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Abstract. The data from ground based experiments con-
ducted during the 2005 SpreadFEx campaign in Brazil are
used, with the help of theoretical model calculations, to in-
vestigate the precursor conditions, and especially, the role of
gravity waves, in the instability initiation leading to equa-
torial spread F development. Data from a digisonde and a
30 MHz coherent back-scatter radar operated at an equatorial
site, Sao Luis (dip angle: 2.7◦) and from a digisonde operated
at another equatorial site (dip angle:−11.5◦) are analyzed
during selected days representative of differing precursor
conditions of the evening prereversal vertical drift, F layer
bottom-side density gradients and density perturbations due
to gravity waves. It is found that radar irregularity plumes
indicative of topside bubbles, can be generated for precursor
vertical drift velocities exceeding 30 m/s even when the pre-
cursor GW induced density oscillations are marginally de-
tectable by the digisonde. For drift velocities≤20 m/s the
presence of precursor gravity waves of detectable intensity is
found to be a necessary condition for spread F instability ini-
tiation. Theoretical model calculations show that the zonal
polarization electric field in an instability development, even
as judged from its linear growth phase, can be significantly
enhanced under the action of perturbation winds from grav-
ity waves. Comparison of the observational results with the
theoretical model calculations provides evidence for gravity
wave seeding of equatorial spread F.
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1 Introduction

Equatorial spread F post-dusk development occurs under
electrodynamical processes unique to the sunset transition
in the E- and F layers of the ionosphere. It is well known
that equatorial F layer rises up under the action of an en-
hanced evening eastward electric field (known as the prere-
versal enhancement in the zonal electric field – PRE) caus-
ing the bottom-side density gradient region of the rising
layer to become unstable to density perturbations leading
to the spread F/plasma bubble irregularity (ESF) develop-
ment. The Rayleigh-Taylor interchange instability (RTI), or
the generalized gradient drift instability (GDI), is believed
to be the mechanism by which an instability initiated at the
F layer bottomside develops into flux tube aligned plasma
depletions (with their cascading irregularity structures) ris-
ing to the topside of the F region. The signatures of these
plasma irregularities have wide ranging features as regis-
tered by radars, digisondes, optical imagers, GPS receivers
and space-borne detectors. ESF presents a large degree of
variability at medium term (seasonal), long term (solar cy-
cle) and short term (day-to-day) scales. The last of these
is the least understood aspect and constitutes the most chal-
lenging problem for present day ESF investigations. In this
respect it is of fundamental importance to evaluate in de-
tail the precursor conditions of the ambient IT (Ionosphere-
Thermosphere) conducive or otherwise to ESF development.
The most well-known and so far well-documented precursor
conditions concern the post sunset F layer height increase
due to the PRE arising from the sunset electrodynamic cou-
pling processes in which the thermospheric zonal wind (east-
ward in the evening) and the decaying E layer conductivity
(presenting itself as longitudinal/local time conductivity gra-
dient across the sunset terminator) are the most important
control parameters (Rishbeth, 1971; Farley et al., 1986). A
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large eastward thermospheric wind in the evening could pro-
duce large vertical drift and hence the F layer rise to higher
levels thereby enhancing significantly the spread F instability
growth rate by Rayleigh-Taylor instability mechanism. The
requirements on the PRE/evening vertical drift and the height
of the F layer for the spread F “on” and “off” conditions and
its varying growth rates and intensities have been widely dis-
cussed in the literature (e.g., Farley et al., 1970; Abdu et al.,
1983, 2006; Fejer et al., 1999; Sultan, 1996; Sastri et al.,
1997). Models have been developed to investigate the effects
of the evening zonal electric fields, F layer bottom-side den-
sity gradients, and zonal, meridional and vertical winds on
the ESF instability development conditions (e.g., Zalesak et
al., 1982; Sekar et al., 1994; Maruyama, 1988; Keskinen et
al., 2003; Kudeki et al., 2007; Kherani et al., 2009a). An
important prerequisite concerns the nature and the intensity
of the density perturbation needed to initiate the instability
growth, which appears to be the least understood aspect of
the ESF processes. Although certain threshold values for the
PRE and the F layer heights for ESF development can be
established statistically for a given solar flux, season, or lon-
gitude, such threshold conditions are not directly verifiable
in specific cases studies, the reason being the possible role
of a precursor density perturbations in the form of a wave
disturbance with variable intensity and wavelength needed
to initiate the instability process. Observational data shows
that spread F invariably develops following the occurrence of
sufficiently large evening vertical drifts, whether due to the
normal (quiet time) evening PRE arising from F layer dy-
namo or due to magnetic storm associated penetrating elec-
tric fields (Abdu et al., 2003). This situation would point to
(a) the need for a seed perturbation to be always present in
the IT in the form of geophysical noise (e.g., Hanson et al.,
1986) or (b) a seed mechanism arising from the very process
of the layer uplift that necessarily (and nearly always) pre-
cedes ESF. Since we have no clear evidence for the existence
of the latter possibility, we need to consider the need for seed
perturbations in the form of geophysical noise that includes
the atmospheric gravity wave spectrum. The gravity wave
wind perturbations could produce density modulation (pos-
sibly from meridional wind component) as well as generate
polarization electric field (from the zonal and vertical wind
components) contributing to the instability growth. The grav-
ity wave air motion being perpendicular to the propagation
wave vector, we could expect that waves propagating upward
at slant angles in general could provide the required perturba-
tion winds leading to density perturbation as well as polariza-
tion electric fields. It looks possible that all possible modes
of gravity wave propagation could in some way contribute
to the instability growth under right conditions of the ambi-
ent ionosphere. Numerical simulations studies have shown
that density perturbations of the order of 5% or even less,
attributed to gravity waves, can initiate instability growth
leading to vertical development of bubbles to topside iono-
sphere under typical dynamic state of the background iono-

sphere of the sunset period (e.g., Zalesak et al., 1982; Kesk-
inen et al., 2003). Non linear evolution of equatorial spread
F from gravity wave seeding has been investigated in detail
by Huang and Kelley (1996a, b). Observational evidence of
a possible association between gravity waves and ESF has
been suggested in statistical data comparisons by several au-
thors (see for example Rottger, 1981; McClure et al., 1998;
Abdu, 2001). Gravity wave generation in tropospheric con-
vective regions and the upward propagation of the wave at
slant angles to ionospheric height have been suggested as a
possible cause of such association (see for a detailed evalu-
ation, Fritts et al., 2008). Also, production of electric field
perturbations by gravity wave winds in the E region has been
proposed to be a plausible mechanism for initiating spread
F (Prakash, 1999). Independent of the sources of the grav-
ity waves, however, case studies of gravity wave modulation
of radar irregularity (3-m) plume formation, over Jicamarca,
have been analyzed by Kelley et al. (1981) and Hysell et
al. (1990). In particular, for the spectacular gravity wave
events studied by these authors the large scale undulations
of the bottom-side F layer and the irregularity plumes rising
vertically from the descending side of the undulations sug-
gested the role of gravity waves in modulating the RT insta-
bility growth conditions. Gravity wave modulations of well
developed radar irregularity (5-m) plume formations and F
layer electron density contours have been observed rather fre-
quently over Sao Luis, although such results have not so far
been published. On the other hand, large scale modulations
in F layer heights/densities induced by gravity waves as di-
agnosed in ionograms did not lead to development of spread
F over Cachoeira Paulista during pre sunrise hours (Abdu et
al., 1982).

The presently challenging task, however, is the identifica-
tion of gravity waves as a precursor condition for the post
dusk ESF development. This would necessarily require the
detection of these waves during local times immediately pre-
ceding a spread F onset and their being pursued, possibly
with enhanced amplitudes, into night hours of spread F ac-
tivity. The Spread F Experiment (SpreadFEx) campaign had
as its main objective, as explained by Fritts et al. (2008), the
identification of a cause-effect sequence for the ESF devel-
opment that would involve a source of gravity wave gen-
eration in regions of deep tropospheric convection and the
slant angle/upward propagation of these waves through the
mesosphere, the thermosphere and into the bottom-side F
layer where the electron density perturbation and polariza-
tion electric fields induced by these waves could initiate the
spread F instability process. In this paper we show that, un-
der the conditions favorable for the upward propagation of
GWs reaching thermospheric heights that characterized the
SpreadFEx campaign epoch as explained in the paper by
Fritts et al. (2008), electron density perturbations presenting
clear GW characteristics are indeed observed at the bottom
side of the equatorial F region. We will show that these waves
were precursor to the post dusk spread F that developed over
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Sao Luis whose variable intensity appears to depend upon
the characteristics of the precursor GWs. Using theory based
model calculations on the linear growth rate of the GW in-
duced instability electric fields we will show that precursor
gravity waves having the observed characteristics are indeed
necessary to explain the relationship of these waves with the
observed spread F characteristics.

Complementary or alternative mechanisms for the ESF
seeding process have been proposed recently that are based
on wind driven instabilities. This requires horizontal density
gradients associated with F region bottom-side undulations
in the presence of a zonal wind in the plasma reference frame.
The basic instability growth rate as obtained by Linson and
Workman (1970) was applied by MacDougall et al. (1998)
to explain growth rates of medium scale (km size) spread F
irregularities of post midnight/pre sunrise hours observed by
ionosonde over Fortaleza. In the evening sector the zonal
thermospheric wind is known to accelerate eastward, which
therefore becomes more effective (for instability growth) in
the reference frame of a non drifting or westward drifting
plasma (of the F layer bottom side) being part of the well-
known post sunset plasma flow vortex system (Kudeki and
Bhattacharyya, 1999). From stability analysis of a realistic
post sunset F region, Kudeki et al. (2007) obtained for this
case large growth rate, (for local as well as non local con-
ditions) for intermediate scale instability development (the
scale size being comparable to the F layer bottom-side gradi-
ent scale length). Due to its rather fast growth rate (of several
e-folds per hour) it was proposed to be an adequate mecha-
nism for the generation and maintenance of the more fre-
quently observed bottom-type structures that could serve as
seed perturbations so that, when the conditions evolve into
sufficiently large RTI growth rates, it could lead to devel-
opment of vertically rising bubble structures. This mecha-
nism has a scale size dependent growth rate, favoring shorter
wavelengths, that is,λ<lo (λ being the scale size in the
zonal direction andlo the F flayer bottomside scale length
which typically is of the order of 20–30 km). The growth
rate decreases significantly for larger scale sizes as shown by
Kudeki et al. (2007). The scale size of the gravity waves as
observed by digisonde in the example to be presented here
are of the order of 200–300 km. The scale sizes of the meso-
spheric gravity waves and of the bubbles from airglow im-
ager data over Cariri during the SpreadFEx campaign as an-
alyzed by Takahashi et al. (2009) are typically in excess of
100 km. According to Kudeki et al. (2007) the wind driven
instability growth rate for these scale sizes is significantly
smaller, but still could compete with the growth rate due to
E×B uplift. Kudeki et al. (2007) have argued that for suffi-
ciently large zonal winds, of the order of 200 m/s, “the initial
seeding amplitude of the irregularities set by external factors
such as gravity waves should not be a too critical of an in-
put to the overall process”. The large zonal wind could also
produce large PRE, that is, large vertical drift, enhancing the
instability growth by the R-T mechanism. In the present in-

vestigation we have focused on spread F instability devel-
opment under relatively smaller PRE intensity that should
require the presence of relatively smaller zonal winds in the
evening. For example the PRE amplitudes in our case stud-
ies (to be presented below) vary from 15 to 30 m/s for which
the zonal wind velocities vary around 100 m/s or less (see,
Abdu et al., 1995). This relationship between the zonal wind
and the PRE was obtained using an E- F- region electrical
coupling model by Batista et al. (1986) that was based on the
formalism by Heelis et al. (1974). Under the relatively low
zonal winds, representative of the cases analyzed here, the
initiation of bubble irregularities of the scales sizes discussed
here would appears to be less likely operating through a pro-
cess dominated by wind driven instability mechanism, which
may still be necessary for the maintenance of the bottom-side
irregularities. Also, at a later phase of the significant west-
ward plasma flow (of the bottom-side) Hysell and Kudeki
(2004) obtained a smaller growth rate by their shear instabil-
ity mechanism for similar scale sizes which they also sug-
gested as a possible seed for eventual bubbles development.
Implicit in these mechanisms is the requirement for a pre ex-
isting undulation in the F layer bottom side density distribu-
tion, which must be induced most likely by gravity waves.
The characteristics of the gravity waves (such as, amplitude,
wavelength, frequency, propagation direction, etc.) present
in the evening sector IT appear to determine the nature of the
F layer bottom side density undulations, and hence the rela-
tive importance of the different possible mechanisms at play
in the spread F/bubble development process, that could vary
from one day to the other. In the following we will present
an analysis of gravity wave signatures in the F layer bottom
side densities and their possible impact on the varying inten-
sities of post dusk spread F structuring as observed during
the SpreadFEx campaign.

2 Experimental data

The experimental data analyzed here were collected during
the SpreadFEx campaign by a set of instruments consisting
of a digisonde and a 30 MHz coherent back-scatter radar in-
stalled at Sao Luis (44.2◦ W, 2.33◦ S, dip angle:−2.7◦), and
another digisonde, a digital portable sounder (DPS-4), oper-
ated at Fortaleza (38.45◦ W, 3.9◦ S, dip angle:−11.5◦). The
RTI map obtained by the VHF radar provided information
on the 5-m irregularity structures, representing spread F evo-
lution, at 1-mi resolution. Data collection by the digisonde
was at 10-min cadence. The SAO explorer software of the
digisonde produced the F region true heights that were used
to calculate the vertical drift velocities asd(hF )/dt. The
ionogram inversion algorithm used in the SAO explorer soft-
ware for the automatic real height calculation has been de-
scribed by Huang and Reinisch (1996). The true heights so
obtained have been validated by comparison with the elec-
tron density profiles measured by the incoherent scatter radar
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over Millstone Hill, obtaining excellent agreement. Also,
good agreement has been found between the vertical drift
calculated from the true heights asd(hF )/dt and that obtained
from Doppler data (Abdu et al., 2006b) using the digisonde
drift explorer software (Scali et al., 1995) as well as that mea-
sured by the Jicamarca incoherent scatter radar (Bertoni et
al., 2006). The true heights were used also to extract the
gravity wave oscillations at specific plasma frequencies (as
explained later). At this point it is appropriate to mention
that ionosonde method has been used in reliable ways to
detect and quantify gravity wave effects in the low latitude
ionosphere (see for example, Abdu et al., 1982, and refer-
ences therein). The present study represents the first attempt
to employ such method for evaluating the gravity wave ef-
fects as precursor to the post sunset initiation of equatorial
spread F. We will therefore comment below on the reliability
of the method for detecting the presence of precursor GWs
which necessarily demands more rigorous sensitivity consid-
erations.

The digisonde transmits coded pulses at digital frequen-
cies (nominally 200 frequencies) scanning from 1 to 20 MHz
that are reflected from the ionosphere at plasma frequencies
fp<foF2. The scale size of the reflecting region corresponds
to that of the first Fresnel zone, which for example is 7.5 km,
at 7 MHz reflected from a height of 350 km. The resolution
in the electron densities measured at the frequencies spaced
at 100 kHz is of the order of 3–4 percent of the ambient den-
sities (forfp in the region of 5 to 10 MHz, for example). The
height resolution for the virtual heights (h′F ) is determined
by the pulse width/coding and varies from 5 km to 10 km
for the height ranges of 500 km to 1000 km that are usually
set for the ionograms. The true heights that are extracted
from a series of virtual heights (by the ionogram inversion
method mentioned before) also have similar degree of height
resolution as that of the virtual heights. The true heights
are used for calculating the parameters of our interest here,
such as the scale length of the bottomside density distribution
(lo=n/dn/dhF), the vertical drift (dhF /dt) and the height
oscillations due to GWs. None of these parameters suffer the
limitations imposed by the above mentioned height resolu-
tions since we are concerned with relative variations in the
heights at different plasma frequencies, or at different time
steps corresponding to the observational cadence (10 min in
the present data set). Oscillations in true heights at adjacent
plasma frequencies prior to sunset could be noted in Figs. 1,
2 and 3 (as to be explained later) to have periodicities of the
order of one hour, with oscillation amplitudes as low as 5 km
or less, presenting downward phase propagation characteriz-
ing themselves to be GW signatures. A height oscillation by
5 km corresponds to 20 percent modulation in electron den-
sity assuming a bottom side scale length of 30 km as an ex-
ample. Such amplitudes of density fluctuation are compatible
with the predictions for F layer bottomside density pertur-
bations produced by upward propagating GWs from tropo-
spheric sources under nominal background atmospheric and

ionospheric conditions (see Fritts et al., 2008). While the
lower limit of the GW period detected by the digisonde is
dependent on the observational cadence, that of the density
perturbations is dependent on the operational settings of the
instrument. At the settings used in the data presented here
height oscillations of 2–3 km corresponding to density per-
turbations of 6–10 percent can be diagnosed. This point
needs to be studied further in detail, however.

3 Results

3.1 Signatures of gravity waves and evening prereversal
electric field in F layer heights

For an assessment of gravity wave (GW) influences on spread
F instability initiation it is important to examine any wave
fluctuations in electron density immediately preceding an
ESF event so that possible influences from their continuing
presence on instability growth can be evaluated on the basis
of the ESF development that may follow. Therefore identifi-
cation of GW presence in the IT during pre sunset hours has
fundamental importance for evaluating the role of such GWs
in the post dusk ESF. Both horizontal and vertical compo-
nents of GW winds can influence instability growth rates.
The different ways in which GWs at F layer heights can in-
fluence the spread F development can be stated as follows:

1. Modulation of the dusk sector F layer heights through
large undulations in electron density iso-lines whereby
the elevated bottom-side density gradient regions will
become unstable to GRTI (generalized Rayleigh-Taylor
instability) with large instability growth rates, an
example of which appears to be present in GW event
(observed over Jicamarca radar) analyzed by Kelley et
al. (1981);

2. Modulation of the PRE by having its peak intensity en-
hanced by in-phase superposition of zonal (eastward)
winds from the background thermospheric tidal source
and perturbation zonal winds due to GWs. It is well-
known that the background thermospheric zonal wind
that turns eastward in the evening is a major driver of
the PRE (e.g., Rishbeth, 1971; Heelis et al., 1974; Far-
ley et al., 1986; Batista et al., 1986). Such an increase of
the PRE amplitude can contribute to an enhanced GDI
(gradient drift instability) growth rate factor (Vy/lo) be-
sides raising the F layer bottom-side to larger heights
where the gravitational RTI growth rate factor (g/νi lo)

is enhanced as well. The zonal perturbation velocity of
the GW at sunset time could also contribute a factor to
the instability growth (in addition to theVy/lo factor)
on the line discussed by Kudeki et al. (2007);

3. Direct seeding of the instability by GWs providing the
density perturbations/ undulations and the development
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of the polarization electric fields that grow with the
density perturbations, constituting the instability growth
process. The GW zonal and vertical winds contribute
directly to the polarization electric field that feeds the
instability growth. (The wind driven instability pro-
cesses discussed earlier could also belong to this type).
The GWs of this item are generally of smaller amplitude
(than, especially, those of item-1 above) and are typi-
cally representative of the cases to be discussed here.
Their characteristics (periods, wavelengths. etc. to
be discussed below) appear to be consistent with those
of the GWs present in the F region bottom-side after
having propagated possibly from the tropospheric con-
vective sources as described in the paper by Fritts et
al. (2008).

GW zonal and vertical wind components in the equatorial F
region could generate dynamo electric fields that will drive
currents closing through the conjugate E layers connected
by magnetic field lines. In the presence of non conduct-
ing E layers typical of the night conditions, no current flow
occurs, resulting in buildup of polarization electric fields in
the F region according to the relation:6P (E+δW×Bo)=0,
whereE is the polarization electric field,6P is the Peder-
sen conductivity,δW is the gravity wave wind, andBo is the
Earth’s magnetic field. The polarization electric field causes
the plasma to move with the neutral wind of the GW. In this
way F layer height oscillations induced by GWs can be de-
tected under night time conditions. During day time the large
E layer conductivity permits current flow causing the short-
ing of the polarization electric field leading to negligible GW
effect at F layer heights, the GW effect gaining amplitude as
the E layer conductivity decays with sunset. On the other
hand any GW oscillations in meridional winds that are unde-
tectable very close to the dip equator are amenable to detec-
tion as F layer height oscillations at a location with inclined
magnetic field. Thus such height displacements, expected to
be negligible over Sao Luis (being closer to the dip equator
with dip angle:−2.7◦), are detectable over Fortaleza (with
dip angle:−11.5◦) during both day and night, whereas any
dynamo effect from zonal/vertical winds will be detectable
only during night hours at both sites. For this reason, we
have used the F layer height oscillations over Fortaleza to
assess the presence of GWs during pre sunset extending to
night hours, and to investigate their possible influence on the
spread F development conditions over Sao Luis, assuming
that nearly identical GWs perturbations exist over the two
sites. Such an assumption is justifiable because (1) the zon-
ally propagating gravity waves are the more likely ones to be
present in the bottomside F layer (Fritts et al., 2008) and (2)
Sao Luis and Fortaleza are separated more in longitude than
in latitude and therefore there appears to be no reason for a
zonally propagating GW not to be presenting the same char-
acteristics at these two locations. We note further that while
at an off-equatorial location (like Fortaleza) the perturbation

meridional winds of the GWs produces height oscillations,
representing the density perturbation, that can be detected as
a precursor to spread F, the effect of the zonal and vertical
wind perturbations of the same GW can be diagnosed over
the dip equator (represented by Sao Luis in our case) only
after the spread F irregularities begin to evolve.

In the left panel of Fig. 1 are shown the band-pass filtered
oscillations in F layer true heights (hF ) as observed by the
digisonde at specific plasma frequencies (5, 6, 7, and 8 MHz)
over Fortaleza, plotted from 15:00 LT (18:00 UT) to midnight
(27:00 UT) for three days as examples of GW manifestations
during the pre and post dusk hours. The band-pass filtered
oscillations include periods from 20-min to 3-h only. They
are plotted with their base values displaced by 5 km (cumu-
latively) at each frequency. The dominant oscillations have
periods of the order of an hour and they present downward
phase propagation rather clearly during pre dusk hours. The
inferred characteristics of these waves, such as the wave-
length, period and perturbation wind velocities appear to
be compatible with the corresponding values estimated for
GWs propagating from tropospheric convective regions to
this height region, as evaluated by Fritts et al. (2008). As
an example, we consider the F layer height perturbations of 5
October in Fig. 1 (top panel). Here during the hours just prior
to sunset the downward phase propagation suggests a rather
well defined vertical half wavelength (λy/2) for the wave (as
judged from the nearly opposite phases of 5 and 8 MHz os-
cillations, noted at 20:00 UT/17:00 LT). Using the difference
in true heights at these frequencies (1hF(8−5 MHz)) we can
determine theλy to be 50 km. The horizontal wavelength
λx can be determined from the relationω2λ2

y=(N2
−ω2)λ2

x ,
whereN is the buoyancy frequency andω is the wave fre-
quency (Hines, 1960). Using the buoyancy period to be
11 min at heights above 200 km for medium solar conditions
(Fritts et al., 2008), and the wave period to be 60 min. we
obtain a horizontal wavelength of 270 km and a horizontal
velocity of 75 m/s. These values are compatible with the pa-
rameters predicted by Fritts et al. (2008) (see, for example,
the values in their Table 4) at F layer bottom-side heights for
upward propagating tropospheric GWs diagnosed under the
SpreadFEx campaign conditions. The oscillation amplitude
varies significantly from one day to another. The dominant
wavelength appears to be also variable on a day-to-day basis.
We note that the downward phase propagation characteristics
(in Fig. 1) become less evident during post dusk hours. This
may in part be due to the fact that the electric fields arising
from the action of the GW winds and/or that associated with
the instability development seeded by these waves could also
influence the height oscillations, as will be seen from com-
parison with the spread F data (to be discussed later).

In the right panel are shown examples of vertical drifts (Vy

marked asV z in Figs. 1, 2 and 3) derived asd(hF )/dt for the
same set of days. Drifts calculated at four plasma frequen-
cies (5, 6, 7 and 8 MHz) are shown and they lie close to each
other and to their mean curve also shown. The main point to
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Fig. 1 Fig. 1. In the left panels are shown perturbations in F layer true heights at frequencies: 5, 6, 7 and 8 MHz, band-pass filtered between
periods 20 min and 3 h. The results are shown for three days. The plots are displaced cumulatively by 5 km at each frequency, and are in
UT (=LT+3 h). We can clearly identify the presence of gravity waves from their downward phase propagation during the period immediately
before the sunset (21:00 UT/18:00 LT). In the right panels are shown for the same three days the vertical drifts calculated asd(hF )/dt. The
peak amplitude of the evening prereversal drift enhancement occurs near 21:00 UT/18:00 LT. Much of the drifts at later hours are influenced
by range spreading due to ESF irregularities.

note in these plots is the evening enhancements inVy (near
21:00 UT) that correspond to the prereversal enhancement
in zonal electric field (PRE), an important prerequisite (per-
haps the most important one depending upon its amplitude)
for the initiations of ESF development. It has been noted
from statistical analysis of the data in the Brazilian sector
that an evening vertical drift in excess of 38 m/s (on an aver-
age) is required as a precondition for the occurrence of well
extended (>1000 km above equator) topside bubbles (e.g.,
Abdu et al., 2006). We note in Fig. 1 larger amplitudes of the
fluctuations in the vertical drift during later hours (usually af-
ter 22:00 UT in these cases) that must have been influenced
by the dynamics of the developing bubbles present at these
times. It is important to point out here that under the low
solar activity conditions (F10.7: 75) of the SpreadFEx cam-
paign, the PRE vertical drifts are generally small (e.g., Fejer
et al., 1991). The peak velocities of the PRE (theVyp, occur-
ring at 18:00 LT/21:00 UT), that is, 18 m/s in the examples in
Fig. 1, are considered to be insufficient (or marginal) for well
extended bubble development (Abdu et al., 1983, 2006; Fejer
et al., 1999), and hence they appear to be somewhat ideal for
evaluating any possible contribution to the ESF generation
arising from GW effects.

3.2 Complementary roles of GWs and PRE in spread F
development: some case studies

Figure 2a presents in the top panel the RTI plots of the 5-m
irregularity distribution from the 30 MHz radar over Sao Luis
on the night of 23–24 October. The F layer true heights for
specific plasma frequencies at 1 MHz interval, starting with
5 MHz are shown in the second panel. The vertical drifts
taken as the averages of the drifts at four plasma frequen-
cies, 5, 6, 7, and 8 MHz, are shown in the lower (third) panel.
Also shown in this figure (fourth panel) are the band-pass fil-
tered oscillations in the F layer true heights at 5, 6, 7 and
8 MHz (over Fortaleza) similar to the plots in Fig. 1. In the
bottom panel we have presented the R-T growth rate factor,
Vy/lo, corresponding to the vertical drift for this case, where
lo is the F layer bottom-side density gradient as measured
between the plasma frequencies 5 MHz and 7 MHz. It may
be commented that while the RTI map (indicating spread F
activity) starts just around 18:30 LT (21:30 UT) the other pa-
rameters are shown starting at 15:00 LT to be able to eval-
uate the spread F precursor conditions of these parameters.
The PRE drift velocity (on 23 October) attained 32 m/s near
21:40 UT (18:40 LT) that produced a growth rate factor of
5×10−4 s−1. The corresponding instability growth time is
33 min and we note the onset of 5-m irregularities just after
22:10 UT (19:10 LT) in the top panel, which is to be expected
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Fig. 2a. Plots for the 23–24 October 2005. RTI map of 5-m irreg-
ularity distribution as observed by the 30 MHz radar over Sao Luis
(top panel); F layer true heights at plasma frequencies 5, 6, 7 and
8 MHz (panel 2 from top); Mean of the drift velocities calculated
as d(hF)/dt at frequencies 5, 6, 7, and 8 MHz (panel 3 from top);
Band-pass filtered (for 20-min. to 3-h periods) height oscillations
at frequencies 5, 6, 7, and 8 MHz (panel 4 from top); Instability
growth rate due to the termV z/L of the instability linear growth
rate factor (bottom panel). The “V z” in this and other figures is the
same as the “Vy ” in the text.

if plasma depletion was already evolving by this time. Since
the irregularity developed after a growth time correspond-
ing to a single e-fold there appears to be present a seeding
GWs perturbation though perhaps of weak enough intensity
to be marginally in the detection limit of the digisonde on this
evening. The spread F onset seems to concur with the drift re-
versal to downward that occurred at 22:00 UT/19:00 LT. The
rapid bubble growth into topside 5-m plume structure seems
to have been helped by the large F layer height resulting
from the rather large vertical drift (in other words, contribu-
tion from the R-T growth factor due to g/νinlo term seems to
have contributed to a faster growth rate of the bubble on this
evening). It is important to note (in panel 4 of Fig. 2a) that on
this evening the perturbations in F layer heights just prior to
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Fig. 2b 

Fig. 2b. Plots similar to those of Fig. 2a, but for the evening-night
period of 24–25 October 2005.

sunset (21:00 UT) did not present any clear downward phase
propagation characteristics, indicating thereby rather weak
GW activity as precursor to spread F. The lack of downward
phase progression could mean little or no GW activity or in-
sufficient measurement cadence because the GW frequency
was close to N (buoyancy frequency). In the latter case, the
GW would be close to evanescent mode and could contribute
significant vertical motions, but without the telltale phase de-
scent (see Fritts et al., 2008). In comparison to this, a clear
GW signature was present on the evening of 24 October as
can be verified from panel 4 in Fig. 2b that presents the height
oscillations for 24–25 October. The PRE vertical drift on this
evening attained a peak value of only 18 m/s by 21:00 UT
and remained weak until its reversal to downward just af-
ter 22:00 UT. The corresponding growth rate factor remained
at 3×10−4 s−1 or smaller from 20:50 until 21:50, then turn-
ing negative after 22:00 UT. The development of the spread
F at 22:15 as seen in the RTI map appears to be compati-
ble with this growth rate. However, we will be showing later
using model calculations, that spread F irregularities would
not have occurred on this evening if the precursor GW char-
acteristics were the same as they were on the evening of 23
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Fig. 3a. Plots similar to those of Fig. 2a and b, but for the evening-
night period of 2–3 October 2005.

October. In other words the irregularity development in this
case was helped by the presence of GWs of significant am-
plitude seen on this evening.

Two other contrasting cases are presented in Fig. 3a, for
the night of 2–3 October, and in Fig. 3b for the night of
5–6 October. In the former case the irregularities were
weak and of mostly bottom type, although beginning with
a short lived penetration to 450 km, whereas in the latter
case the irregularities that began as “bottom type SpF” ex-
hibited higher intensity including plume extension to the top
side, as seen in the respective RTI maps. On the evening
of 2 October, the vertical velocity reached a peak of 18 m/s
at 21:20 UT (18:20 LT) followed by a smooth decrease to
zero by 22:10 UT (19:10 LT). The growth rate factor attained
a value of 7.5×10−4 s−1 (corresponding to an irregularity
growth time of 23 min) which should have resulted in irregu-
larity onset by about 21:45 UT if a significant precursor seed
perturbation were to be present. But no spread F occurred
for the following 90 min. Irregularities with an altitude pene-
tration up to 450 km (but short lived) developed after 90 min,
at 22:50 UT which appear to have been initiated/ caused by a
second increase inV z, with growth rate peaking at 22:30 UT
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Fig. 3b. Plots similar to those of Fig. 2a and b, but for the evening-
night period of 5–6 October 2005.

(bottom panel of Fig. 3a). The rest of the night was mostly
uneventful. The important point to note in this sequence is
that a vertical drift peak at 21:20 UT that indicated an insta-
bility growth time of 23 min did not produce any irregularity
development for about 90 min after the drift peak, and a sec-
ond increase of the vertical drift at 22:30 appears to have con-
tributed to the short lived radar plume at 22:50 UT. The pre-
cursor height fluctuations on this evening do not appear to in-
dicate the presence of any significant GWs as the downward
phase propagation in them is marginal. (Again, as mentioned
before this by itself does not indicate an absence of GWs,
but only that if present, they had an unresolved frequency
or a very large vertical structure suggestive of evanescence.).
We therefore believe that the absence of a clearly identifiable
GW by the digisonde appears to be responsible for the non
occurrence of an irregularity event in the bottom-side due to
pre-reversal peak even though the linear growth rate did pre-
dict such occurrence. In contrast to this we note the clear
presence of significant precursor GWs on the evening of 5
October (Fig. 3b). The vertical drift peak on this evening oc-
curred also at 21:20 UT (as on 2 October) but with a smaller
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value of 14 m/s only. The corresponding linear growth rate
(5×10−4 s−1) that was smaller as well, predicted irregularity
development to start after 33 min which is indeed seen in the
onset of the 5-m irregularity structure in the RTI map that was
limited to the bottomside till 23:20 UT. We have strong rea-
son to believe that the GW presence on this evening played
a role in the bottom-side irregularity development that fol-
lowed the pre-reversal drift enhancement and in subsequent
bubble developments, in contrast to the evening of 2 Octo-
ber when in spite of a large growth rate condition, bottom-
side SF and bubble did not develop during the expected time
for their developments (for about 90 min) and were weak as
well when they did occur at later times, under the condition
of marginal gravity wave presence. The 5-m structure soon
erupted into topside plume by 23:20 UT probably aided by
an increase in theVy /l0 growth rate factor as well as the large
amplitude GWs (panels 4 and 5, Fig. 3b) that immediately
preceded this growth. Thus from a comparison of the cause-
effect sequences on these two days (just explained above),
and further considering the nearly identical precursor behav-
ior of thehF on these two days, we are tempted to conclude
that the presence of GWs was a unique (and readily identi-
fiable) factor that appears to have contributed to the rather
prompt development of irregularities on the evening of 5 Oc-
tober in contrast to the evening of 2 October when a larger
growth rate did not lead to irregularity development (or pro-
duced only weak spread F) in the absence of any clear pre-
cursor GWs.

4 Discussion

The SpreadFEx campaign was conducted during equinoctial
months of low solar flux epoch (F10.7 in the range 75–80)
and as such the evening thermospheric winds that control the
ambient conditions for spread F occurrence (such as the pre-
reversal enhancement in zonal electric field) must be domi-
nated by the zonal components of these winds, which means
that any possible influences in the ESF day-to-day variabil-
ity that could arise from meridional/trans-equatorial winds
(Abdu et al., 2006, 2009) through their modification of the
flux tube integrated conductivities (Maruyama, 1988) can be
ignored as is done here. What we analyze here are exam-
ples of spread F development, and its day-to-day variability,
under precursor conditions representative of competing influ-
ences from varying combinations of the driving forces from
prereversal vertical drift and GW features. The rate at which
the polarization electric field builds up in a growing instabil-
ity under the actions of the GWs and the PRE can be used to
assess the expected intensity of an ESF event as being more
or less likely to be influenced by one or the other of these
driving forces.

In Appendix A, governing equations for a zonal polariza-
tion fieldδEx excited by RTI is derived using hydromagnetic
equations, detailed derivation is presented in a recent submis-

sion (Kherani et al, 2009b). An equation forδEx is obtained
in the following form:

∂δEx

∂t
− γRδEx = sx (1)

Where,

γR =

(
−

Eox

Bo

− Wy +
g

νi

)
1

lo
;

sx ≈
B0 U0x

l0

(
δ Wy

κi

− δWx

)
; 1/lo=d logno/dy

U0x is the background zonal wind;δWx,y , the zonal/ vertical
perturbation winds;

E0x,, the zonal electric field (PRE);g, νi, no, the grav-
itational acceleration, ion-neutral collision frequencey and
background electron density respectively; see Appendix A
for more details.

4.1 Growth rate evaluation and comparison with
observation

Equation (1) is the governing equation for the zonal compo-
nent of the polarization field perturbation which is the prin-
cipal field in the excitation of Rayleigh-Taylor instability. In
the linear limit, it can be solved analytically and it has the
following solution:

δEx = sx/γR(expγRt−1) (2)

HereγR is recognized as a growth rate of RTI and chosen to
be constant at its peak value in the F region. The free en-
ergy in the ionosphere is in the form of current which flows
mainly in zonal direction. To extract this energy, some kind
of pumping source in this direction is desired. The termsx
in Eq. (1) acts like a pumping source necessary to extract the
free energy available in the ionosphere. It is in the form of
wind perturbationδW associated with a seeding gravity wave
with propagation in zonal-vertical plane at the equator per-
pendicular to Earth’s magnetic field. ForγRt�1 the source
function,sx decides the initial amplitude ofδEx which will
subsequently grow or damp depending upon the nature of
the growth rateγR. In the limit γRt�1, δEx grows lin-
early with time and its evolution is mainly dictated bysx . As
γRt→1, δEx begins to increase exponentially which is the
linear phase of the instability growth. It is noted that similar
to γR, the source functionsx is proportional to the vertical
density gradient. It means that pumping source associated
with GW is likely to maximize in the altitude region where
growth rate of RTI maximizes. On this basis, GW induced
perturbation may be regarded as an efficient seeding mecha-
nism for RTI.

In present study, GW of tropospheric origin is considered.
To infer the nature of GW in present study, we employ a
GW vertical propagation model that describes the evolution
with altitude of a GW with specified characteristics at tropo-
spheric altitude (Kherani et al., 2009b). The model provides
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Fig.4                                                                                                  Fig. 4. (a) The distribution of amplitudeδW of GW; (b) and the
perturbed ion velocityδui in the F region att=0.

vertical velocities associated with a GW at altitudes from 10
to 600 km with a given initial velocity fluctuation at the lower
boundary. The GW associated horizontal velocities are ob-
tained from the continuity equation (Eq. 10 of Fritts et al.,
2008b). In the present study, the initial GW vertical velocity
amplitude is assumed to be 0.5 cm/s at 10 km height corre-
sponding to buoyancy velocity of convective plumes. The
vertical and horizontal wavelengths (λy,x) are chosen to be
two and four times larger than the scale height at each alti-
tude. Given these wavelengths, the frequency (ω) of the GW
is obtained from the dispersion relationω2λ2

x=(N2
−ω2)λ2

y .
This is one among few options by which the GW’s param-
eters can be selected. An alternative approach is to fix the
λy andω and calculate theλx from above dispersion rela-
tion as was done in Sect. 3.1. The wave frequency estimated
using the above approach is found in the range 10–60 min de-
pending on the altitude. The wave resides in equatorial plane
(x-y) perpendicular to magnetic field and moves obliquely at
an angle 84◦ from horizontal. The fluctuating windδW as-
sociated with the GW is shown in Fig. 4a. It can be seen that
δW maximizes in the F region and it is dominantly horizon-
tal having horizontal wavelength in the range of 200–300 km.
The maximum horizontal and vertical winds associated with
GW are of order of 40 m/s and 10 m/s, respectively. This
GW introduces a perturbationδU in the ion velocity (given
in appendix) and it is plotted in Fig. 4b. It is noted thatδU is
dominantly vertical having a magnitude of 0.5–1 m/s in the
bottomside F-region.

To infer the relative importance ofsx andγR, we study the
evolution of δEx based on input parameters obtained from

the observations. We will consider the results on the two
selected pairs of days, 23–24 October 2005 of Fig. 2a and b
and 2–5 October 2005 of Fig. 3a and b. Each pair consists of
days when the prereversal enhancement, F layer bottom side
gradients and wave signatures, are very different just prior to
spread F. (While the F layer heights were different on former
pair of days they were rather close by on the latter pair of
days). On the evening of 23 October theVy/lo factor and
the F layer heights were larger than on the evening of 24
October. On the other hand, the GW signatures were more
prominent in the latter than in the former case. Spread F
was observed on both evenings, but it was more extended
in height (as topside plumes) and stronger on 23 October and
less extended in height and weaker on 24 October. In order to
evaluate the role of GW in the contrasting features on this day
pair, we calculated the evolution of the perturbation electric
field in the instability development for the following three
cases of the input parameters:

Case 1a: Ambient ionospheric conditions corresponding
to 23 October and GW amplitudeδW=δWo;

Case 1b: Ambient ionospheric conditions corresponding
to 24 October and GW amplitudeδW=δWo;

Case 1c: Ambient ionospheric conditions corresponding
to 24 October and GW amplitudeδW=2.5δWo;

(An amplitude of GW on each night is derived using ob-
served time variation of bottom-side F layer height (hF ). The
time rate of change ofhF at given time represents perturbed
upward ion velocityδuy . For one hour periodic modula-
tion observed during 19:00–21:00 UT, this time rate is es-
timated on each night and corresponding wind perturbation
δwx≈

�
νi

δuy is obtained. It is found that the estimatedδuy is
of order of 0.8 m/s and 2 m/s on 23 and 24 October, respec-
tively. On this basis,δW is chosen to beδWo and 2.5δWo on
23 and 24 October, respectively, whereδWo and correspond-
ing perturbed ion velocityδu are shown in Fig. 4a–b.)

The value ofδW0 used in the model calculation was the
same for both the day pairs analyzed here, and it corresponds
to a wind perturbation that produced ion perturbation veloc-
ity that was marginally detectable by the digisonde in the
plots of Figs. 2a and 3a. As compared to this the GW oscil-
lations in the plots of Figs. 2b and 3b presented measurable
amplitudes and a dominant period of the order of one hour.
In the present model calculations we have used the value for
δW0 as obtained in Fig. 4a which is of the order of 40 m/s
in the F layer bottomside, near 320 km at which the seeding
altitude starts. It may be noted that the corresponding ion
perturbation velocity as sown in Fig. 4b is∼0.8 m/s which
is compatible with an approximate estimate of such velocity
obtained from a one-hour smoothedhF oscillation features
that existed just prior to sunset hours in Figs. 2a and 3a.

From the observation we obtain the following three param-
eters:

Rvy/lo = (vy/lo)23/(vy/lo)24 ≈ 2;

Rh = (h)23/(h)24 ≈ 1.2;
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RδW = (δ W)23/(δ W)24 ≈ 2.5

HereRvy/lo , Rh andRw represent the ratios ofVy/lo, the
bottom-layer height and the amplitude of GWs, respectively,
between 23 and 24 October.

In Fig. 5 (top panel) the growth ofδEx is plotted for
Cases 1a–1c. We may note that the values ofδEx for the
linear phase of the instability growth shown here are smaller
than in actual instability development wherein a nonlinear
phase may soon set in for vertical growth into a topside bub-
ble. The nonlinear process of the instability growth is dis-
cussed in a companion paper by Kherani et al. (2009a). For
Case 1a (conditions of 23 October) in Fig. 5a,δEx grows
exponentially within 1000 s (solid curve), thereby indicat-
ing/predicting the subsequent favorable condition for devel-
opment of a bubble, as is indeed observed (Fig. 2a). It is to
be noted in this case, however, that the presence of GWs is
not clear in the digisonde data and therefore the amplitude
of the GW wind oscillation is taken asδW0 in the calcula-
tion of δEx . For Case 1b that used the input parameters for
24 October in combination with the GW characteristics of 23
October(δW0), the instability evolution does not reach to ex-
ponential phase (dash curve) indicating that conditions were
unfavorable for the subsequent bubble, or for bottom-side ir-
regularity, development. For Case 1c, that used the input
parameters for 24 October in combination with the GW pa-
rameters also for the same day (δW=2.5δW0), the evolution
again acquires the exponential growth within 1000 s (solid
line with “+” curve) though a bit slower than in Case 1a. This
slower evolution ofδEx appears to be consistent with the
post sunset radar plume development that was restricted in
altitude mainly to the bottom-side. The contrasting behavior
of the exponential growth in Case 1c and the non-exponential
growth in Case 1b clearly demonstrates the importance of
GW amplitudes (throughsx) in the growth of RTI, in a man-
ner that is consistent with the observational results from radar
and digisonde.

To examine the influence of GW on the day pair, 2 and 5
October (Fig. 3a and b), the following cases are considered:

Case 2a: Ambient ionospheric conditions corresponding
to 2 October and GW amplitudeδW=δWo;

Case 2b: Ambient ionospheric conditions corresponding
to 5 October and GW amplitudeδW=δWo;

Case 2c: Ambient ionospheric conditions corresponding
to 5 October and GW amplitudeδW=4δWo;

In Fig. 5 (bottom panel) the growth ofδEx is plotted for
Cases 2a, 2b and 2c. We note that it grows exponentially for
all three cases but faster for Case 2a and slowest for Case 2b.
For Case 2c,δEx attains intermediate amplitude and shows
a tendency of rapid growth in spite of less-favorable ambi-
ent conditions. (in terms ofVy/lo). This aspect resulted
from use of larger GW amplitude (in the calculation) for
Case 2c that was present on this evening. Thus we verify
here as we did from the first pair of days that the presence of
GWs does indeed lead to enhanced irregularity development

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  Fig. 5. Top panel: the time evolution of the zonal component of the
polarization electric field,δEx , controlled byγR and gravity wave
winds for the three cases discussed in the text as follows: the solid
curve represents the result corresponding to the input parameters
for the evening of 23 October in which the GW strength isδW0
(Case 1a); the dash curve shows the results from input parameters
for 24 October except that the GW characteristics are those of 23
October (Case 1b); and the line with “+” curve is the result when the
gravity wave contribution in the Case 1b curve was increased to cor-
respond to that observed on 24 October, withδW=3δW0 (Case 1c).
Bottom panel: the results similar to that of the top panel but for
the day pair 2 and 5 October. The solid curve represents the result
corresponding to the input parameters for the evening of 2 Octo-
ber in which the GW strength isδW0 (Case 2a); the dash curve
shows the results from input parameters for 5 October except that
the GW characteristics are those of 2 October (Case 2b); the line
with “+” curve is the result when the gravity wave contribution in
the Case 2b curve was increased to correspond to that observed on
5 October, withδW=4δW0 (Case 1c).
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as predicted from model calculations and in agreement with
the observations.

A further inter-comparison of the results between the two
pairs of days brings out some important aspects of the rela-
tive/competing roles of the gravity waves, the gravity and the
F layer height and vertical drift in the contrasting conditions
of instability development in these cases. For example, in
the case of 23 October (Fig. 2a) and 2 October (Fig. 3a) the
same gravity wave amplitude (δW0) was used to calculate
theδEx time evolution. The peak growth rate factor (Vy/lo)

in the former case was smaller (∼5×10−4 s−1) than in the
latter case (∼7×10−4 s−1). Yet topside penetrating bubble
developed within∼35 min after the peak growth rate in the
former case with no instability developing till∼90 min af-
ter the peak growth rate in the latter case (in which as men-
tioned before, the short lived and weak bubble that developed
at ∼23:00 UT/20:00 LT was caused by a second growth rate
increase that peaked at 22:30 UT just preceding this event).
This clearly shows that the gravity term,g/νi lo, enhanced by
the larger F layer heights in the evening, contributed to the
rather rapid exponential growth inδEx (Fig. 5 Case 1a) and
hence to the prompt bubble development on the evening of
23 October.

We now compare the results of 2 October for which GW
amplitude wasδW0 with that of 5 October for which this am-
plitude was as large as 4δW0. On 2 October the exponential
growth of the polarization electric field was less pronounced
(than on 23 October) and as a result bubble did not develop
(till ∼90 min). On 5 October theδE exponential growth,
though enhanced by the GW amplitude of 4δW0, was still
smaller than on 2 October, but instability did develop (within
∼35 min) in the form of bottom type spread F. The role of
gravity waves in this instability development appears to be
evident from the following reasoning. The polarization elec-
tric field, in its early stage of the growth can be represented
by a simplified form of the Eq. (2) fort�1/γR as given by:

δEx = sx t

The sx contains contributions from both the GW perturba-
tion winds and the background zonal winds that determine
the intensity of theδEx in its early stage of develpment (as
also noted before). On 5 October,sx was four times larger
than 2 October and thus bottomside irregularties developed
on 5 October inspite of the fact that the growth rate is slower
than 2 October. From a careful examination of the radar map
on 5 October, in Fig. 3a we make a significant observation
that the bottom type spread F local time pattern immediately
starting from its initiation at∼22:00 UT (19:00 LT) contains
a wave structure with period of the order 1-h that appears to
be compatible with the precursor GW structure detected in
the digisonde data. Thus the role of GW winds appears to be
manifesting itself in the structring of the bottom type spread
F in this case. Its development into topside penetrating bub-
bles did not evolve due to the inadequate growth rate factor

γ R that remained low till∼23:00 UT. (An ensuing rapid in-
creaae in its value produced the bubble event at 23:20 UT
which is discussed in detail by Kherani et al., 2009). We
should point out here that the zonal background wind which
is eastward at this time could have an intensity of the or-
der of 70 m/s (Abdu et al., 2005) corresponding to the pre-
reversal drift of∼15 m/s registered on this evening. Such a
wind, though of relatively smaller intensity, may also have
contributed to the bottom type spread F development on this
evening according to the wind driven instabilty mechanism
discussed by Kudeki et al. (2007).

Linear analysis presented above only ensures initial
growth of CII without taking into account temporal varia-
tions of ambient parameters such as vertical drift and rapidly
varying density owing to the instability itself. These vari-
ations, depending upon its nature, may or may not allow
exponential growth to continue. This aspect can be exam-
ined only with a nonlinear simulation which is presented in
companion paper (Kherani et al., 2009a). The results of the
nonlinear simulation confirmδEx growth characteristics pre-
sented above except for Case 2b. For this case, simulation
shows suppression of instability caused by rapid downward
motion of ionosphere after pre-reversal peak (Fig. 3b). It is
also found that instability keeps growing and gives rise to
bubble for Case 2c where elevated GW amplitude overcomes
damping effects of rapid downward motion, and contributes
to recurring increases in the vertical drift, on 5 October 2005.
The first such bubble development can be seen at∼23:20 UT
(20:20 LT) on this evening.

We may point out that the GW characteristics (wavelength,
period and wind velocities, etc.) used in the model calcula-
tions may not be exactly the same as those that must have
been present on the days of these observation. This is be-
cause we do not have measurements of the GW wind fields
over this or any other longitude sector of the equatorial region
for the precursor conditions on which to base the values used
in our calculation. We expect that this situation does not im-
pact much on the important findings from this study because
(a) the gravity wave parameters inferred from the present ob-
servational data and that adopted in the model calculations
are in general consistent with the theoretical predictions as
presented in the companion paper by Fritts et al. (2008) and
the results by Kherani et al. (2009b) and (b) they are based on
comparing the results for selected pairs of days. In any case
the agreement between our findings as inferred from the ob-
servations and that obtained from the model calculations tend
to reinforce such an expectation. We need, however, to pur-
sue efforts for more quantitative evaluations on a minimum
level of GW intensity required to seed an instability growth
for a specific prereversal enhancement intensity and vice
versa. This is a challenging task since the lack of full def-
inition in terms of perturbation wavelengths, periods, and the
zonal and vertical winds of the GWs based on observational
data makes it difficult to assess the question of a minimum
level of geophysical noise/vis-a-vis gravity wave amplitudes.
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In the line of experimental/observational approach used in
this paper, further perfection towards a better quantification
of the measurable parameters can be achieved in different
ways. For example, the operational mode of the digisonde
can be set up to yield better resolutions in height and density
of the bottomside F layer. Correlation/association between
GW oscillation detected by the digisonde at Fortaleza with
the spread F diagnosed over Sao Luis, (separated in longi-
tude by 650 km), can be improved by operating additional
one or two equipments at strategically spaced smaller dis-
tances from the one at a dip equatorial site. A still broader
approach would call for a coordinated multi-instrument cam-
paign efforts to collect diverse data sets including the thermo-
spheric zonal, meridional and vertical wind fields of the bot-
tomside F region with GW resolution, covering the precur-
sor period into the post sunset hours together with the high
resolution diagnostics on background ionospheric conditions
and the irregularity structuring. It is of particular interest to
evaluate and resolve the question of the possibly competing
contributions to the instability generation arising from east-
ward zonal wind, through the PRE and the wind driven insta-
bility as discussed by Kudeki et al. (2007), and that arising
from perturbation winds due to GWs in combination with the
PRE in the line discussed in this paper. Radars, Digisondes,
Fabri-Perrot interferometers and optical imagers etc. are to
be deployed at strategic locations extending from dip equa-
tor to low latitudes as well as covering longitudes considering
the dominant zonal propagation of the GWs. Such measure-
ments could be complemented with observation by satellites
of opportunity such as for example the C/NOFS which is now
in orbit.

5 Conclusions

We have analyzed radar and digisonde data collected dur-
ing the SpreadFEx campaign to investigate the importance
of GW influences in initiating equatorial spread F irregular-
ity development during post dusk hours. The analysis fo-
cused on the ambient conditions of the evening IT, in terms
of the prereversal enhancement in zonal electric field/vertical
drift, the F layer bottom-side density gradients, and the den-
sity fluctuations in the form of GWs that were present, as
precursors to post sunset spread F development. The obser-
vational findings on the possible GW influence on spread F
instability initiation were modeled using the theory for the
linear growth of the RTI process, with encouraging results.
The main conclusions from this study are the following:

1. The features of GWs as observed in their signatures in
the F layer bottom-side densities are in general agree-
ment with those predicted by theory for GWs propagat-
ing from tropospheric convective sources as identified
from complementary experiments conducted during the
SpreadFEx campaign;

2. A large degree of day-to-day variability was present in
the precursor GW characteristics as seen in their signa-
tures in F layer densities as well as in the prereversal
vertical drift;

3. GW winds can contribute significantly to the polariza-
tion electric fields controlling the instability growth, de-
pending on the F layer vertical drift velocity, the layer
height and height gradient in density at the F layer
bottom-side;

4. Spread F instability initiation and continuing devel-
opment depend upon the precursor condition of the
evening prereversal electric field/vertical drift, bottom-
side density gradients and a density perturbation as a
seed source, that complement/compete one another. It
is found from the cases analyzed here that radar 5-m ir-
regularity plumes, indicative of the presence of topside
bubbles, can be generated for precursor vertical drift ve-
locities exceeding 30 m/s even when the precursor GWs
induced density oscillations are marginally detectable
by the digisonde;

5. When the instability growth rate due to the control
factors arising from the evening vertical drift (V z/L)
and gravity (g/νinL) is insufficient, or marginal, for
spread F development, the presence of GW winds can
enhance the growth of instability polarization electric
fields leading to spread F irregularity development ei-
ther as bottom type spread F or vertically penetrating
plumes/density depletions. The agreement between the
theory based model calculation and the observational
data presented here provides evidence that GW induced
seed perturbation do indeed operate in the process of
spread F initiation and the ensuing evolution to form
topside bubbles;

6. The results suggest that GW winds could be an impor-
tant driver for bottom type spread F development whose
evolution to topside bubbles is dependent on the growth
rate factors determined also by the vertical drift and F
layer heights (gravity term);

7. In view of the evaluation by Fritts et al. (2008) that GW
characteristics at the thermospheric/ F layer heights are
consistent with those of the GWs propagating upward
from tropospheric convective regions, the present set
of results appears to provide evidence that tropospheric
GWs can be an important cause of the spread F day-to-
day variability.

Further analysis is continuing towards establishing more
quantitative relationship between the different control param-
eters related to spread F development processes.
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Appendix A

In order to derive the governing equation for perturbed elec-
tric field δE, following equation, derived using Maxell’s
equation under divergence-free current density condition, is
employed: we use the wave form of the Maxwell’s equation
for perturbed electric fieldδE:

∇
2δE −

1

c2

∂2δE

∂t2
− ∇(∇.δE) − µo

∂δJ

∂t
= 0 (A1)

where only first order terms are kept. The divergence-free
current density condition∇·δJ=0 implies∇·δE=0 (Kherani
et al., 2009c). The unstable GRTI wave is low-frequency
wave (Kelley, 1989) for which the second term in the above
equation can be ignored. The above equation thus reduces to
following form:

∇
2δE − µo∂δJ/∂t = 0 (A2)

HereδJ represents the total perturbed current driven by elec-
trical and mechanical forces and is given by the following
expression:

δJ = σ o.δE + δσ · Eo + δjm

whereσ=σ 0+δσ is the conductivity tensor andδjm is the
current density caused by the mechanical and gravitational
forces. In the linearised form, this can be written as follows:

δjm=eno(δu
i
−δue)+e(ui

o−ue
o)δn=eno1δuM

+e1uM
o δn

The governing Eq. (A2) is derived in Cartesian plane (x
(west)-y (up)) perpendicular to the magnetic fieldBoẑ. Sub-
stitutingδJ in Eq. (2) and neglecting ion/electron inertia lead
to following equation forδE

−
∂δEx

∂t
−

Eox

σ o
P

∂δσP

∂t
−

e

σ o
P

1uM
ox

∂δn

∂t
= 0; (A3)

−
∂δEy

∂t
−

Eo
y

σ o
P

∂δσP

∂t
−

e

σ o
P

1uM
oy

∂δn

∂t
= 0 (A4)

Provided, following conditions are satisfied:

1

µoσp

∇
2δEx −

σ o
H

σ o
p

∂δEy

∂t
−

1

σ o
p

∂σ o
H

∂t
δEy = 0; (A5)

1

µoσp

∇
2δEy +

σ o
H

σ o
p

∂δEx

∂t
+

1

σ o
p

∂σ o
H

∂t
δEx = 0 (A6)

The conditions (A4–A5) lead to the dispersion relation for
the shear Alfven waves (by assumingδ=δexp[i(k.r−ωt)])

which is discussed by Basu (2004) in the context of GRTI.
We now focus on the governing equation for zonal perturbed
field δEx in Eq. (A2) which is the principal field associated
with GRTI.

∂δEx

∂t
+

e

σP

(
1UM

ox + 1UE
ox

) ∂δn

∂t
= 0 (A7)

Here,1uE
o and1uM

o are the relative motion of ion-electron
caused by electrical and mechanical forces respectively.
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)
; σ o
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HereW is the wind,E0 is the ambient electric field in the
ionosphere. The time-derivative of perturbed densityδn in
(A6) can be replaced by the spatial-derivative of perturbed
particle flux using ion continuity equation:

∂δn

∂t
= −δUy

∂no

∂y

where

δUy =
1

1 + κ2
i

(
−κ2

i

δEx
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δEy

B0
− κiδWx + δWy

)
≈ −
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+
1
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(
δW y

κi

− δWx)

The governing equation forδEx can finally be written as fol-
lows:

∂δEx

∂t
− γR δEx = sx (A8)

where γR=

(
−
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Bo
−Wy+

g
νi

)
d logno
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; sx=
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1
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)
.
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