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Abstract. Physical meaning of the equinoctial effect for
semi-annual variation in geomagnetic activity is investigated
based on the three-hourlyam index and solar wind parame-
ters. When the z component of the interplanetary magnetic
field (IMF) in geocentric solar magnetospheric (GSM) co-
ordinates is southward,am indices are well correlated with
BsV

2
x , whereBs is the southward component of the IMF and

Vx is the solar wind velocity in the sun-earth direction. The
am-BsV 2

x relationship, however, depends on the range ofV 2
x :

the am in higher ranges ofV 2
x tends to be larger thanam

in lower ranges ofV 2
x for the same value ofBsV 2

x for both
equinoctial and solstitial epochs. Using the data sets of the
sameV 2

x range, it is shown that distribution of points in the
am-BsV 2

x diagram at the solstitial epochs overlaps with that
at the equinoctial epochs and the averageamvalues in each
BsV

2
x bin in solstitial epochs are closely consistent with those

in equinoctial epochs, ifV 2
x for each point at solstices are re-

duced toV 2
x sin2 (9) where9 is the geomagnetic colatitude

of the sub-solar point. Further, it is shown that monthly av-
erages of theam index in the long period is well correlated
with the values of sin2(ψ) for the middle day of each month.
These findings indicate that the factor that contributes to the
generation of geomagnetic disturbance is not the velocity of
the solar wind, but the component of the solar wind velocity
perpendicular to the dipole axis of the geomagnetic field. The
magnitude of the perpendicular velocity component varies
semi-annually even if the solar wind velocity remains con-
stant, which is considered to be the long-missed key factor
causing the equinoctial effect.
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1 Introduction

The general tendency for magnetic disturbances to be more
stormy at equinoxes than at solstices has been recognised
for more than 150 years (Sabine, 1852) and the cause of the
semi-annual variation has been studied by many researchers
since them. Three principal hypotheses have been pro-
posed; the axial hypothesis (Cortie, 1912), the equinoctial
hypothesis (Bartels, 1932; McIntosh, 1959), and the Russell
and McPherron (RM) hypothesis (Russell and McPherron,
1973). The axial hypothesis considers the heliographic lati-
tude of the earth, relating the enhanced geomagnetic activity
in March and September to the fact that the sub-earth point
is at that time most separated from the solar equatorial plane
and hence closer to active spot regions where eruptive phe-
nomena often occur or nearer to mid-latitude coronal holes
from which high-speed wind flows out. The key parameter in
the equinoctial hypothesis, on the other hand, is the geomag-
netic colatitude (9) of the sub-solar point, that is, the angle
between the solar wind flow and the dipole axis of the earth.
However, it has not been elucidated why and in what way the
geomagnetic colatitude is involved in the semi-annual mod-
ulation of geomagnetic activity. The RM hypothesis is based
on the recognition that the magnetic field in the solar equato-
rial plane tends to have the largest southward component in
geocentric solar magnetospheric (GSM) coordinates in early
April and October, depending on polarity.

The explanation by the RM hypothesis has been generally
accepted for many years. This may be primarily because it
related the semi-annual variation of geomagnetic activity to
the change in the southward component of the IMF which
plays an essential role in the dayside magnetic reconnection
between the interplanetary magnetic field (IMF) and the geo-
magnetic field. However, it was argued from very early time
after its proposition that the RM effect is not enough to ex-
plain the full amplitude (Murayama, 1974; Berthelier, 1976;
Schreiber, 1981). It has also been pointed out that the diurnal
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Fig. 1. Plot of geomagneticam index versusBsV 2
x (GSM) for 1998–2007 in velocity ranges of (upper) 100 000<V 2

x <200 000, (middle)
200 000<V 2

x <300 000, and (lower) 300 000<V 2
x <400 000, whereVx is the solar wind velocity in the sun-earth direction in km/s andBs is

the magnitude of the southward component of the IMF in nT.(a) Equinoctial epochs (±15 days from equinoxes).(b) Solstitial epochs (±15
days from solstices).

variation does not accord with the characteristics predicted
by the RM hypothesis (Mayaud, 1978; Berthelier, 1990). A
lot of studies have been done to clarify what a portion of the
semi-annual variation in geomagnetic activity is attributed
to each of the mechanisms (Cliver et al., 2000, 2002, 2001;
O’Brien and McPherron, 2002). de La Sayette and Berthelier
(1996) pointed out another effect which would arise from the
feature thatBz in the geocentric solar equatorial (GSEQ) co-
ordinate system hasBz component in the GSM coordinates.
By the elaborate analysis, they showed that a characteristic
pattern in the annual-diurnal variations derived from the ef-
fect coincides with the pattern appearing in the part of the
geomagnetic activity which is not dependent on the IMF po-
larity.

It is very likely that various effects as described above
work together to produce the annual-diurnal variations in
geomagnetic activity. The purpose of the present study is
not to evaluate contribution of each effect to the phenomena,

but to investigate physical meaning of the equinoctial effect.
Recent detailed studies based onam andDst indices have
shown that the equinoctial effect plays the dominant role in
the semi-annual variation in geomagnetic activity (Cliver et
al., 2000, 2001; O’Brien and McPherron, 2002), but yet, the
physical mechanism by which the equinoctial effect affects
geomagnetic activity has not been clarified (Cliver et al.,
2004). The present study proposes an idea how the equinoc-
tial effect works.

2 Data and analysis

We investigate the semi-annual variation observed in theam
index. Mid-latitude range indices, such asam, have been
shown in many studies to be closely correlated with the prod-
uct of BsV 2

x , whereBs is the southward component of the
IMF in GSM coordinates, andVx is the solar wind velocity
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in the sun-earth direction (Svalgaard, 1977; Feynman, 1980;
Maezawa and Murayama, 1986), although the coefficients
appearing in the linear relation betweenamandBsV 2

x differ
somewhat according to the data period and averaging proce-
dures used to derive the relationship. In the present study,
the relation betweenam index calculated at an interval of 3 h
(Menvielle and Berthelier, 1991) and the solar wind param-
eters is investigated directly. The values for the solar wind
velocity and the IMF were taken from the Level 2 hourly
data acquired by the Advanced Composition Explorer (ACE)
satellite. The delay between passage of the solar wind past
the ACE satellite and the time at which the wind encounters
the earth (ca. 1 h) is accounted for by shifting the hourlyBs
andVx data by 1 h to afford a data set of three-hourly mean
values forBs andVx corresponding to theam index.

Figure 1a, b plotsam againstBsV 2
x for equinoctial and

solstitial epochs (±15 days from equinoxes and solstices) for
the period 1998–2007. As theam-BsV 2

x relationship derived
from the three-hourly data set was found to be dependent on
the range ofV 2

x (Yoshida, 2009a), theamand solar wind data
were divided into separate data sets according to the range of
V 2
x , and the semi-annual variation in each data set was in-

vestigated separately. Figure 1 shows theam versusBsV 2
x

relationship for three ranges ofV 2
x . When diagrams for the

data sets of the sameV 2
x ranges are compared, a tendency

is seen that theam value is larger at equinoxes than at sol-
stices for the same value ofBsV 2

x in average, illustrating the
equinoctial effect. However, it is also seen from the plots in
Fig. 1 thatamin higher ranges ofV 2

x is obviously larger than
am in lower ranges ofV 2

x for the sameBsV2
x values for both

equinoctial and solstitial epochs. Owing to this feature, if av-
erage ofV 2

x at solstitial epochs is larger than average ofV 2
x

at equinoctial epochs, we would obtain an unexpected result
that the averageamat solstices is larger than the averageam
at equinoxes. It is therefore of critical importance in the in-
vestigation of hidden factor in the equinoctial effect to com-
pare theam-BsV 2

x relationships for equinoctial and solstitial
epochs based on data sets of the same range ofV 2

x .
The dependence of theam-BsV 2

x relationship on the range
of Vx does not mean thatam should be more appropriately
scaled according to a higher power ofVx . It was confirmed
that a power (n) greater than 2 does not change the situation.
That is, theam-BsV nx relationship for whichn is greater than
2 still depends on the range ofVx : The larger the range of
Vx , the larger theam for the same value ofBsV nx (Yoshida,
2009a). This dependence of theam-BsV 2

x relationship on
the range ofVx is very likely to have some significant physi-
cal meaning in relation to the efficiency of the dayside mag-
netic reconnection. However, a detailed examination of such
a meaning is beyond the scope of the present study. We only
briefly note here that the dependence of theam-BsV 2

x rela-
tionship on the range ofVx is considered to indicate that the
efficiency of the merging of magnetic fields depends on not
only the influx ofBs of the IMF, but also the configuration
of the magnetopause which is basically determined by the

balance between the Earth’s magnetospheric magnetic pres-
sure and the pressure of bombarding solar wind particles.
This feature may be related to the variation of the strength of
magnetic field reconnection with the depth to which the so-
lar wind penetrates into the geomagnetic field (Crooker and
Siscoe, 1986).

Previous studies investigating the physical meaning of the
equinoctial effect postulated that the equinoctial effect is in-
dependent of solar wind parameters, and that the influences
of each on geomagnetic activity are separable (Svalgaard,
1977, 2002; Cliver et al., 2004). It was found in the present
study, however, that the rate of reduction of averageam at
solstices apparently differs for different values ofBsV

2
x , if all

the data are included in the calculation. This finding as well
as the recognition of the features observed in Fig. 1 led the
author to think that the key parameter relevant to the equinoc-
tial effect may be hidden in the solar wind velocity. The idea
that the solar wind velocity effective to the emergence of ge-
omagnetic disturbance might be its component perpendicu-
lar to the dipole axis was conceived intuitively, not logically.
But it was immediately understood that the idea readily ex-
plains why the colatitude9 of the sub-solar point plays an
essential role in the equinoctial effect, for the perpendicular
component of the solar wind velocity is obtained by multi-
plying the factor sin (9). A crucial point of this idea is that
the perpendicular component changes semi-annually even if
the solar wind velocity remains constant throughout the year.

The proposed idea is examined quantitatively in Fig. 2. In
Fig. 2a, b,am index is plotted againstBsV 2

x for equinoctial
and solstitial epochs, respectively. The range ofV 2

x in these
diagrams is constrained to 100 000<V 2

x<200 000 in order to
ensure valid data comparison, and according to the idea, ob-
servedV 2

x values at solstitial epochs are reduced by a factor
of 0.841, corresponding to sin2(66.5), where 66.5 is the aver-
age angle of the solar wind flow direction to the dipole axis
of the earth at solstices. Multiplication by this factor thus af-
fords the solar wind velocity component perpendicular to the
dipole axis of the earth. The resultant distribution of points
for solstitial epochs overlaps the data for equinoctial epochs
excellently (Fig. 2c). Figure 3 shows that the averageam
values in eachBsV 2

x bin in solstitial epochs, whereV 2
x is re-

duced by a factor 0.841, are closely consistent with those in
equinoctial epochs. This result confirms that the component
of solar wind velocity that is effective in producing geomag-
netic disturbance in mid latitude is that perpendicular to the
dipole axis of the earth. This component is considered to be
the long-missed physical factor giving rise to the equinoctial
effect.

3 Monthly averages of theam index

The semi-annal variation in geomagnetic activity is not dis-
cernable in the monthly averages of theam index over short
intervals due to the relative dominance of the effect of solar
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wind velocity variation. Monthly mean values of theam in-
dex increase according to the square of the mean velocity,
and this behaviour obscures the equinoctial effect on the vari-
ation in theamindex. When the mean value ofV 2

x at solstices
is larger than that at equinoxes, the meanam index at sol-
stices could also be larger than that at equinoxes (see Fig. 1).
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Fig. 3. Comparison of averageam values for eachBsV 2
x bin for

equinoxes (blue circles) and those for solstices (red circles). Solar
wind velocity is reduced by a factor sin (66.5) for solstices.

However, if theam index is analyzed over a sufficiently long
period, the monthly averages exhibit a distinct semi-annual
variation. Figure 4a shows the semi-annual variation in the
monthly averages of theamindex over a 47-year period from
1961 to 2007. Over such a long period, the average and dis-
persion of solar wind velocity may become essentially uni-
form for all months. The monthly averages of theam in-
dex are plotted against sin2(.ψ) in Fig. 4b, where values of
sin2(ψ) are calculated for the middle day of each month. It is
seen that the two values are well correlated, representing fur-
ther evidence in support of the proposal that the equinoctial
effect is caused by the semi-annual change in sin2(ψ).

An empirical function including a variable cos2(ψ) has
been previously proposed to explain the semi-annual varia-
tion in the averageam index (Svalgaard, 1977, 2002). We
confirmed that the empirical function is also well correlated
with the monthly averages of theam index. Interestingly,
there is a good correlation between sin2(ψ) and the empir-
ical function, as shown in Fig. 4c. This is not surprising,
since the first order of the Taylor expansion of the empirical
function reduces to a linear function of sin2(ψ). The physi-
cal meaning of the empirical function, however, is not clear
(Svalgaard, 2002). On the other hand, the function sin2(ψ)
has a sound physical basis in that it expresses the semi-annual
change in the velocity component perpendicular to the dipole
axis, which is supposed to be the effective component of so-
lar wind velocity relevant to the solar wind-magnetosphere
coupling.

4 Discussion

According to the equinoctial hypothesis emergence of geo-
magnetic disturbance is regulated by the angle between the
solar wind flow and the dipole axis of the earth (ψ), with the
weakest geomagnetic activity at solstices whenψ reaches a
minimum. The Russell-McPherron (RM) hypothesis, on the
other hand, asserts that the solar wind-magnetosphere cou-
pling is most enhanced at equinoxes, becauseBs tends to
take maximum values at the epochs. The RM effect has
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been regarded as a most satisfactory explanation for the semi-
annual variation in geomagnetic activity. This is primarily
because the RM effect is closely related to the magnetic re-
connection between the interplanetary magnetic field (IMF)
and the geomagnetic field, which involves the southward
component of the IMF as a principal part. It was pointed out
that characteristics of the diurnal variation does not accord
with the prediction by the RM hypothesis, but it coincides
with the prediction by the equinoctial hypothesis (Mayaud,
1978; Berthelier, 1990), nevertheless, the equinoctial hy-
pothesis has been disfavoured due to the absence of a mech-
anism that relates the effect to the magnetic merging process.
Our finding affords the long-sought explanation that relates
the equinoctial effect to the magnetic merging process: Geo-
magnetic activity at solstices becomes weak because the so-
lar wind velocity effective to the magnetic reconnection is
reduced by a factor sin2(9), where9 is the angle between
the solar wind flow direction and the dipole axis of the earth
at solstices. If this explanation is valid, it raises an old prob-
lem about the site of the dayside magnetic merging, for it
seems to suggest that the magnetic reconnection is likely to
occur near the magnetic equator of the earth rather than at the
sub-solar point where the solar wind collides on the magne-
topause. There have been a lot of arguments about the site of
reconnection. This is an important problem closely related
to the mechanism by which the solar wind energy enters into
the magnetosphere. However, the thorough discussion on the
problem is beyond the scope of this paper. We will treat this
issue from wider points of view in another paper where emer-
gence of high- and mid-latitudes geomagnetic disturbances is
discussed in relation to the magnetic merging at the dayside
magnetopause (Yoshida, 2009b).

The explanation for the cause of the equinoctial effect pro-
posed in the present study is surprisingly simple, but we think
it solves a problem that has remained unsolved for many
years. Such a simple explanation of the equinoctial effect
may have been overlooked in previous studies for two rea-
sons. The first reason is that the semi-annual variation rec-
ognized in the average values of theam index oraa index
in long periods is used as a basis of consideration in most of
previous analyses, whereas theam indices are directly com-
pared to the three-hourly values of solar wind parameters in
the present study. Studies on average values of theam index
in a long period are likely to miss the essential feature of the
equinoctial effect, that is, that the effective solar wind veloc-
ity related to the generation of magnetic disturbance changes
according to sin(ψ). The second reason is the classification
of the data sets according to the ranges ofV 2

x , which is partic-
ularly important in the quantitative evaluation of the equinoc-
tial effect. Although it was reported that the meanam index
at equinoxes tends to be larger than that at solstices for the
same value ofBsV 2

x , (Cliver et al., 2000), the need to con-
strain data to sets of the sameV 2

x ranges in order to evaluate
the equinoctial effect quantitatively has been overlooked.
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The equinoctial effect was once explained as being related
to the Kelvin-Helmholtz instability at the boundary of the
magnetosphere (Boller and Stolov, 1975). However, it was
soon shown that the model requires more energy should be
transferred by the Kelvin-Helmholtz waves than by magnetic
merging, which is very unlikely (Hill, 1979). This realisation
prompted researchers to search for a mechanism that con-
nects the equinoctial effect to the merging process in which
Bs plays an essential role, although there was no clue to re-
late the equinoctial effect toBs . The explanation proposed
in the present study shows that the physical basis was not in
the phenomena related toBs , but in the velocity component
that is involved as another principal factor in the magnetic
reconnection process. It is interesting to note that both the
RM and equinoctial effects are related to seasonal changes in
the efficiency of solar wind-magnetosphere coupling caused
by changes in the geometric configuration between the sun
and the geomagnetic dipole field, one in relation toBs of the
IMF, and the other in relation to the component of solar wind
velocity perpendicular to the dipole axis.
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