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Abstract. On 1 October 2005, during the SpreadFEx cam-
paign, a distinct mesospheric bore was observed over São
Jõao do Cariri (7.4◦ S, 36.5◦ W), Brazil by using airglow all-
sky imagers. The event appeared both in the OI5577 and OH
emissions, forming a well extended wave front which was
followed by short waves from behind. Simultaneous wind
and temperature data obtained by the meteor radar and the
TIMED/SABER satellite instrument revealed that the bore
event occurred during the Doppler ducting condition in the
emission layers.

Keywords. Atmospheric composition and structure (Air-
glow and aurora) – Meteorology and atmospheric dynamics
(Middle atmosphere dynamics; Waves and tides)

1 Introduction

A Mesospheric bore is one of the most interesting atmo-
spheric wave phenomena that occur in the upper mesosphere
and lower thermosphere region (MLT). It is a sharp wave
front with a large horizontal extension (more than 500 km)
followed by a train of wave crests. It was first observed by
Taylor et al. (1995) during the ALOHA-93 campaign using
an all-sky imager. Dewan and Picard (1998, 2001) have ex-
plained the phenomenon as an internal undular bore propa-
gating in the mesosphere. The occurrence of this sort of event
would be associated with a temperature inversion layer that
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acts as a wave duct. Smith et al. (2003) and She et al. (2004)
first reported simultaneous occurrence of the mesospheric
bore and temperature inversion layer. Since then it has been
recognized that the inversion layer could play an important
role in the formation of the mesospheric bore.

In the equatorial region, a profusion of mesospheric bores
has been reported by Fechine et al. (2005) and Medeiros et
al. (2005). In these papers, the authors reported observations
of more than 60 mesospheric bores over northeastern Brazil
during a period of two years. This amount of data made it
possible to study the preferential propagation direction of
the wave fronts that in most of the cases the fronts propa-
gate from the continent to the Atlantic Ocean. The data also
showed that there were occurrences of complementarities
which has not been predicted by Dewan and Picard (1998).

Simultaneous measurements of the mesospheric airglow
by an all-sky imager and meteor radar wind profiles at São
Jõao do Cariri (7.4◦ S, 36.5◦ W), and temperature profiles
by TIMED/SABER satellite (Russell et al., 1999; Mertens
et al., 2004) made it possible to carry out a more quantita-
tive investigation of the mesospheric bore propagation condi-
tions. The present work reports a case study of a mesospheric
bore observed at S̃ao Jõao do Cariri, Brazil. In Sect. 2,
we present observational evidence of the mesospheric bore
and the mesospheric environment when the bore passed. In
Sect. 3, we discuss in the background wind field during the
bore event, and in Sect. 4, we summarize the observation re-
sults.
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Fig. 1. (a) (top) TIMED/SABER soundings (tangent points represented by white dots) over the northeastern of Brazil between 22:00 and
24:00 (LT). The red dot marks the location of São Jõao do Cariri and the dotted circle represents the area recorded by imager at airglow
altitude. (b) Successive images of the all-sky OI5577 (top) and OH (bottom) airglow emission images showing the mesospheric front,
observed on the night of 1 October 2005, during the SpreadFEx campaign. The arrows indicate the propagation direction of the wave front.

2 Observation and results

2.1 Mesospheric front on 1 October 2005

The First SpreadFEx Campaign was carried out from 22
September to November 2005, as a part of the NASA Living

with a Star Program. The main objective of the campaign
was the observation and modeling of gravity waves poten-
tially capable of seeding plasma instabilities in the equato-
rial ionosphere (Fritts et al., 2009). During the campaign,
several kinds of mesospheric front events were observed at
São Jõao do Cariri (7.4◦ S, 36.5◦ W), Brazil, under different

Ann. Geophys., 27, 1399–1406, 2009 www.ann-geophys.net/27/1399/2009/



J. Fechine et al.: Undular mesospheric bore in a Dopple duct 1401

 1 

(a) (b) (c) (d) (e)

T (K) N2 (x 10-4 s-2) Wind (m/s) m2 (x 10-7 m-2) VER normal.

� (x 104 K) Brünt - Väisäla Wind ����z (km) Airglow

 

Fig. 2. (a) Kinetic temperature profile (solid line) obtained by the TIMED/SABER satellite on 1 October 2005, over São Jõao do Cariri
and potential temperature profile (dotted line). The dashed lines represent the adiabatic lapse rate.(b) Square of Br̈unt-Väis̈alä frequency
profile. (c) Wind profile in the same propagation direction as the wave front measured at 18:00 (LT) by meteor radar (solid line). The
dotted line represents the wave phase velocity.(d) Vertical squared wavenumber (m2) (solid line) and vertical wavelength (λz) (dotted line).
(e) normalized volumetric emission rate (VER) profiles of the OH at 1.6µm (solid line) and OH at 2.0µm (dashed line) measured by the
TIMED/SABER satellite, and OI5577 (dotted line) calculated using MSIS-90 atmospheric model. The horizontal solid lines in all graphs
show the top and bottom of the duct.

propagation conditions. Figure 1a shows the location of the
observatory (red dot) where the all-sky imager and meteor
radar were operated. The all-sky imager observed the emis-
sions of the OH Meinel band (715–930 nm) and OI green
line at 557.7 nm (OI5577). Details of the imager system have
been reported by Medeiros et al. (2001). The dotted circle (a
diameter of 1200 km) represents the area covered by the all-
sky imager at the OH emission altitude (around 87 km). The
white dots indicate the satellite TIMED/SABER temperature
soundings (tangent points) between 22:00 and 24:00 (LT) on
the night of 1 October 2005.

The first mesospheric front occurred on the night of 1
October 2005 over S̃ao Jõao do Cariri. Figure 1b shows
a sequence of three images observed from the OI5577 and
OH emissions at 18:14, 18:28 and 18:43 LT. The image
at 18:14 (LT) marks the beginning of observation in this
evening. The OI5577 image shows a clear, sharp and ex-
tended form of a wave front, followed by three bright crests
behind. The front moved towards NE with a velocity of
67 m/s. The OH images also presents a similar front structure
although the structure being less clear and tenuous. It should
be noted from the images that the OH front is located almost
at a same line to the OI5577 front, indicating that both the
wave front are in phase. The front lasted about 86 min and
then disappeared in the NE horizon at 19:40 (LT).

From the wave structures of the OI5577 image, we cal-
culated the wave parameters using the FFT two-dimensional
spectral analysis (Garcia and Taylor, 1997; Medeiros et al.,
2003; Wrasse et al., 2007). The results showed that the meso-
spheric front with the horizontal wavelength of 42.4 km prop-
agating towards NE (66◦ of azimuth), observed period and
phase speed of 7 min and 67.5 ms−1, respectively. Meteor
radar wind data were used to calculate the intrinsic parame-
ters of the wave.

2.2 Mesospheric environment on the night of the event

In order to investigate mesospheric environment during the
bore event, wind profiles obtained by meteor radar, OH
volumetric emission rate (VER) and temperature profiles
obtained by the TIMED/SABER instrument (Mertens et
al., 2004; Russell et al., 1999) were used. Figure 2a
presents a temperature profile (solid line) obtained by the
TIMED/SABER instrument at a mean tangent point coor-
dinate (4.6◦ S; 42.7◦ W) at 22:48 (LT) on 1 October 2005.
Potential temperature profile shown by the dotted line was
derived from the temperature and pressure data obtained by
TIMED/SABER. The increasing of the potential tempera-
ture between 70 and 95 km indicates a stable condition of the
mesosphere. The dashed line represents the adiabatic lapse
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rate, i.e.,−9.8 K/km. Figure 2b presents the square of Brünt-
Väis̈alä frequency. Analyzing Fig. 2a and b we can see that,
in general, the mesosphere was stable, presenting only nar-
row regions around 71, 87 and 99 km whereN2 was zero.
Between 89 and 97 km we observe a stable region where
N2 has values between 6×10−4 s−2 and 12×10−4 s−2, i.e., a
Brünt-Väis̈alä frequency from 4 to 8 min, which agrees with
the intrinsic period measured for the wave train behind the
mesospheric front.

We also observe in the temperature profile an inver-
sion layer between 93 and 97 km, with the amplitude of
34 K. Above the peak of the inversion layer the tempera-
ture decreases with a higher rate than the adiabatic. The
thickness and amplitude of the mesospheric inversion layer
(MIL) agree with the characteristics observed by Fechine et
al. (2007) for MILs over S̃ao Jõao do Cariri.

Comparing this observation with previous studies, the
minimum temperature of the MIL was 166 K, i.e., approx-
imately 19 K below the mean minimum temperature. The
peak temperature in the MIL was 201 K, i.e., close to the
mean maximum temperature of 205±5 K. The bottom and
top altitudes of the MIL (93 and 97 km, respectively) are
larger than the averages of MILs observed over São Jõao do
Cariri, which were 75±3 km and 83±4 km, respectively.

Figure 2c shows the wind profile (solid line) in the wave
front propagation direction, and the observed phase speed of
the mesospheric bore (dotted line). The wind profile was ob-
tained with the 3 h averaged and vertically interpolated for
every one km in order to get one wind profile per hour. Ana-
lyzing Fig. 2c, we can see that the wind flows in the opposite
direction of the bore.

Below 82 km the wind showed a velocity from−30 to
−40 ms−1, decreasing in magnitude until 87 km, where the
wind was around zero. Above this level the wind magnitude
increased again reaching−30 ms−1 at 91 km and−60 ms−1

at 97 km. Above 97 km the profile showed the largest neg-
ative values, between−60 and−90 ms−1. Considering the
wind velocity as 33.5 ms−1 in the height of the duct structure
(90–94 km, Fig. 2d), we found the intrinsic phase velocity of
∼101 ms−1.

Figure 2d shows vertical wavelength (dotted line) and
squared wave number (solid line) profiles calculated for the
mesospheric bore using the following gravity wave disper-
sion relation:

m2
=

N2

(ū − c)2
−

ūzz

(ū − c)
− k2

h, (1)

where,m is the vertical wave number,N2 is the squared
Brünt-Väis̈alä frequency;̄u is the basic wind velocity in the
wave direction;c is the observed phase, andkh=2π/λh is the
horizontal wave number.

The dispersion relation given in Eq. (1) is valid for grav-
ity waves propagating in an environment where the effects of
wind shear and temperature gradients can not neglect (Chi-
monas and Hines, 1986; Isler et al., 1997).

It is clear to see in them2 profile the occurrence of two
distinct regions around 96 km and 87 km, wherem2 is nega-
tive. These regions are defined as the evanescent region, i.e,
the regions where gravity waves cannot propagate vertically.
Between these two evanescent regions exists another region
wherem2 is positive, that allows the vertical propagation of
gravity waves. This region configures a duct where gravity
waves can propagate with minimum energy dissipation, sur-
rounded by evanescent regions which inhibit vertical propa-
gation (Chimonas and Hines, 1986; Fritts and Yuan, 1989).
This duct is located between 90 and 94 km and is delimited
by horizontal parallel lines (dotted lines) in all plots of Fig. 2.

Figure 2e presents the volumetric emission rate profiles of
OH at 1.6µm (solid line) and OH at 2.0µm (dashed line)
obtained by the TIMED/SABER instrument, together with
OI5577 (dotted line) emissions calculated using the MSIS-90
model (Hedin, 1991), since we do not have direct measure-
ment of the green line emission. We can observe in Fig. 2e
that the emission peak of OH is localized at 82 km, below
the nominal altitude (86 km), while the peak of the OI5577
is localized at 96 km. Also we observe that the duct region
(horizontal dotted lines), defined by positivem2, contains a
significant portion of the OI5577 layer, while only part of
topside OH layer was within the duct. It is calculated that
∼20% of the OI5577 emission originated within the duct re-
gion, as compared to∼8% of OH in 1.6µm and∼11% of
OH in 2.0µm. This can explain the clear visible wave fronts
observed in OI5577 emission as compared to the OH. It is
interesting to note that the duct was centered between 90 and
94 km, above the OH and below the OI5577 emission peaks
(82–83 and 96 km, respectively). As the wave front shows a
bright appearance in both the layers, this means that the ob-
servation doesn’t agree with the complementary effect pro-
posed by the Dewan and Picard (1998) model and described
by Medeiros et al. (2005), which predict a decrease in emis-
sion intensity of airglow layer, when the duct is localized
below the peak, in case of green line emission.

The physical parameters within the duct were calculated
and summarized in Table 1. The application of these param-
eters as boundary conditions in future simulations of wave
fronts, may contribute to improving our understanding of the
environment and morphologies of mesospheric bores.

3 Discussion

The observed mesospheric front showed a horizontally ex-
tended wave front, which is in phase both at the OI5577 and
OH emission layers. During the passage of the front over São
Jõao do Cariri, there was a ducting condition in the emission
layers as mentioned in the previous section. These observa-
tional facts lead us to believe that the front should be a meso-
spheric bore suggested by Dewan and Picard (2001), which
is: the presence of an extended bright front, followed by short
wavelength wave trains and the presence of wave ducting
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Table 1. Physical parameters observed within the duct of mesospheric front on 1 October 2005.

T θ N2 u m2 λz

(K) (K) (×10−4 s−2) (ms−1) (×10−8 m−2) (km)

Minimum 164.9 7.975 4.5 −40.5 0.2 7
Maximum 168.8 10.244 9.9 −23.8 2.0 23
Mean 166.7 9.054 6.4 −33.8 0.9 14.2

condition. Several previous works have used the same cri-
teria (Medeiros et al., 2001, 2005; Smith et al., 2003, 2005;
She et al., 2004; Fechine et al., 2005).

A similar mesospheric wave front has also been observed
by Swenson et al. (1998). They observed a bright OH air-
glow layer as a type of wall and a simultaneous increase of
the local temperature. The sodium density also increased
during the wall event. They interpreted the event as a pas-
sage of a large scale gravity wave, horizontal wavelength of
300–350 km, period of 80 min, phase speed of 75 m/s and
the vertical wavelength of 20 km. They classified it as a trav-
eling gravity wave but not as a bore because of that the ob-
served parameters showed a vertical phase propagation form.
Li et al. (2007) observed a similar phenomenon, a large in-
tensity increase in the airglow and subsequent short period
wave structure. They observed the intensity increase for both
the OH and O2 atmospheric band emissions with a time lag
of about 30–60 min. They concluded that the observed front
was due to a large scale gravity wave. Our present results dif-
fer to their results. There is no trace of vertical phase prop-
agation in the OH and OI5577 images. It indicates that the
wave is trapped in a short height range propagating only in
the horizontal direction.

3.1 Propagation condition for the mesospheric front

Recent papers that reported the occurrence of mesospheric
bores with inversion layers (Smith et al., 2003, 2005) have
proposed that the thermal duct would support the wave
fronts. In the present case, however, it seems that the wind
(the second term of Eq. 1) also has an important role in form-
ing the ducting condition. Figure 3 shows an analysis of the
m2 terms calculated using wind and temperature data for the
mesospheric bore observed on 1 October 2005 over São Jõao
do Cariri.

Analyzing the contribution tom2 (Fig. 3e) of each term
in the dispersion relation (Eq. 1), we observe the following
situation: the second derivative of the wind,

(
ūzz

/
(ū−c)

)
in

Fig. 3c dominates them2 results, whereas the contribution of
the temperature,

(
−N2

/
(ū−c)2) in Fig. 3b, and horizontal

wave number,
(
−k2

h

)
in Fig. 3d, terms are negligible. This

means that the wind played a fundamental role in the duct
formation where the mesospheric front propagates. For this
reason it is necessary to include contributions of the wind

profile to the dispersion relation whenever such events are
analyzed.

Figure 4 shows intensification of the zonal and merid-
ional winds at 14:00 and 17:00 (LT). The wind patterns pre-
sented indicate a semi-diurnal tide oscillation. This type of
intensification of the semi-diurnal tidal mode in the wind
field has been reported by Lima et al. (2007) and Buriti
et al. (2008). The zonal wind intensification was larger
above 90 km, reaching values of−120 ms−1 (westward) at
97 km. For the meridional wind the intensification was larger
above 83 km, The wind was increased from zero at 83 km to
70 ms−1 at 93 km where the meridional wind was maximum.
When the wave front was observed (an interval between the
vertical solid lines in the figure) we can see that the wind in
the direction of the wave front propagation is between−10
and −20 ms−1 below 84 km, decreasing to approximately
zero between 84 and 88 km. The wind shows a strong gra-
dient with velocities of−20 ms−1 at 89 km,−40 ms−1 at
92 km, and−60 ms−1 at 98 km. Therefore, the wind pro-
file in these regions is expected to play an important role in
the propagation of the wave.

Figure 5 presents a contour map of the normalizedm2

from 12:00 (LT) of 1 October 2005 to 12:00 (LT) of 2 Octo-
ber 2005 over S̃ao Jõao do Cariri. In these contour plots, we
assume that the time variation ofm2 is due only to the vari-
ation of the wind. Note from Eq. (1) that besides the wind,
the temperature (included in theN2 term) and the wave pa-
rameters,c andk2

h, can also vary with time. However, the
temperature and horizontal wave number variations should
not strongly influencem2, since their contribution are small
compared to the wind term, in the present case.

Figure 5 clearly shows a possible ducting region between
90 and 94 km (horizontal solid lines), also visible in Fig. 2d,
at the time of the mesospheric bore occurrence (vertical solid
lines). At the same time we can also observe two evanescent
regions at∼87 and∼96 km. The lower evanescent region
was first observed at 16:30 (LT), persisting until 23:00 (LT),
and the upper region occurred between 17:00 and 01:00 (LT).
The evanescent regions above and below strongly limit the
vertical propagation of the waves, and consequently, result-
ing loss of energy (Nappo, 2002).

The present result is somewhat new observational evi-
dence and an important fact since various reports in the litera-
ture have associated mesospheric bore occurrence only with
the existence of temperature inversion layers (Smith et al.,
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Fig. 3. Analysis of them2 terms calculated from wind and temperature data for mesospheric bore observed on 1 October 2005, over São
Jõao do Cariri.

2003, 2005; She et al., 2004). From a model of the meso-
spheric bore Dewan and Picard (1998, 2001) has already
pointed out that the duct may be generated by some combi-
nation of wind shear and a temperature inversion layer. The
present results support their model study.

The first evidence of that wind could play an important
role in the development of mesospheric fronts appeared in
Batista et al. (2002). In this paper, the authors investigated
the wave front observed by Medeiros et al. (2001) over Ca-
choeira Paulista, SP, Brazil. Both papers showed that an
intense wind shear occurred simultaneously with the event.
Smith et al. (2003) also verified the occurrence of strong
wind shear in the same height range of the wave front. These
authors, however, limited their discussion in the temperature
inversion layer for formation of the ducting condition. She
et al. (2004) observed a mesospheric front propagating in the
opposite direction to strong wind, which also suggests the
importance of the wind in the configuration of a duct.

Shiokawa et al. (2006) observed an intense wind shear
(80 m s−1 km−1) in the altitude of a mesospheric front over
Kototabang, Indonesia. The authors speculated the possibil-
ity that the wind played an important role in the wave front
generation. However, investigating the wave front propaga-
tion conditions, they used a dispersion relation of a grav-
ity wave for an atmosphere without wind shear or curvature
given by:

m2
=

N2

(ū − c)2
− k2

h −
1

4H 2
, (2)

whereH is the height scale. Based on the results of this
dispersion relation, the authors concluded that the duct con-
ditions proposed by Dewan and Picard (1998) were not con-
sistent with the mesospheric front observed.

Thus, the case study of the wave front observed at São
Jõao do Cariri on 1 October 2005, appears to be the first
demonstration that the wind played an important role in the
propagation of the mesospheric bore. Moreover, it showed
that the dispersion relation given by Eq. (1) must be used,
because it is more realistic to consider both the wind profile
and temperature gradients when diagnosing the conditions of
ducting.

4 Conclusions

On 1 October 2005, during the SpreadFEx campaign, a
mesospheric bore in the OH and OI5577 emission layers over
São Jõao do Cariri, PB, Brazil was observed. The main re-
sults found in this work are listed below:

– The analysis of the propagation conditions allows one
to conclude that the observed mesospheric front was an
undular mesospheric bore supported by a wind gener-
ated Doppler duct. This appears to be the first report of
this phenomenon in the literature;

– A strong and large variability of the wind profile gen-
erated mainly by the semi-diurnal tide seems to be re-
sponsible for forming the Doppler duct condition.
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Fig. 4. Contour plot of(a) zonal wind,(b) meridional wind and
(c) wind in the direction of wave propagation measured with meteor
radar between 12:00 (LT) of 1 October 2005, and 12:00 (LT) of 2
October 2005, over S̃ao Jõao do Cariri, PB, Brazil. The vertical
solid lines indicate the observation time of the wave front and the
horizontal solid lines delimit the top and bottom of the duct showed
in the Fig. 2.

– Different parts of the OH in 1.6µm (8%), in 2.0µm
(11%) and OI5577 (20%) emission layers contained
within the duct explain the more distinct appearance of
the mesospheric bore in the OI5577 images than in the
OH images;
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Fig. 5. Contours of normalizedm2 between 12:00 (LT) of 1 October
2005, and 12:00 (LT) of 2 October 2005, over São Jõao do Cariri.
The vertical solid lines indicate the observation time of the wave
front and the horizontal solid lines delimit the top and bottom of the
duct.

– The event showed the complementary effect bright-
bright not predicted by the Dewan and Picard (1998)
model, since the duct it localized between OH and
OI5577 emission layers.
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