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Abstract. Multi-instrument observational data from an ex-
periment on 13 October 2006 at the EISCAT/HEATING fa-
cility at Tromsø, Norway are analysed. The experiment was
carried out in the evening hours when the electron density in
the F-region dropped, and the HF pump frequencyfH was
near and then above the critical frequency of the F2 layer.
The distinctive feature of this experiment is that the pump
frequency was just below the third electron gyro harmonic
frequency, while both the HF pump beam and UHF radar
beam were directed towards the magnetic zenith (MZ). The
HF pump-induced phenomena were diagnosed with several
instruments: the bi-static HF radio scatter on the London-
Tromsø-St. Petersburg path, the CUTLASS radar in Han-
kasalmi (Finland), the European Incoherent Scatter (EIS-
CAT) UHF radar at Tromsø and the Tromsø ionosonde (dy-
nasonde). The results show thermal electron excitation of the
HF-induced striations seen simultaneously from HF bi-static
scatter and CUTLASS radar observations, accompanied by
increases of electron temperature when the heater frequency
was near and then above the critical frequency of the F2 layer
by up to 0.4 MHz. An increase of the electron density up
to 25% accompanied by strong HF-induced electron heating
was observed, only when the heater frequency was near the
critical frequency and just below the third electron gyro har-
monic frequency. It is concluded that the combined effect of
upper hybrid resonance and gyro resonance at the same al-
titude gives rise to strong electron heating, the excitation of
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striations, HF ray trapping and extension of HF waves to alti-
tudes where they can excite Langmuir turbulence and fluxes
of electrons accelerated to energies that produce ionization.

Keywords. Ionosphere (Active experiments) – Radio sci-
ence (Nonlinear phenomena)

1 Introduction

It is well known that intense HF radio waves transmitted
from high-power ground-based HF heating facilities strongly
modify the ionospheric plasma. The excitation of artificial
small-scale field-aligned irregularities or striations (Minkoff
et al., 1974; Djuth et al., 1985; Blagoveshchenskaya et
al., 1999, 2006b), HF-induced electron heating (Rietveld
et al., 2003) and airglow (Brandstrom et al., 1999; Peder-
sen and Carlson, 2001; Kosch et al., 2002), anomalous ab-
sorption (Robinson, 1989) and other phenomena occur at
the upper hybrid resonance altitude in HF heating experi-
ments when O-mode polarized HF pump waves reach the
ionospheric reflection height. An O-mode HF pump wave
couples through striations into electrostatic (upper hybrid)
waves at the upper-hybrid resonance altitude, which is be-
low the reflection height of the heating wave. Upper hybrid
waves propagate in a direction near perpendicular to the mag-
netic field and their energy dissipation heats the electrons.
Through thermal instabilities, these waves can excite artifi-
cial field-aligned irregularities (AFAIs) which can trap the
exciting upper hybrid field. Theoretical work undertaken in
the 1970s indicated that the thermal parametric instability
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(Grach and Trakhtengerts, 1976) and resonance instability
(Vas’kov and Gurevich, 1976) play important roles in the
generation of artificial field-aligned irregularities, or stria-
tions. More recent theoretical studies of non-linear stabiliza-
tion of the striations (Gurevich et al., 1995), the self-focusing
of the HF pump wave caused by the density depletions within
the striations (Gurevich et al., 2001), and the excitation of
density and/or temperature-gradient-driven instabilities such
as a drift wave (Franz et al., 1999) have also detailed various
generation mechanisms. Striations are generated near the up-
per hybrid resonance (UHR) altitude, where the heater fre-
quency isf 2

H =f 2
UHR=f 2

p+f 2
ce, wherefp is the local plasma

frequency andfce is the electron gyrofrequency. The UHR
height is several kilometers below the reflection level of the
HF pump wave. Radio wave HF pump-induced ionospheric
phenomena occurring near electron gyroharmonics have at-
tracted considerable interest especially as double- vs. single-
resonance phenomena.

Electron acceleration above 10 eV is well established, and
recent measurements of blue emissions at 427.8 nm from
N+

2 in artificial aurora at high latitudes (Holma et al., 2006;
Gustavsson et al., 2006) are direct evidence of some flux of
electrons with energies above 18 eV, producing HF-enhanced
ionization. Spatio-temporal evolution of HF-induced phe-
nomena near the fourth electron gyroharmonic (Ashrafi et al.,
2006, 2007) is indicative of a descent in altitude of EISCAT
UHF ion line enhancements and optical emissions, both ac-
companied by pump-induced variations in electron density.

EISCAT/HEATING experiments at Tromsø have shown
AFAIs excited in the F-region as well as in the auroral E-
region when the pump frequency exceeded the critical fre-
quency, as observed by an ionosonde located near the HF
heating facility. Djuth et al. (1985) found from VHF radar
observations during Tromsø HF heating experiments, that
the generation of striations in the auroral E-region was possi-
ble when the heater frequency,fH , exceeded the critical fre-
quencyfoEs by 0.2 MHz. The same result was obtained by
Blagoveshchenskaya et al. (1999, 2006a) when strong heater-
induced striations were observed in the auroral E-region with
bi-static HF radio scatter. Striations have also been observed
from Tromsø HF heating experiments in the night-side F-
region of the auroral ionosphere whenfoF2 drops below the
heater frequency by up to 0.5 MHz (Blagoveshchenskaya et
al., 2006b). In all these studies the condition of the auro-
ral ionosphere was monitored by ionosonde data. It was
found that despite the fact that the HF pump frequency ex-
ceededfoF2 (foEs), it was comparable to the maximum up-
per hybrid frequency. Observations of airglow at 630 nm
(red line) and 557.7 nm (green line) during the HF iono-
spheric modification experiments at the HAARP heating fa-
cility have shown HF-induced green and red lines at the mag-
netic zenith (MZ) to persist after the critical frequencyfoF2
dropped below the heater frequency (Pedersen et al., 2003).
In the same study it was mentioned that the brightest emis-
sions had a slight tendency to occur very near the critical

frequency of the F2 layer, but all emissions cut off sharply
at about 0.5 MHz abovefoF2. Again here the status of the
ionosphere was estimated from an ionosonde located at the
HAARP site. Mishin et al. (2005) proposed a scenario for
the HF heater-induced phenomena at magnetic zenith in the
underdense ionosphere whenfoF2 dropped below the heater
frequency, but HF-induced airglow at green and red lines re-
mained. He explained this feature in terms of strong turbu-
lence at magnetic zenith, with the oscillating two-stream in-
stability (OTSI) of upper hybrid waves as the primary source
of Langmuir waves. Note that ionosondes provide informa-
tion about the status of the ionosphere above the heating fa-
cility as a whole, but they cannot reproduce the peculiarities
in the different parts of the heated volume with high tempo-
ral resolution. Hence there is a need to compare data from
the dynasonde (Rietveld et al., 2008) and the EISCAT UHF
radar directed towards magnetic zenith.

In this paper we present multi-instrument experimental re-
sults from an experiment on 13 October 2006 at the EIS-
CAT/HEATING facility at Tromsø, Norway, where the HF-
pump beam was directed towards the magnetic zenith (MZ).
In the course of the experiment the electron density in the F-
region dropped, and the heater frequency was near and then
above the critical frequency of F2 layer. Of special impor-
tance to this experiment is that the pump frequency was just
below the third electron gyro harmonic frequency. We exam-
ine the behavior of the HF-induced striations from bi-static
HF radio scatter on the London-Tromsø-St. Petersburg path
and from CUTLASS radar in Hankasalmi (Finland). Further,
we analyze in detail the distinctive features in the behavior of
ionospheric plasma parameters, particularly the electron den-
sity Ne and electron temperatureTe, from the European In-
coherent Scatter (EISCAT) UHF radar at Tromsø, pointing in
the MZ. Finally, we discuss and explain the results obtained.

2 Experimental arrangement

The experiment reported here was conducted on 13 October
2006 from 15:00 to 19:00 UT. The EISCAT HF heating fa-
cility (Rietveld et al., 1993) located near Tromsø in Northern
Norway (geographical coordinates 69.6◦ N, 19.2◦ E; mag-
netic dip angleI=78◦) was used to perturb the ionosphere in
the high-latitude F-region. The heating facility was operat-
ing at 4040 kHz, in O-mode polarization, with a modulation
cycle of 2 min on/2 min off. The phased array 2 was used,
resulting in an effective radiated power (ERP) of 190 MW.
The HF heater antenna beam was tilted 12◦ to the south of
zenith, thus allowing HF pumping in the field–aligned direc-
tion (magnetic zenith, MZ).

The HF heating facility at Tromsø is located adjacent to
the EISCAT UHF incoherent radar at 930 MHz (Rishbeth and
van Eyken, 1993). In the course of the experiment the UHF
radar antenna was directed towards magnetic zenith.

Ann. Geophys., 27, 131–145, 2009 www.ann-geophys.net/27/131/2009/



N. F. Blagoveshchenskaya et al.: HF pumping towards magnetic zenith 133

Bi-static HF Doppler radio scatter observations were car-
ried out on the London-Tromsø-St. Petersburg path at an op-
erational frequency of 17 640 kHz. In accordance with the
Bragg condition, the HF bi-static backscatter is sensitive to
small-scale irregularities having spatial sizes of the order of
9 m across the geomagnetic field. The diagnostic transmitter
is located near London (52◦ N, 0◦ E) at a great circle dis-
tance of∼2200 km from Tromsø. The reception of the diag-
nostic waves scattered from field-aligned irregularities over
Tromsø was made with a Doppler spectral method in St. Pe-
tersburg (60◦ N, 30◦ E) at a distance of∼1200 km (with a
double rhombic receiving antenna directed towards Tromsø).
The spectral processing was carried out by using a windowed
(Hanning) fast Fourier transformation (FFT). In the course
of the Tromsø experiment described here, a sampling rate
of 102 Hz allowed a spectral analysis bandwidth of 51 Hz.
A specified number of 512 FFT coefficients provided a fre-
quency resolution of 0.1 Hz. Each segment used for the FFT
was overlapped by 50%, which yielded the production of a
Doppler spectrum every 5 s. The mechanism of bi-static scat-
ter is very similar to direct backscatter, but with the transmit-
ter and receiver at different locations. The azimuth angle be-
tween the incident and scattered wave vectors is about 120◦

on the London-Tromsø-St. Petersburg path.
Simultaneous CUTLASS data are also available from

Hankasalmi, Finland radar (63◦ N, 27◦ E). CUTLASS (Co-
operative UK Twin Located Auroral Sounding System) is a
pair of HF coherent backscatter radar located in Finland and
Iceland and forms part of the SuperDARN array (Greenwald
et al., 1995; Milan et al., 1997; Lester et al., 2004). In the
course of the experiment CUTLASS operated at three fre-
quencies of about 10, 11.5 and 13.2 MHz. Note that CUT-
LASS was running a non-standard scan for heating. The
Hankasalmi radar had 15 km range gates, with the first gate
starting at a range of 480 km. The beam integration time was
3 s. The scan was restricted to beams from 3 to 7, and a
three-frequency sweep was used.

The status of the ionosphere in the course of the experi-
ment was checked by an ionosonde (dynasonde) at Tromsø
(Rietveld et al., 2008). Ionograms were taken every two min-
utes. The viewing geometry is shown in Fig. 1.

3 Observational results

We have analysed HF heater-induced phenomena in the F-
region of the ionosphere. The analysed period was limited
to 15:00 to 15:30 UT, since after 15:30 UT transmission to
the F-region was blocked by absorption/reflection in the E-
region in which very high electron densities were observed.
Ionograms obtained on 13 October 2006 during heater-off
and heater-on periods are presented in Fig. 2a and b, re-
spectively. Significant spreading in the F2 layer took place
throughout the experiment, which is indicative of patchy
plasma densities. In the course of the experiment, the iono-

 

Fig. 1 

 

Fig. 1. Map showing the experiment geometry. Bi-static HF
Doppler radio scatter observations were carried out on the London-
Tromsø-St. Petersburg paths (thick lines). The London-St. Peters-
burg direct path is shown on the map by a thin line. The viewing
geometry of the Hankasalmi CUTLASS HF coherent scatter radar
is also presented on the map.

grams obtained showed that the critical frequencies of the F2
layerfoF2 changed from 4.2 MHz at 14:58 UT to 3.4 MHz at
15:20 UT. The first three ionograms obtained during heater-
on periods (see Fig. 2b) appear to be weaker, because of an
increased HF noise floor when the heater is on, especially
near the heater frequency, which happens to be nearfoF2.
For these events, to estimate HF-induced variations in the
F-region electron density we usedfxF2 and calculated the
maximum plasma density from that and the electron gyro fre-
quency at the corresponding altitude. In this case the values
obtained forfmaxF2 during the heater-on periods were about
4.35, 4.25, 4.3, and 3.75 MHz in the first, second, third, and
fourth heater-on periods, respectively.

Figure 3 displays dynamic Doppler spectra of HF diag-
nostic signals on the London-Tromsø-St. Petersburg path
at an operational frequency of 17 640 kHz on 13 October
2006 from 14:59 to 15:16 UT. The vertical white bars on the
time axis indicate when EISCAT/HEATING was transmit-
ting. As can be seen from Fig. 3, the signals scattered from
AFAIs are observed on the positive part of the Doppler sono-
gram (marked with white arrows) in four sequential heater-
on periods from 15:00–15:02, 15:04–15:06, 15:08–15:10,

www.ann-geophys.net/27/131/2009/ Ann. Geophys., 27, 131–145, 2009
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(a)

 

 
 
 

 

 
Fig. 2a 

(b)

 

 

Fig. 2b 

Fig. 2. Ionograms obtained by the dynasonde at Tromsø in the course of the EISCAT/HEATING experiment on 13 October 2006:(a) iono-
grams taken during heater-off periods;(b) ionograms taken during heater-on periods.
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Fig. 3. Dynamic Doppler spectra of HF diagnostic signals on
the London-Tromsø-St. Petersburg path at an operational fre-
quency of 17 640 kHz on 13 October 2006 from 14:59 to 15:16 UT.
The vertical white bars on the time axis indicate when the EIS-
CAT/HEATING facility was transmitting. The EISCAT/HEATING
facility was operating at 4040 kHz with O-mode polarisation, in cy-
cles of 2 min on/2 min off; the heater beam was tilted along the
magnetic field-aligned direction (magnetic zenith).

and 15:12–15:14 UT. They exhibit spectral broadening in the
band of 7–12 Hz. The spectral power of signals scattered
from AFAIs in the positive (S+) part of the Doppler sono-
gram calculated for 13 October 2006 from 14:59 to 15:16 UT
is shown in Fig. 4. The defined increases of the spectral
power during the heater-on periods can be seen in Fig. 4.

Data from HF-induced striations detected with CUTLASS
Hankasalmi radar on 13 October 2006 between 15:01 and
15:30 UT at operational frequencies of about 10, 11.5, and
13.3 MHz are presented in Fig. 5. CUTLASS data show the
increase of the backscatter power at the range of Tromsø, ob-
served at the three operational frequencies. The most intense

 
 
 
 

 
 
Fig. 4 
 
Fig. 4. The spectral power of signals scattered from AFAIs in the
positive (S+) part of the Doppler sonogram calculated for 13 Octo-
ber 2006 from 14:59 to 15:16 UT.

HF-induced backscatter was observed at 11.5 MHz. during
the same heater-on periods in which the scattered signals
were observed from bi-static HF radio scatter. The heater-on
period from 15:08–15:10 UT is the last with backscatter at an
operational frequency of 13.2 MHz, and 15:12–15:14 UT is
the last with backscatter at frequencies of 10 and 11.5 MHz.

Comparing the occurrence of striations from Figs. 3 and
5 and Tromsø dynasonde data (Fig. 2a), it can be seen that
after the first heater-on period at 15:02 UT, the critical fre-
quency of F2 layer wasfoF2=4.2 MHz. After the second one
at 15:06 UT, it was 4.1 MHz. After the third heater-on pe-
riod at 15:10 UT it was about 3.9 MHz, and after the fourth
heater-on period at 15:14 UT it was 3.7 MHz.

Figure 6 presents data from the EISCAT UHF radar data at
Tromsø on 13 October 2006 from 14:58 to 15:30 UT as the
UHF radar beam pointed in the MZ, showing the effects of
HF pumping. One can clearly see the strong electron temper-
atureTe increases (second panel) closely related to the first
four heater-on periods in which the heater-induced striations
were observed both from bi-static HF Doppler radio scatter
and from the CUTLASS radar. In Fig. 6 white horizontal
lines near the reflection height of the HF pump wave (most
likely at the upper hybrid resonance altitude) in theNe, Te,
Ti , andVi panels show data with a high residual to the fit-
ting. The residual is a measure of deviations, the difference
between the observed and theoretical curve fits to the radar
echo spectra. In such time intervals, closely related to the
first three heater-on periods, strongly enhanced ion-acoustic
and even central line peaks in the spectra were observed.
This is typical of strong Langmuir turbulence. The altitude of
this heater-induced Langmuir turbulence was about 230 km,
and did not change during the experiment. It is important to
note that at the altitude of 230 km the pump frequency is just
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136 N. F. Blagoveshchenskaya et al.: HF pumping towards magnetic zenith

 

 
Fig. 5 
Fig. 5. Backscattered power from the Hankasalmi (Finland) CUT-
LASS radar at operational frequencies of about 10, 11.5 and
13.3 MHz on 13 October 2006 between 15:01 and 15:30 UT. The
CUTLASS Hankasalmi radar was running a non-standard scan for
heating. It had 15 km range gates, with the first gate starting at a
range of 480 km. The EISCAT/HEATING facility transmitted from
15:00–15:02, 15:04–15:06, 15:08–15:10, and 15:12–15:14 UT.

below the third electron gyro harmonic. Although the single
altitude range-gate (230 km altitude), in which the HF-driven
instability leads to a strong ion-line enhancement, is difficult
to analyze for temperatures and densities, adjacent altitudes
can be used to examine plasma responses.

Temporal variations of the electron densityNe, ion and
electron temperatures,Ti andTe, and ion velocitiesVi at al-
titudes of 214, and 264 km from the EISCAT UHF radar ob-
servations on 13 October 2006 from 14:58 to 15:15 UT are
shown in Fig. 7a and b, respectively. Figure 8 shows the
temporal variations of EISCAT UHF radar residuals at the
three altitudes of 230, 214, and 264 km. Note that the data
with a residual of more than 2 cannot be trusted. From Fig. 8
residuals at altitudes of 214 and 264 km stayed mainly be-
low the threshold value of 2. At 230 km the residuals were
more than 2.0 in parts of the first three heater-on periods. In
Fig. 7a, b note particularly the following features: Increases

in electron temperatureTe were observed at the two altitudes
in the first four heater-on periods from 15:00–15:02, 15:04–
15:06, 15:08–15:10, 15:12–15:14 UT. During the first three
heater-on periods, when HF pumping was produced near the
critical frequencyfoF2, Te increases were accompanied by
real electron density enhancements up to 25%, at the alti-
tudes immediately above and below 230 km. At 214 km the
definedNe increases occurred in the first and second heater-
on periods, and at 264 km they were observed in the first and
third heater-on periods.

We note with respect to the electron temperatureTe, mea-
sured by the UHF radar, that the last clearly enhancedTe was
measured during the HF-on period from 15:12–15:14 UT, but
contrary to the first three heater-on periods thisTe enhance-
ment was not accompanied by an increase in theNe. The
first HF-on cycle during and after which no detectableTe en-
hancement was seen was from 15:16–15:18 UT.

Figure 9 presents the temporal variations of electron den-
sity from both the maximum of the F2 layer and from
214 km, as estimated from theNe(h) profiles obtained from
the Tromsø dynasonde data (see Fig. 2a, b). Recall that
during heater-on periods we usedfxF2 and calculated the
maximum plasma density from it and the electron gyro fre-
quency at the corresponding altitude. From Fig. 9 we note
that some enhancements in the electron density were also ob-
served from dynasonde data in the first three heater-on peri-
ods. As a whole, values of electron densities are less than or
comparable to UHF radar measurements in the MZ.

Figure 10a–d presents electron density profilesNe(h) from
heater-on (red line) and preceding heater-off (blue line) pe-
riods obtained from UHF radar measurements for the first,
second, third, and fourth heating cycles respectively. The
clearest heater-induced effects in the plasma density are seen
in the first three heater-on periods in a wide altitude range of
up to 100 km.

4 Discussion

We have considered multi-instrument observational data
from an experiment on 13 October 2006 at the EIS-
CAT/HEATING facility at Tromsø, Norway, when the elec-
tron density in the F-region dropped and the heater frequency
was near and then above the critical frequency of the F2 layer.
In the course of the experiment the pump frequency was very
close to and just below the third electron gyro harmonic fre-
quency. The instruments used to diagnose the HF pump-
induced phenomena were the bi-static HF radio scatter on the
London-Tromsø-St. Petersburg path, the CUTLASS radar in
Hankasalmi (Finland), the European Incoherent Scatter (EIS-
CAT) UHF radar at Tromsø, and the Tromsø dynasonde.
During the experiment both the HF pump beam and the UHF
radar beam were directed towards the magnetic zenith (MZ).
The HF pump wave clearly matched the upper hybrid res-
onance layer in which striations are generated. The results
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Fig. 6 

EISCAT UHF RADAR
     tau2pl, 13 October 2006
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Fig. 6. Data from the EISCAT UHF radar at Tromsø, showing the effects of HF pumping on 13 October 2006 from 14:58 to 15:30 UT.
The UHF radar beam pointed towards magnetic zenith, collecting long-pulse mode data analyzed with 15 s integration time. The EIS-
CAT/HEATING facility was operated from 15:00 to 19:00 UT with a 2 min on, 2 min off pump cycle. White horizontal lines at the single
range gate about 230 km near the reflection height of the HF pump wave (the range gate most likely also including the upper hybrid resonance
altitude) in theNe, Te, Ti , andVi panels, and closely related to the first three heater-on periods, show data with a high residual to the fitting.
This high residual error-bar is typical of echoes with strong Langmuir turbulence.

obtained have shown the excitation of the HF-induced stria-
tions seen simultaneously from HF bi-static scatter and CUT-
LASS radar observations, and strong HF-induced electron

heating in the first four heater-on periods when the heater
frequencyfH was near and above the critical frequency of
F2 layer. Furthermore, increases in the electron density were
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Fig. 7b 
 Fig. 7. Temporal variations of the electron density,Ne, ion and electron temperatures,Ti andTe, and the ion velocity,Vi , from the EISCAT

UHF radar observations on 13 October 2006 from 14:58 to 15:15 UT at different altitudes:(a) 214 km;(b) 264 km.

observed in a wide altitude range up to 100 km, during only
the first three heater-on periods. At the altitudes of 214
and 264 km, which are respectively below and above the up-
per hybrid resonance altitude of 230 km, the EISCAT UHF

radar measured enhancements of the electron density by up
to 25%. Tromsø dynasonde data also show some increases in
foF2 in the first three heater-on periods.
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Fig. 8. Temporal variations of residuals of EISCAT UHF radar data
at altitudes of 214, 230, and 264 km.

Electron heating by the upper hybrid resonance, creating
AFAIs, always leads to decreased electron density in the stri-
ations. This decreased density in turn further focuses HF ra-
dio waves into plasma density depletions. Hence the AFAIs
grow nonlinearly, forming bunches of striations (Gurevich
et al., 1998). If the pump HF radio waves propagate suf-
ficiently close to parallel to Earth’s magnetic fieldB, the
waves can be trapped, thereby depositing most of the HF
energy in the plasma (Gurevich et al., 2001). Observations
which confirm this prediction were made simultaneously at
EISCAT/HEATING facility at Tromsø (Leyser et al., 2000;
Kosch et al., 2002; Rietveld et al., 2003) and HAARP (Peder-
sen and Carlson, 2001; Gurevich et al., 2002; Pedersen et al.,
2003). This strong enhancement of trapped HF waves near
parallel toB, leading to the magnetic zenith effect, has since
been studied at these and other HF facilities. Several such
studies have focused on optical emissions. It was shown that
HF-induced airglow maximizes during HF pumping towards
magnetic zenith (Kosch et al., 2002; Pedersen et al., 2003).
The same is true for some Langmuir turbulence phenomena,
which also show a strong preference for excitation by pump
HF radio waves in the field-aligned direction (Isham et al.,
1999). The generation of strong Langmuir turbulence with
upper hybrid waves as the primary source of Langmuir waves
has been proposed by Mishin et al. (2004), who has shown
an extended strong-turbulence region. Rietveld et al. (2003)

 

 
 
Fig. 9 
 Fig. 9. Temporal variations of electron density from the maximum

of the F2 layer, and from 214 km estimated fromNe(h) profiles
obtained from Tromsø dynasonde data on 13 October 2006 from
14:58 to 15:14 UT.

have shown that in the course of EISCAT/HEATING exper-
iments, where both the HF pump beam and the UHF radar
beam were scanned in elevation between magnetic zenith and
vertical directions, the heating effects, such as large electron
temperature increases, intense AFAIs, and HF-induced op-
tical emission, all maximized during HF pumping towards
MZ. They also showed that large electron temperature in-
creases of 3000 K above the background were accompanied
by ion heating of about 100 K, and electron density decreases
of up to 20%. Here we add insights for the HF pump-induced
phenomena when the HF heater frequency on the one hand
was very close to the third electron gyro harmonic frequency,
and on the other hand was near the critical frequency of the
F2 layer.

We observe plasma density increases by up to 25%. Such
plasma density increases might result from three mecha-
nisms which we examine below: (1) Changed temperature-
dependent reaction rates, leading to transiently changed
plasma density (Sipler and Bionde, 1972). (2) Redistribu-
tion of thermal plasma due to changed electron gas temper-
ature and diffusion rates (Meltz and LeLevier, 1970). (3)
Enhanced production of ionization by accelerated electrons
(Carlson, 1993).

(1) Temperature-dependent reaction rates: Sipler and
Biondi (1972) measured a transient decrease in 630.0 nm
emission at Arecibo, due to an HF heater-induced increase
in electron temperature, and explained this as a consequence
of transient reduction in dissociative recombination. They
give the formulas used to do a theoretical calculation, which
fit the data well, for an estimated 1.3% intensity suppres-
sion of 630.0 nm intensity, due to reduced ion-electron re-
combination, with a time constant of 21 s, corresponding to
an 11% increase in electron temperature. This change in
plasma density is only transient, as the sudden increase in
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Fig. 10. Electron density profilesNe(h) from heater-on (red line) and preceding heater-off (blue line) periods obtained from UHF radar
measurements on 13 October 2006:(a) the first HF-cycle;(b) the second HF-cycle;(c) the third HF-cycle;(d) the fourth HF-cycle.

the electron temperature. It leads to a momentary decrease
in O(1D) concentration, 630.0 nm emission, dissociative re-
combination, and thus to a transient increase of plasma den-
sity, after which the rate-limiting charge transfer from atomic
oxygen ions restores the initial steady-state plasma density.
We must test whether this process can explain the transient
plasma density increase here. The formula for the tempera-
ture dependence and the coefficient for the density suppres-
sion, which they used for that calculation and which fit the
data, has since been updated as per Schunk and Nagy (2000)
for temperatures above 1200 K, yet gives essentially the same
numerical values. Here we must replace the Sipler and

Biondi (1972) oxygen-ion-only calculation by total ion den-
sity, and calculate plasma density changes for our conditions,
where the electron temperature changes will be significantly
greater than the 1972 Arecibo data and thus temperature-
dependent change will likewise be greater than the 1.3% seen
at Arecibo. The following equation was used to model the
electron density response to increases in the electron temper-
atureTe (Schunk and Nagy, 2000):

dne

dt
= q(h, t) −

(k1[N2] + k2[O2])

1 +
k1[N2]
a1×ne

+
k2[O2]
a2×ne

× ne ,
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whereq with a steady-state assumption was estimated for the
time just before the heater-on. Here the rate coefficients are:

k1 = 1.2 × 10−12,

k2 = 2.1 × 10−11
× (1200/Te)

0.4,

a1 = 2.2 × 10−7
× (1200/Te)

0.39,

a2 = 7.38× 10−8
× (1200/Te)

0.56.

The calculations of electron density response to increases
in Te were performed for three altitudes of 214, 230, and
264 km with a time constant of 30 s, when increases in
electron temperatures due to HF pumping effects varied
from 50 to 100%. The [N2] and [O] densities for corre-
sponding altitude were taken from the MSIS model (http:
//omniweb.gsfc.nasa.gov/vitmo/msisvitmo.html). The cal-
culations give electron density increases from 2.4 to 5.3%,
depending on the altitude andTe enhancements. These cal-
culations ignoring transport (discussed below) give an upper
limit to the impact of this process.

A more straightforward proof derives from the direct com-
parison with observations on the preceding day, 12 October.
We compared results obtained on 13 October 2006 with data
collected during our experiment on 12 October 2006, which
bears a close resemblance to the one discussed here. It was
conducted in the same time-of-day, HF pumping was also
produced towards MZ, the same heater frequency and mod-
ulation were used, and the UHF radar was in operation. We
have examined the plasma density and electron temperature
on both days. Figure 11a, b shows data from two range gates,
both of which are free of any HF ion-line enhancement. The
Fig. 11a, b data from the EISCAT UHF radar observations on
12 October 2006 from 15:28 to 15:52 UT, when the F2 layer
critical frequency fell throughfH on this day, presents tem-
poral variations of the electron densityNe, ion and electron
temperaturesTi andTe, and ion velocitiesVi , at altitudes of
214 and 264 km. We look first at the changes in the electron
density on 12 October (Fig. 11b), and find no convincing ev-
idence of any increase at 264 km. The next day, 13 October
(see Fig. 7b) showed an increase in electron density in the
first and third heater-on periods. In fact theTe increase for
13 October (see Fig. 7b) was less, being heated from roughly
2300 to 3500 K (∼50%), vs. from roughly 1800 to 3200 K
(80%) on 12 October (see Fig. 11b). No detectable changes
in ion temperatures were observed near these altitudes on ei-
ther day. (Note: The higher unheated base electron temper-
ature on 13 October was consistent with the slightly lower
plasma density. On 12 October the background electron den-
sity was larger,foF2 from dynasonde data at Tromsø was
about 4.4 MHz). By this electron temperature-dependent ef-
fect alone, if the 13 October plasma density increase was due
to electron gas temperature changes, 12 October would show
even greater plasma density increases. In fact no noticeable
increase in plasma density was seen. The behavior of elec-
tron density at the altitude of 214 km (Figs. 7a and 11a) is

similar to those observed at the altitude of 264 km. Thus we
cannot explain the 13 October plasma density increase by
this effect, consistent with the detailed calculations.

Thus we conclude from both the data alone and from the
model calculations, that theNe enhancement on 13 October
2006 by 25% cannot be explained by temperature-dependent
reaction rates.

(2) Redistribution of thermal plasma: Meltz and LeLe-
vier (1970) did the first estimate of how long it would
take for this diffusion-constrained redistribution to measur-
ably change plasma densities during HF heating experi-
ments. Plasma transport by hydrodynamic expansion of
heated plasma along magnetic field lines is a well established
fact. Here after turn-on in heating experiments, the response
time to the temperature-dependent pressure gradient is lim-
ited by ion drag that is, ions diffusing through neutral parti-
cles. Plasma density would decrease slightly at the peak den-
sity and increase above and below the peak. The response
time, from 5 to 10 min or more, is found to be much too
sluggish to explain our observations for this 2 min on/2 min
off cycle. Because of this the only argument remains for an
increase in plasma density.

(3) Enhanced production of ionization: Carlson (1993)
predicted measurable increases in plasma density to be feasi-
ble, due to enhanced production of ionization by accelerated
electrons, once HF heating facilities reached the GW class of
effective radiated power (ERP) densities. This quantitative
prediction was based on calculations for achieving HF en-
ergy densities approaching that of solar EUV in the F-region,
and finding means to efficiently convert the HF energy to the
suprathermal electron energy through electron acceleration
processes.

The key arguments from that work (Carlson, 1993) are
as follows: (1) The electron production rate by the sun for
a sunspot number of 60 is 103 cm−3 s−1, spread in altitude
over order 100 km, representing∼4×10−8 W cm−2. (2) A
GW ERP HF facility would deliver about of∼10−7 W cm−2

near the F-region peak altitude. (3) The efficiency of conver-
sion of HF energy to the electron energy accelerated above
the ionization threshold for effective ionization production
(taking∼30 eV per ionization) was established by Carlson et
al. (1982) to be order 10% at order 100 MW ERP. (4) With ju-
dicious selection of future operating modes, comparable ef-
ficiencies should be realizable, and appreciable production
of ionization should be seen. We find the observations here
support both that frame of reference and that prediction.

That the presence of suprathermal electrons is a standard
feature of HF heating experiments at all latitudes is well es-
tablished experimentally. HF-excited airglow enhancements
were first reported at 630.0 nm (Sipler and Biondi, 1972)
where they are most easily seen, but they can be and are
found in HF experiments, due to both thermal and acceler-
ated electrons (Carlson, 2002). More sophisticated optical
experiments have since unambiguously established optical
emissions excited at wavelengths that can only be excited by
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Fig. 11.Temporal variations of the electron density,Ne, ion and electron temperatures,Ti andTe, and the ion velocity,Vi , from the EISCAT
UHF radar observations on 12 October 2006 from 15:28 to 15:52 UT at different altitudes:(a) 214 km;(b) 264 km.

suprathermal electrons. These suprathermal electrons pro-
duce enhanced optical emissions at 557.7 (Bernhardt et al.,
1989; Pedersen et al., 2003), 777.4 (Carlson, 2002; Djuth et

al., 2005), 844.6 (Gustavsson et al., 2005), 427.8 (Holma et
al., 2006), 660.0 (Djuth et al., 1999) which can complement
thermal excitation of 630.0 nm optical emissions (Carlson,

Ann. Geophys., 27, 131–145, 2009 www.ann-geophys.net/27/131/2009/



N. F. Blagoveshchenskaya et al.: HF pumping towards magnetic zenith 143

2002), and are also seen directly in enhanced incoherent scat-
ter radar plasma lines (Carlson et al., 1982).

The theory underlying the magnetic zenith effect (Gure-
vich et al., 2001, 2002) can be succinctly summarized. A res-
onance instability occurs in the vicinity of the upper hybrid
frequency, exciting upper hybrid plasma waves and small
scale field-aligned plasma depletions, or striations, which
grow nonlinearly, reinforced by self focusing. Also, a para-
metric instability takes place in the Langmuir resonance re-
gion near the pump reflection height, where nonlinear pro-
cesses in Langmuir turbulence create cavitons which acceler-
ate electrons up to tens of eV with the help of electron elastic
scattering. For launch of high-power HF radio waves suffi-
ciently close to parallel to the magnetic field, the HF propa-
gation path leads to trapping of the HF rays in the striations,
which can heat sufficiently to allow the HF energy to bore
up to the reflection height. Striations extend alongB both
above and below the upper hybrid altitude, and as a result
nonlinear cavities and cavitons are formed even 20–30 km
from the upper hybrid altitude. HF waves effectively trapped
inside cavities lead to additional heating there. The max-
imum heating is near the magnetic zenith, as is the inten-
sity of HF-enhanced incoherent scatter echoes due to Lang-
muir waves (as observed by Isham et al., 1999). A signif-
icant part of the pump wave effectively trapped inside the
cavity reaches the height of reflection, and by electron accel-
eration produces notable fluxes of accelerated electrons via
Langmuir turbulence (Gurevich et al., 2004). The essential
factor at these HF launch angles towards magnetic zenith is
the trapping of the HF radio waves (Gurevich et al., 2001,
2005), whereby first, a large percent of the total HF energy
becomes deposited in the plasma, and second, a significant
fraction goes into electron acceleration. Calculations based
on this theory have estimated that accelerated electrons can
absorb up to tens of percent of the HF ERP (Gurevich et
al., 2005). Energy deposition and electron acceleration are
intensified for pumping near the double resonance, and elec-
tron acceleration is enhanced for operation at multiples of the
electron gyro harmonic frequency. We should acknowledge
that invoking the above explanations need not exclude other
electron acceleration processes from occurring as well. For
example, Ashrafi et al. (2007) suggested that upper hybrid
waves, which propagate perpendicular to the magnetic field,
and Langmuir waves, which propagate parallel to the mag-
netic field, act simultaneously to accelerate electrons even in
the steady state. However the role of Langmuir turbulence
near the reflection height in electron acceleration remains
central.

On 13 October we observe the increased plasma den-
sity, for operation very near the double resonance. We ob-
serve the presence of HF-enhanced ion spectra, which indi-
cates that HF pump energy is reaching the reflection height,
where Langmuir turbulence can produce fluxes of suprather-
mal electrons. We are operating very close to the triple of
the electron gyro frequency, which should maximize the ef-

fectiveness of suprathermal electron flux production. We see
plasma density enhancements for which the only explanation
we can identify is the ionization by this suprathermal elec-
tron flux, and prior calculations verify adequate energy can
be available.

Data obtained on 12 October are very similar to the 13
October in terms of its aeronomy and geophysical charac-
ter. Among with it they show no significant plasma den-
sity enhancement, nor any detectable HF-enhanced ion spec-
tra, indicating the absence of strong pump energy reaching
the reflection height. Thus there is no such mechanism to
produce significant suprathermal electron fluxes. While the
days are similar for purposes of examining their aeronomy,
they are critically different for purposes of examining their
plasma physics. The experiment on 12 October does not
have operation very near the double resonance and the third
gyro harmonic. On 13 October 2006 the upper hybrid reso-
nance altitude and the altitude of heater-induced Langmuir
turbulence was about 230 km, and it did not change dur-
ing the experiment. At the altitude of 230 km, the pump
frequencyfH =4040 kHz is very close to and just below
the third electron gyro harmonic, 3fce=4045 kHz. There-
fore, in such conditions one would expect double resonance
(fH =fUHR≈3fce) effects to pertain, effects which are impor-
tant to the magnetic zenith and electron acceleration process
(Gurevich et al., 2001, 2004). In contrast, on 12 October
2006 the upper hybrid resonance altitude was about 210 km,
where the heater frequencyfH was far from 3fce=4079 kHz.

We have observed an increase in plasma density dur-
ing a high-power HF experiment pointing towards magnetic
zenith. Further, we have examined possible sources for this
ionization change, including the publications of Sipler and
Biondi (1972) and Meltz and LeLevier (1970) and others
since, and find only one that can explain our observations.
Carlson (1993) proposed the production of ionization by
suprathermal electrons, and presented calculations showing
that the observable plasma density enhancements, provided
by the efficient conversion of HF energy to the electron flux
energy, can occur when enough ERP is transmitted. Gure-
vich et al. (2001, 2002) proposed a magnetic zenith mecha-
nism for making a large fraction of the ERP available in the
plasma production region, and means for the electron accel-
eration. Bernhardt et al. (1989), Djuth et al. (1999, 2005)
Pedersen et al. (2003), Gustavsson et al. (2005), Holma et
al. (2006), Ashrafi et al. (2007) have also worked on elec-
tron acceleration mechanisms and experimental evidence for
their presence. Our work here shows the signatures of the
magnetic zenith mechanism in terms of both rapid forma-
tion of striations and strong Langmuir turbulence when the
plasma-density enhancements were produced. We conclude
that the proximity to the double resonance and to the multi-
ple gyro frequency pumping is a key to the effectiveness of
plasma production through ionization by suprathermal elec-
tron fluxes accelerated in the strong Langmuir turbulence re-
gion near the pump height of reflection. Our findings should
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stimulate further theoretical development and experimental
work.

5 Concluding remarks

We have presented the results of our analysis of multi-
instrument data from an experiment on 13 October 2006 at
the EISCAT/HEATING facility at Tromsø, Norway. The ex-
periment was carried out in the evening hours when the elec-
tron density in the F-region dropped, and the HF pump fre-
quencyfH was near and then above the critical frequency
of F2 layer. The distinctive feature of this experiment is that
the pump frequency was just below the third electron gyro
harmonic frequency while both the HF pump beam and UHF
radar beam were directed towards the magnetic zenith (MZ).
The results showed the thermal electron excitation of the HF-
induced striations as seen simultaneously from HF bi-static
scatter and CUTLASS radar observations, accompanied by
increases of electron temperature when the heater frequency
was near and then above the critical frequency of F2 layer up
to 0.4 MHz. In addition to strong electron gas heating and
plasma structuring, we observed measurable plasma density
enhancements on one of two otherwise similar adjacent days.
We explain this plasma density increase by building on prior
work and taking the double resonance condition to signif-
icantly enhance electron acceleration. The increase of the
electron density by up to 25%, accompanied by the strong
HF-induced electron heating, was only observed when the
heater frequency was near the critical frequency and just be-
low the third electron gyro harmonic frequency.

In summary, the combined effect of upper hybrid reso-
nance and gyro resonance at the same altitude gives rise to
strong electron heating and excitation of striations, which at
magnetic zenith leads to HF ray trapping and extension of
HF waves to altitudes where they can excite Langmuir turbu-
lence, leading to fluxes of electrons accelerated to energies
that produce measurable ionization.
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