dius of the auroral oval, being greater whenλ is large. This
variation can be understood in terms of pitch angle scatter-
ing of protons into the loss cone, as discussed previously by
Blockx et al.(2005) andMilan et al.(2009): as the polar cap
expands and the auroral oval moves to lower latitudes the
nightside magnetic field becomes more stretched and pitch
angle scattering of protons becomes efficient. The bright-
ness of the proton aurora is also enhanced during the initial
phases of storms, indicating that compressions of the mag-
netosphere also efficiently scatter protons into the loss cone.
Electrons, with their smaller gyroradii, are not so efficiently
scattered, either during storm initial phases or by large oval
radii (Fig. 8d). Instead, precipitating electron fluxes are influ-
enced more by substorm dynamics and a harder-driven mag-
netosphere, that is fore more negative Sym-H, when IMFBZ

is negative and8D is large.
Our results suggest that IMFBZ andVSW both play a role

in determining the radius of the auroral oval and the storm-
time ring current enhancement. Comparing Fig. 8e and f,
we see that high solar wind speed and density and strongly
southward IMF result in strong geomagnetic storm condi-
tions with an expanded auroral oval. Moderate storm con-
ditions with a contracted auroral oval are the result of high
solar wind speed but predominantly northward IMF (result-
ing in low 8D, see Fig. 8h); moderate storm conditions can
also arise as a consequence of slower solar wind but strongly
southward IMF (high8D), in which case the auroral oval has
a large radius.

The relationship betweenNSW andPSW and the oval size
is less clear. The initial phases of storms are associated with
both highNSW and highPSW, as expected. There then ap-
pears to be an anticorrelation betweenVSW andNSW during
moderate storm conditions: lowVSW and highNSW at large
oval radii; highVSW and lowNSW at low oval radii. As a
consequence of this anticorrelation ofVSW andNSW, the be-
haviour ofPSW, which is dependent on bothNSW andVSW,
is somewhat confused in regions (ii) and (iii). The variation
of oval radius withVSW has been discussed above. The be-
haviour withPSW is less clear, but perhaps can be understood
in terms of the evolution of geomagnetic storms. That is, we
should consider the evolution of the pointP represented by
the ordered pairP=(Sym-H,λ) as a storm progresses, as in-
dicated schematically in Fig. 12c, and presented as data in
Figs. 9, 10, and 11. We first concentrate on Fig. 9.

At the start of the interval a solar wind step (highNSW and
PSW) impinges on the magnetosphere and Sym-H becomes
positive,P moving from region (i) into region (iv). There is
then a rapid intensification of the ring current and, especially
as the IMF is strongly southward, a rapid expansion of the
auroral oval to larger radii owing to the accumulation of new
open flux though dayside reconnection;P moves upwards
and to the left (following the blue points in Fig. 9j), reaching
region (iii) in the storm main phase. Conditions related to
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the storm onset, such as high solar wind density, high8D,
and elevated SI12 brightnesses, are hence seen at high oval
radii in regions (i), (ii) and (iii). As the geomagnetic storm
evolves through the recovery phaseP moves downwards and
to the right (green to red points in Fig. 9j). This explains
lower values ofNSW, 8D, and SI12 brightness at low oval
radii in regions (i) and (ii). In other words, much of the be-
haviour in Fig. 8 can be understood in terms of a hysteresis
in the motion of pointP during a storm, and the changing
conditions through the storm. In a similar vein,Yokoyama et
al. (1998) also noted that the latitude of the lower edge of the
auroral oval tended to reach its maximum equatorward excur-
sion somewhat before the minimum in theDst main phase.
Examination of Fig. 10 indicates a very similar behiaviour to
Fig. 9.

During the recovery phase in both Figs. 9 and 10 there is
an approximately linear relationship between Sym-H andλ,
indicated by the dot-dashed line in panel (j):

λ = 15+0.075|Sym-H|

This might be considered to be the base-line relationship be-
tween ring current intensity and oval radius. During the main
phase, when solar wind coupling is particularly intense, the
oval radius can be driven above this base-line curve; there
will also be upward excursions relative to the base-line curve
during the expansions and contractions of the polar cap re-
lated to the substorm cycle (see Fig. 12c).

In the third example, Fig. 11, there is no storm initial or
well-defined main phase, as this storm is not associated with
a step in solar wind density. In this case pointP moves to
the upper left and back to the lower right, approximately fol-
lowing the base-line curve, with variations associated with
the substorm cycle. Note that no WIC images were available
during this interval.

5 Conclusions

The factors governing the size of the polar cap during storms
and substorms are varied and complex. Strongly southward
IMF is necessary for the polar cap to expand, such that the
auroral oval moves to lower latitudes. Following steps in the
solar wind pressure, periods of southward IMF are also re-
sponsible for intensifying the ring current to give the charac-
teristic geomagnetic storm variation in Sym-H. The ring cur-
rent then plays an important role in determining the thresh-
old open flux at which substorm onset occurs, storm-time
substorms occurring on an expanded auroral oval. Previous
studies have indicated that substorms are more intense when
they occur at low latitudes rather than at high latitudes. As
the ring current is also known to be modulated by intense
substorms and enhanced magnetospheric convection, it is in-
teresting to speculate that this might constitute a feedback
mechanism that keeps the ring current intensified when the

magnetosphere is driven by enhanced coupling with the so-
lar wind.
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