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Abstract. A new signal processing method is presented for
the suppression of intermittent clutter echoes in radar wind
profilers. This clutter type is a significant problem during
the seasonal bird migration and often results in large discrep-
ancies between profiler wind measurements and independent
reference data. The technique presented makes use of a dis-
crete Gabor frame expansion of the coherently averaged time
series data in combination with a statistical filtering approach
to exploit the different signal characteristics between signal
and clutter. The rationale of this algorithm is outlined and
the mathematical methods used are presented in due detail.
A first test using data obtained with an operational 482 MHz
wind profiler indicates that the method outperforms the pre-
viously used clutter suppression algorithm.

Keywords. Meteorology and atmospheric dynamics (Instru-
ments and techniques) – Radio science (Remote sensing;
Signal processing)

1 Introduction

Radar wind profilers (RWP) were developed from MST-
Radars (Van Zandt, 2000) and have meanwhile become stan-
dard instruments for measuring wind velocities in the atmo-
sphere. Overviews of the technical and scientific aspects
of RWP including its signal processing have been provided,
among others, byGage(1990); Röttger and Larsen(1990);
Doviak and Zrnic(1993) andMuschinski(2004). Especially
the routine application by weather services and the assimila-
tion of the data in Numerical Weather Prediction Models is
an indicator for the degree of maturation that this technology
has achieved, see e.g.Monna and Chadwick(1998); Bout-
tier (2001); Benjamin et al.(2004b); St-James and Laroche
(2005); Ishihara et al.(2006). However, it is a matter of fact
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that sometimes large and unacceptable differences are ob-
served between the profiler data and independent reference
measurements. In many cases these differences are clearly
attributable to either clutter echoes or Radio Frequency in-
terference. Spurious signals are often easily discernible in
the Doppler spectrum by human experts, but not always ade-
quately handled by the automatic processing. For that reason,
research on improvements in wind profiler signal processing
has remained a very active field over the last decade.

In this paper we deal with so-called intermittent clutter and
propose a new filtering algorithm for the detection and sup-
pression of these clutter signals in the profiler raw data. Of
particular importance are echoes caused by migrating birds
in spring and fall. It is well known that birds are effective tar-
gets for a wide range of radars from X-band to UHF (Vaughn,
1985; Bruderer, 1997a). In fact, most of the knowledge about
migrating birds come from radar observations. That concerns
in particular their flight behavior under the influence of en-
vironmental factors (Bruderer, 1997b). Radar ornithology is
meanwhile a mature field and it is no surprise, that birds are
also detected by the sensitive radar systems used for wind
profiling. The susceptibility of wind profiler radar systems
to bird echoes depends primarily on wavelength and antenna
characteristics. It mostly affects L-band and UHF-systems,
that is Boundary Layer profilers and Tropospheric profilers,
as discussed inWilczak et al.(1995). Intermittent clutter is
an issue for the standard Doppler-beam swinging radars as
well as for spaced antenna and imaging radar systems, where
new mitigation techniques like adaptive beamforming have
recently been proposed (Cheong et al., 2006; Chen et al.,
2007). We mention in passing that other remote sensing in-
struments used in Meteorology are also affected by migrat-
ing birds (Mastrantonio et al., 1999; Gauthreaux and Belser,
1998; Gauthreaux et al., 1998; Zhang et al., 2005; Liu et al.,
2005).

Intermittent clutter echoes caused by aircraft were already
mentioned byHogg et al.(1983), and a few years later it
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became obvious that especially echoes from migrating birds
can be a serious issue in wind profiling (Ecklund et al., 1990;
Barth et al., 1994). If present, such spurious signals can cause
a significant deterioration of the quality of the derived winds.
To give an example, the investigation of low-level jets us-
ing RWP data is hampered by bird migration clutter (Sten-
srud, 1996). This makes it necessary to either use extensive
quality control procedures to identify and skip contaminated
data (Daniel et al., 1999; Song et al., 2005) or to limit the
studies to periods where bird migration is negligible (An-
derson and Arritt, 2001). Many other investigations using
RWP data have mentioned the bird contamination problem,
e.g.Ralph et al.(1998); Locatelli et al.(1998); Parker and
Johnson(2000); Lundquist(2003); Nielsen-Gammon et al.
(2007). While the need for an extensive manual data qual-
ity control and cleaning might be acceptable for research ac-
tivities, it is surely not feasible in any operational setting.
Nevertheless it is mandatory to avoid the assimilation of bird
contaminated profiler wind data, as this can have significant
effects on the quality of the forecasts (Semple, 2005). Due to
the nature of the problem, a bird migration check at the oper-
ational center itself is not the best approach (Benjamin et al.,
2004a). While current state-of-the art profilers nowadays run
more or less sophisticated algorithms on site to reduce bird
contamination (Merritt, 1995; Jordan et al., 1997; Ishihara
et al., 2006), practical experience supports the statement that
the problem has not been fully resolved.

The problem of bird contamination has been well-known
for more than a decade (Wilczak et al., 1995; Engelbart et al.,
1998) and it still is a research topic in RWP signal processing.
The first successful attempt to reduce bird contamination was
made byMerritt (1995), who suggested a selective averaging
method of the individual Doppler spectra based on a statisti-
cal criterion. The same method can also be applied off-line
to averaged spectra, when data with higher resolution are not
available (Pekour and Coulter, 1999). Weber(2005) used
neural networks for a classification of contaminated single
spectra, followed by a selective averaging. Other proposals
have concentrated on modified peak detection in the Doppler
spectrum to address spurious flier returns, among other clut-
ter types (Griesser and Richner, 1998; Cornman et al., 1998;
Morse et al., 2002; Weber et al., 2004). The disadvantage
of all these methods is that the mitigation processing builds
upon the Doppler spectra (either before or after spectral in-
tegration). Given the highly non-stationary characteristics of
the intermittent clutter signal, it is necessary to deal with the
problem before the Doppler spectrum is estimated, because
Fourier methods are generally inadequate for nonstationary
signals. In other words, the necessary nonlinear filtering has
to be performed in the time domain. This approach was first
suggested byJordan et al.(1997) and further byLehmann
and Teschke(2001), who suggested wavelet decomposition
and wavelet coefficient thresholding, to remove the clutter
part of the signal. However, the a-priori unclear choice of the
mother wavelet and – at least for the dyadic wavelet trans-

form – a suboptimal signal separation in the wavelet domain,
especially near zero Doppler shift, makes an efficient separa-
tion of clutter and signal difficult.

Ideally one would like to have an intermittent clutter sup-
pression algorithm that reduces the clutter part of the sig-
nal as best as possible, given the sampled data and that fur-
ther quantifies itsdegree of contaminationby providing some
measure of clutter energy for quality control purposes. Fur-
thermore, the algorithm must not degrade both data quality
and availability in the no-clutter case, but it should perform
as well as the proven standard processing methods. This re-
quirement is more stringent than it may appear at first glance.
In this paper, we propose a new signal-clutter separation
method that attempts to meet these objectives. It is based
on a redundant frame decomposition of the time series fol-
lowed by the statistical filtering approach suggested byMer-
ritt (1995).

The paper is organized as follows: Sect. 2 gives an
overview of RWP signal characteristics and signal process-
ing and identifies shortcomings of the currently used meth-
ods when intermittent clutter signals are present. Section 3
reviews basic results of the mathematical theory of frames,
which deals with linear discrete signal representations. The
goal is here to find a signal representation, that achieves op-
timal separation between the atmospheric and the clutter part
of the signal. This is achieved by the discrete Gabor rep-
resentation, which is discussed next. Section 4 focuses on
a statistical approach to objectively identify the atmospheric
signal component, based on well-justified statistical assump-
tions. A comparison of the new algorithm with the previ-
ously used signal processing techniques is shown in Sect. 5.
The data used were obtained during routine operation of a
482 MHz wind profiler radar of the Deutscher Wetterdienst
at Bayreuth, Germany in the fall of 2005. Finally, a sum-
mary and conclusions are given in Sect. 6.

2 RWP signal characteristics

2.1 General properties of the received signal

The relationship between the signal received by the radar and
the scattering medium is the topic of radar instrument the-
ory, which basically describes how atmospheric properties
are mapped to the measurable function at the radar receiver
output (Woodman, 1991; Muschinski, 2004). It is known that
models for the scattering processes and the technical prop-
erties of the radar system must be considered here, which
makes the task quite formidable. However, for the problem
at hand it is not required to consider such theories in detail,
because we are only interested in some rather general prop-
erties of the received signal, like statistical stationarity. For
a pulsed RWP, the received signal at the antenna output has
the following properties:
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1. Continuous real-valued random voltage signal: Every
measurable physical quantity is real. The randomness is
the result of the random nature of the scattering process.

2. Intrinsically nonstationary: This is due to the impulsive
character of the transmitted signal and the inhomoge-
neous vertical structure of the atmosphere.

3. Multi-component: Beside the ubiquitous noise, there
may be signal contributions from several independent
scattering processes, like Bragg scattering at fluctua-
tions of the refractive index, Rayleigh scattering at pre-
cipitation and scattering at various clutter targets.

4. Narrowband: The signal is band-limited, with a maxi-
mum width that is largely determined by the bandwidth
of the transmitted pulse.

5. Large dynamic range: The signal varies easily over
many orders of magnitude, which is typical for all radar
systems.

After a linear low-noise amplification, the first processing
step is a (digital) quadrature demodulation of the analog
band-limited signal. This leads to a complex baseband rep-
resentation, where the signal is described through the time
series of its in-phase (I) and quadrature-phase (Q) compo-
nents. Property 1 is thus modified, because the signal has
now become complex. Furthermore, uniform sampling for
N fixed delay times (after pulse transmission, corresponding
to N fixed ranges) at multiples of the radar inter-pulse pe-
riod is then applied to generate N quasi-stationary sequences
from the nonstationary signal. This stationarity assumption
is usually valid for atmospheric scattering, ground clutter and
noise, provided the scattering medium at a fixed height does
not change its properties significantly over the length of the
time series (Woodman, 1991). It is one of the basic assump-
tions of signal processing for atmospheric radars (Keeler and
Passarelli, 1990). The process of generating the N sequences
is called range-gate sampling and thereby, property 2 is mod-
ified. The remaining signal properties 3–5 are preserved for
the N discrete data sequences, provided processing is linear.
Finally, matched filtering of the band-limited signal is per-
formed to achieve an optimal signal-to-noise ratio.

2.2 Classical signal model and its limitations

The classical RWP signal model assumption is that the de-
modulated discrete voltage sequence at the receiver output
can be written as

S[k] = I [k]eiωk1t
+ N[k], (1)

whereI [k]∼N(0, σ 2
I ) andN[k]∼N(0, σ 2

N) are independent
complex zero-mean Gaussian random vectors describing
the atmospheric signal and the receiver noise, respectively
(Zrnić, 1979), 1t is the sampling interval of the sequence

andω the mean Doppler frequency. FurthermoreI [k] is nar-
rowband compared to the receiver bandwidth and|ω|≤π/1t

(Nyquist criterion). BecauseS[k] is the result of the de-
modulation of a real valued zero-mean and stationary Gaus-
sian random process, the resulting Gaussian complex random
process is also wide-sense stationary and zero-mean. Fur-
thermore, the sequence has a vanishing pseudo-covariance,
that is we haveE(S[k]S[l])=0. Such a process is usu-
ally called proper, circular or phase-invariant (Neeser and
Massey, 1993). We will use this property later in connection
with a moments theorem for these processes (Reed, 1962).

BecauseS[k] is Gaussian, it is completely characterized
through its covariance matrixR with entries

(R)k,l = Cov(S[k], S[l]) = E(S[k]S̄[l])

= E(I [k]Ī [l])eiω(k−l)1t
+ E(N[k]N̄[l])

= σ 2
I %[k − l]eiω(k−l)1t

+ σ 2
Nδk−l,0,

where% is specified below. Furthermore, stationarity is as-
sumed over typical dwell-times ofO(1 min). While this is a
classical assumption in radar signal processing (Zrnić, 1975,
1979; Woodman, 1985; Frehlich and Yadlowsky, 1994;
Lottman and Frehlich, 1997), it is unknown for which max-
imal time series length this assumption can be made safely.
We found that bird clutter signals are significantly nonsta-
tionary over typically used dwell times of about 30 s to 60 s.
This is in sharp contrast to observed atmospheric signals,
which exhibit a high degree of stationarity on that time scale,
well in line with the classical assumptions.

Therefore we get the following expression for the autoco-
variance function

ACov(k) = σ 2
I %[k]eiωk1t

+ σ 2
Nδk,0 = σ 2ρ[k] , (2)

where we set

σ 2
:= σ 2

I + σ 2
N and ρ[k] :=

σ 2
I %[k]eiωk1t

+ σ 2
Nδk,0

σ 2
I + σ 2

N

.

(The sequenceρ will be of importance when constructing ad-
equate mean and variance estimators.) Finally, the autocor-
relation function%[k] is often assumed to follow a Gaussian
correlation model, which corresponds to a Gaussian signal
peak in the power spectrum. If the spectral width of the sig-
nal isw, then we have (Zrnić, 1979; Frehlich and Yadlowsky,
1994)

%[k] = e−2π2w2k21t2
. (3)

Note that this Gaussian correlation model must not be con-
fused with the characterization of the random process as
Gaussian, which covers a much wider class of signals. The
assertions are normally very well justified and therefore often
used in simulations of the radar signal (Zrnić, 1975; Frehlich
and Yadlowsky, 1994; Muschinski et al., 1999).
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In reality, however, there is sometimes a third component
contributing to the signal, namely clutter (Muschinski et al.,
2005), so that the signal model must be written as:

S[k] = I [k]eiωk1t
+ N[k] + C[k] . (4)

Clutter is the totality of undesired echoes and interfering sig-
nals, therefore it is impossible to generalize the properties
of C[k]. In the case of RWP, clutter includes in particular
echoes from airborne objects such as aircraft and birds as
well as returns from the ground. Interfering signals may be
caused by other radio transmitters operating in the RWP re-
ceiver band. In the remainder of the paper, we restrict our-
selves to intermittent clutter signals.

While the properties of the intermittent clutter component
have not been systematically investigated, it is instructive to
take a look at a few examples. Such have been presented by
various authors:Wilczak et al.(1995) described the distinct
characteristic of bird contaminated I and Q data when seen
in an A-scope display, but the shown time series taken with
a 924 MHz RWP is only 0.5 s long, which is too short to see
its essential characteristics.Jordan et al.(1997) show an ex-
ample of a 30 s long time series taken with a 915 MHz RWP
during bird migration, which exhibits a variation in the enve-
lope of the signal due to modulation of signal amplitude by
the antenna beam pattern. Another example of intermittent
clutter caused by airplanes and a simple theoretical model is
given byBoisse et al.(1999). The most distinct feature here
is also the time-dependent amplitude of the signal. A 19 s
time series of a 482 MHz RWP containing an airplane echo
is discussed inMuschinski et al.(2005).

In the fall of 2005, time series data of the coherently in-
tegrated I/Q signal of the RWP at Bayreuth, Germany were
saved in the wind low mode to get a unique dataset for the
investigation of bird migration. For 13 October, it was sub-
jectively judged that the data showed a maximum of bird
echoes. We have therefore selected this day for demon-
stration of the proposed algorithm. One particular dwell is
shown in Fig.3. The time series has a length of about 35 s
and its nonstationarity is striking.

When data containing intermittent clutter components are
compared to both clear air and ground clutter signals (see
Muschinski et al., 2005, for an example), it is very obvious,
that the main difference is the transient character of the inter-
mittent clutter signal component. FollowingFriedlander and
Porat(1989), we define a transient signal as a signal whose
duration is short to the observation interval, in our case the
dwell time. Such a behavior clearly reflects a nonstationarity
of the underlying scattering process. It is not the sinusoidal
signature that makes the difference, as a sufficiently strong
clear air signal also exhibits a sinusoidal nature (see Figs. 1
and 2 inMuschinski et al., 2005) – the most distinct property
of intermittent clutter is its nonstationarity.

2.3 Consequences for signal processing

Signal processing can be regarded as the art of extracting the
maximum amount of information from a given measurement.
This obviously means that the general properties of the sig-
nal determine the optimal mathematical processing methods.
A stationary Gaussian stochastic process is without loss of
information described by its time-independent second-order
properties, that is the autocovariance function or, equiva-
lently, the power spectrum. This assumption holds when
Eq. (1) is valid, and the classical way to process RWP data is
then based on a non-parametric estimation of the power spec-
trum using a discrete Fourier transform of the (usually coher-
ently integrated) raw signal over the dwell-time. The power
spectrum is commonly called the Doppler spectrum. Its first
three moments are estimated after the noise contribution to
the spectrum has been subtracted, to describe the basic prop-
erties of the atmospheric signal (Woodman, 1985). However,
we have seen that the clutter contribution can be highly non-
stationary. If the signalS[k] contains nonstationary compo-
nents, then the Doppler spectrum is no longer an adequate
representation of the stochastic process because information
regarding time dependency is already lost. So it cannot be
expected that a successful intermittent clutter filtering strat-
egy can be developed based on the Doppler spectrum. There-
fore it is tempting to try methods that were developed in the
framework of nonstationary signal processing. A necessary
condition is obviously a separation ofC[k] from the station-
ary componentsI [k]eiωk1t

+N[k]. To achieve this, we look
for a representation of the signal in which we are able to dis-
criminate between stationary and nonstationary signal com-
ponents. This is the goal put forward inWilczak et al.(1995):
Clearly, a superior technique would be one in which the bird
signal and atmospheric signal could be differentiated from
each other and processed independently.

So far we have considered either a pure time representation
of the signal, namely its discrete time series, or its complex
Fourier transform as a pure frequency representation. Both
are not optimal for transient phenomena, although they are
complete representations of the same information. Therefore
we look for an intermediate representation that aims at the
joint time-frequency structure of the signal, so it needs to de-
pend on both time and frequency. This is the topic of the
next section. If we are able to separate stationary and nonsta-
tionary signal components in such a representation, then we
might be able to suppress the nonstationary clutter part while
leaving the stationary signal component essentially intact.
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3 Signal representation via Gabor frame expansions

3.1 The windowed Fourier transform and the time-
frequency plane

Let us consider continuous signals first, although in practice
we are always given a discretized signal. A quite natural
way to analyze a continuous signal simultaneously in time
and frequency is provided by the windowed Fourier trans-
form (WFT), seeGabor(1946); Daubechies(1992); Kaiser
(1994); Mallat (1999). It is essentially an extension of the
well-known Fourier transform, where time localization is
achieved by a pre-windowing of the signal with a normal-
ized window functionh∈L2(R). For any given function
S∈L2(R), the WFT is defined as

VhS(τ, ω) =

∫
+∞

−∞

S(t)h(t − τ)e−iωtdt . (5)

The operatorVh maps isometrically betweenL2(R) and
L2(R2), that is a one-dimensional function/signal is with
no loss of energy transformed via the WFT into a two-
dimensional function depending on both timeτ and fre-
quencyω. The(τ, ω)-plane is called the time-frequency (TF)
plane or briefly the phase space. This representation was sug-
gested byGabor(1946) to illustrate thatboth time and fre-
quency are legitimate references for describing a signal. The
squared modulus ofVhS is called the spectrogram, denoted
by

PhS(τ, ω) = |VhS(τ, ω)|2 , (6)

and provides a measure for the energy of the signal in the
time-frequency neighborhood of the point(τ, ω) and thus in-
sight about the time-frequency structure ofS. However, due
to Heisenberg’s uncertainty relation, there is no arbitrary res-
olution in time and frequency simultaneously, i.e. a point-
wise frequency description in time domain and a point-wise
time description in frequency domain is impossible. For-
mally, one considers in the uncertainty context for some cen-
tralized signalh with ‖h‖=1, time and frequency variances

σ 2
t =

∫
+∞

−∞

t2
|h(t)|2dt σ 2

ω =
1

2π

∫
+∞

−∞

ω2
|ĥ(ω)|2dω (7)

for which the Heisenberg uncertainty relation yields

σt · σω ≥
1

2
. (8)

It can be shown, that equality in Eq. (8) is achieved when
h is a translated, modulated or scaled version of the Gaus-
sian function (equality means achieving optimal resolution
in the time-frequency plane). Their time-frequency spread is
visualized through a rectangle with widthsσt andσω in the
TF-plane, this is called a Heisenberg box – see Fig.1. This
optimality result shall be used later on, when elaborating a
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Fig. 31. Schematic representation of the time-frequency plane and
the Heisenberg-box (resolution) of the window functionhτ,ω(t),
centered at timeτ = t0 and frequencyω = ω0.
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Zrnić, D. S.: Simulation of Weatherlike Doppler Spectra and Sig-
nals, J. Appl. Meteorol., 14, 619–620, 1975.
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Fig. 33. Time series of the in-phase (upper plot) and quadrature
(lower plot) component of the baseband signal measured with the
482-MHz RWP at Bayreuth, Germany, at 00:09:45 UTC on October
13, 2005 (south beam, range gate 9). The complex time series con-
tains 4608 samples. Each sample is the coherent sum of 94 echoes
from subsequent pulses.

Fig. 1. Schematic representation of the time-frequency plane and
the Heisenberg-box (resolution) of the window functionhτ,ω(t),
centered at timeτ=t0 and frequencyω=ω0.

discrete version of Eq. (5). Since the WFT is an isometry,
the inversion ofVh can be performed by its adjoint,

〈S, S〉L2(R) = ‖S‖
2
L2(R)

= ‖VhS‖
2
L2(R2)

= 〈VhS, VhS〉L2(R2) = 〈V ∗

h VhS, S〉L2(R)

and therefore

S(t) = V ∗

h VhS(t) =
1

2π

∫∫
R2

VhS(τ, ω)h(t − τ)eiωtdωdτ .

(9)

Hence, in the continuous setting we still have signal analysis,
transform Eq. (5), and signal synthesis, transform Eq. (9),
in some straightforward way available and therefore time-
frequency signal filtering can be performed in three simple
steps (see e.g.Hlawatsch and Boudreaux-Bartels, 1992):

1. Analysis: Computation of the WFT using Eq. (5).

2. Modification of the WFT (e.g. time-dependent filter-
ing).

3. Synthesis: Reconstruction of the modified signal using
Eq. (9).

3.2 From windowed Fourier transform to Gabor frame ex-
pansions

For discrete signals, continuous transforms (5) and (9) are not
suitable and would create very redundant representations of
the signal. A first adjustment can be achieved when Eqs. (5)
and (9) are approximated by discrete sums. Discretizing
Eq. (9) means taking only values of the WFT at some dis-
crete lattice in phase space. As it was pointed out, e.g.
in Daubechies(1992), the sampling density in phase space
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plays a significant role for the existence and stability of a
reconstruction formula, i.e. of a discrete version of Eq. (9).

Assume we are given some discrete subset3 (to be spec-
ified below) of the TF-plane, then a naive discrete version of
the inversion formula (9) would be

S(t)
?
≈

∑
(m,k)∈3

VhS(mT, k�)hm,k(t) (10)

with

hm,k(t) = h(t − mT )eik�t ,

where the parameterT controls the discrete linear shiftmT

along the time axis and� the sampling shiftk� in the
frequency domain. In order to verify whether Eq. (10)
indeed exhibits a reconstruction formula, we first observe
that for a family of elementary signals or so-called atoms
{hm,k}(m,k)∈3 that is complete inL2(R) any S∈L2(R) can
be represented by a linear expansion of the form

S(t) =

∑
(m,k)∈3

am,khm,k(t) . (11)

But only in very specific cases, e.g. when{hm,k}(m,k)∈3

forms an orthonormal basis,

am,k = 〈S, hm,k〉 = VhS(mT, k�)

and then Eq. (10) would indeed be an equality,

S(t) =

∑
(m,k)∈3

〈S, hm,k〉hm,k(t) .

In general, this is not the case, i.e. we only have

S(t) 6=

∑
(m,k)∈3

〈S, hm,k〉hm,k(t) = F ∗FS(t) ,

where the operatorF ∗F and its properties are briefly dis-
cussed in Appendix A. For a detailed analysis and discus-
sion on this subject we refer the interested reader to, e.g.,
Daubechies(1992). To reconstructS (i.e. to invertF ∗F ),
special properties on3 and on the analyzing atoms (the
dual functions toh) are required. In what follows, we
shall focus on the practically relevant biorthogonal case, in
which the construction of the analyzing atoms becomes sim-
ple and, moreover, numerically stable. To this end, sup-
pose there is some auxiliary familygm,k(t)=g(t−mT )eik�t

(yet unknown) available that serves as a reservoir of analyz-
ing atoms used to compute the Gabor coefficientsam,k via
Eq. (5),

am,k = 〈S, gm,k〉 = VgS(mT, k�) =

∫
S(t ′)ḡm,k(t

′)dt ′ .

(12)

This approach was originally proposed byBastiaans(1980).
Inserting now Eq. (12) into Eq. (11) yields

S(t) =

∑
(m,k)∈3

∫
S(t ′)ḡm,k(t

′)dt ′hm,k(t)

=

∫
S(t ′)

( ∑
(m,k)∈3

ḡm,k(t
′)hm,k(t)

)
dt ′ .

Equality in the latter equation is assured as long as∑
m,k

ḡm,k(t
′)hm,k(t) = δ(t − t ′) . (13)

Condition (13) is called thebiorthogonality relationand re-
stricts the choice ofg in dependence on the preassigned func-
tion h. The particular choice of the window functionh (e.g.
its varianceσh), the time shiftT and the frequency shift
� directly controls the existence, uniqueness, convergence
properties and the numerical stability of the Gabor expansion
(11), which exists for arbitrary signalsS(t) only if �T ≤2π ;
this is a frame theoretical result, seeDaubechies(1990); Mal-
lat (1999). The physical meaning of this inequality is nothing
but the Nyquist sampling criterion and represents the sam-
pling density.�T =2π is called critical sampling. This was
Gabor’s original suggestion, as he was aiming at elementary
signalsconveying exactly one datum or one “quantum of in-
formation”. In other words, there was no interest in any re-
dundancy.

Gabor(1946) called the sampling density aninformation
diagram. In his attempt to derive a theory of communication,
each area represents one elementary quantum of information
which Gabor proposed to call alogon. Although concep-
tually simple and appealing, the Gabor expansion at mini-
mal sampling density in the TF-plane (�T =2π) has no nice
mathematical structure. In particular, it does not form a ba-
sis with the basis functions localized in time and frequency.
A relaxation of the equality�T =2π is therefore required
and generates a crucial degree of freedom in the Gabor ex-
pansion, this at the expense of oversampling and a possible
non-uniqueness. For�T >2π the stability of the expansion
is lost.

3.3 Gabor frame expansions for discretely sampled signals

So far we have discretized Eq. (9) resulting in the Ga-
bor frame expansion (11) for S∈L2(R). But when it
comes to real applications, only finitely many discretely
sampled values ofS are available; namelyS[n]=S(n1t),
n=0, . . . , N−1. Therefore it becomes necessary to develop
a fully discrete concept for evaluating the Gabor coeffi-
cients (12). Moreover, the discrete subset3 in Eq. (11) is
in general infinite and hence also not suitable for a numeri-
cal implementation. The sum needs to be appropriately trun-
cated and, in addition, a discrete version of the dual function
g needs to be derived.
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We now illustrate how to proceed for discrete dataS. More
details can be found in the original paper byWexler and Raz
(1990) and Appendix B. Assume we are given some dis-
crete and finite time (periodic) signalS̃with sampling points
n=0, . . . , N−1, that isS̃[n]=S̃[n+N ]. We therefore have to
periodize the analysis and synthesis windows as well,

h̃[n] =

∑
l

h[n + lN ] , g̃[n] =

∑
l

g[n + lN ].

Slightly abusing the notation, we omit the tilde denoting pe-
riodic (finite) functions in the following. The signalScan be
discretely represented by

S[n] =

M−1∑
m=0

K−1∑
k=0

am,khm,k[n] , (14)

whereas the Gabor coefficients can be derived from

am,k =

N−1∑
n=0

S[n]ḡm,k[n] . (15)

Introducing integers1M and1K and the toral component
WN= exp[2πi/N ], the discrete analysis and synthesis win-
dows can be rewritten as

hm,k[n] = h[n − m1M]W nk1K
N ,

gm,k[n] = g[n − m1M]W nk1K
N .

As can be seen,1M denotes the time and1K the frequency
step size. They correspond toT and�. In our setting they
are constrained by1M·M=1K·K=N . The reconstruction
formula becomes

S[j ] =

M−1∑
m=0

K−1∑
k=0

am,khm,k[j ]

=

N−1∑
l=0

S[l]

M−1∑
m=0

K−1∑
k=0

ḡm,k[l]hm,k[j ] ,

where we have assumed that the following discrete version
of biorthogonality relation (13) for the sequencesh andg is
fulfilled,

M−1∑
m=0

K−1∑
k=0

ḡm,k[l]hm,k[j ] = δl,j .

It can be shown (for a proof see Appendix B) that the
biorthogonality relation is satisfied if

N−1∑
j=0

h[j + qK]W
−jpM
N ḡ[j ] =

N

MK
δp,0δq,0 (16)

for 0≤p≤1M−1 and 0≤q≤1K−1. System (16) can
be rewritten in matrix form: Letv=(N/(MK), 0, . . . , 0)T

be a vector of length1M1K andg=(g[0], . . . , g[N−1])

the vector representing the discretely sampled dual frame,
and let A be the matrix of size1M1K×N with entries
A(p,q),j=h̄(j+qK)W

jpM
N , then the dual frame atomg is the

solution of the linear system

Ag = v . (17)

For oversampling1M1K<N , system (17) is under-
determined, and the solution is no longer unique and there-
fore there is a variety of possible dual frame atomsg.

3.4 On the choice of the analysis and synthesis atom and
the TF-plane lattice

As we have seen, there is a high degree of freedom when
constructing a frame representation of some signalS. In par-
ticular,

i) the choice of the synthesis windowh

ii) the choice of the time-frequency sampling grid3,
i.e. the choice of1M and 1K, which specifies the
redundancy/non-redundancy and therewith the non-
uniqueness/uniqueness of the Gabor frame expan-
sion (14)

iii) the choice ofg in case of1M1K<N , i.e. in the over-
sampling situation, one may add further desirable con-
straints on the solutiong of system (17), e.g. minimum
energy-norm.

These three aspects shall now be discussed:

At i): Any absolute and square integrable functionh is ap-
propriate. However, as mentioned above, Heisenberg’s un-
certainty relation (8) requires for optimal time-frequency res-
olution a Gaussian function. Therefore, we choose

h(t) = π−1/4σ
−1/2
h e−t2/(2σ2

h ), such that‖h‖ = 1 , (18)

where the scaling parameterσh (determined below) shall
allow either a better resolution in time or in frequency. As
we shall see in iii), the time-frequency localization properties
of synthesis functionh carry over to analysis functiong.

At ii): The most important parameters that control the sam-
pling density in the TF-plane are1K and1M. Together
with the specificationσh they fully determine (up to non-
canonical choices ofg) the discrete Gabor representation
of some given function. In principle, the only require-
ment is 1K1M≤N . But because of Heisenberg’s prin-
ciple, too dense sampling (high redundancy) of the TF-
plane is not worth the trouble. More precisely, let1t de-
note the sampling size ofS, i.e. S[n]=S(n1t), with to-
tal period ofS of N1t=Td (often referred to as the dwell
time). Then, in the classical FFT context, the frequencies
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Fig. 31. Schematic representation of the time-frequency plane and
the Heisenberg-box (resolution) of the window functionhτ,ω(t),
centered at timeτ = t0 and frequencyω = ω0.
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Fig. 32. Gabor phase space representation of a simulated RWP
signal containing only noise and an atmospheric component. The
x-axis shows time (in seconds) and the y-axis frequency (in Hz).
Color contours (logarithmic scaling in dB) denote the power of the
Gabor coefficients.
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Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

Fig. 33. Time series of the in-phase (upper plot) and quadrature
(lower plot) component of the baseband signal measured with the
482-MHz RWP at Bayreuth, Germany, at 00:09:45 UTC on October
13, 2005 (south beam, range gate 9). The complex time series con-
tains 4608 samples. Each sample is the coherent sum of 94 echoes
from subsequent pulses.

Fig. 2. Gabor phase space representation of a simulated RWP signal
containing only noise and an atmospheric component. The x-axis
shows time (in seconds) and the y-axis frequency (in Hz). Color
contours (logarithmic scaling in dB) denote the power of the Gabor
coefficients.

are due to Nyquist’s law automatically spaced with reso-
lution 1/Td within [−1/21t, 1/21t]. Through the flexi-
bility of the Gabor representation we may individually set
up the time and frequency spacing. Let us consider to this
end the Heisenberg box size, i.e. the time and frequency
variances (Eq.7), which take for our particularh the form
σ 2

t =σ 2
h/2 andσ 2

ω=(2σ 2
h )−1. If we restrict the spacing of the

TF-plane to this box size (essentially smaller would produce
an overlapping of the boxes), i.e. setting1τ=1M1t=σ 2

t

and 1ω=1K/Td=σ 2
ω, Heisenberg’s uncertainty principle

(Eq.8) and the solvability of Eq. (17) yields

N ≥ 1M1K ≥
1

4
N . (19)

The right inequality in Eq. (19) represents an upper sampling
bound, which prevents an unnecessary Heisenberg box over-
lapping. If now an application requires a time resolution
1τ in the Gabor representation, we immediately obtain in
the context of Heisenberg’s uncertainty principle the optimal
scaling factor for the synthesis (and therewith for the analy-
sis) atom,

σ 2
h = 21τ ,

and a suggestion for the sampling density in time and fre-
quency,

1M = b1τ/1tc ,
N

1M
≥ 1K ≥

N

41M
.

At iii): In the oversampling situation (1M1K<N), the non-
uniqueness can be used to add desirable constraints to the
solution, for example minimum energy. This was discussed

in greater detail inQian and Chen(1993) and Qian et al.
(1992): SinceA is underdetermined, we may rewrite Eq. (17)
by applying the QR decomposition to its transposed form as

(
RT 0

)
QT g =

(
RT 0

) (x
y

)
= v

and thusx=(RT )−1v. BecauseQQT
=Id, it follows

g = Q
(

x
y

)
=
(
Qx Qy

) (x
y

)
= Qxx + Qyy .

Since h is in the range(Qx) and because range(Qx)⊥

range(Qy), one hasQT
y h=0 (which is of interest below).

Moreover, we observe that the analysis windowg is the sum
of two orthogonal vectors with‖g‖

2
=‖x‖

2
+‖y‖

2. Due to
Eq. (17), Qxx=Qx(RT )−1v, but Qyy may depend on other
constraints. When searching for the minimum norm solution,
we simply set‖Qyy‖

2
=‖y‖

2
=0 and obtain

g = Qxx = Qx(RT )−1v = gmin

which is nothing thangmin = AT (AAT )−1v. However, for a
meaningful interpretation of the Gabor expansion, we would
prefer an analysis windowg that is locally concentrated in the
TF-plane. The design of such a functiong when the synthesis
functionh as well as1K and1M are given is a nontrivial
problem, which was addressed inQian and Chen(1993) and
Qian et al.(1992). The problem can be formulated as fol-
lows: Given an optimally concentrated functionh (e.g. the
preassigned synthesis function), find its biorthogonal func-
tion g whose shape best approximates time and frequency
shifted versions ofh, i.e. minimize

E(g, a, b) =

∥∥∥∥ g
‖g‖

− ha,b

∥∥∥∥2

= 2

(
1 −

1

‖g‖
<〈g, ha,b〉

)
,

while Ag=v. For fixeda andb, the optimal vectory in the
representation forg (x is still fixed through the biorthogonal-
ity relation) is given by

y =
‖x‖

2

<〈Qxx, ha,b〉
QT

y ha,b .

Choosingha,b=h yields QT
y ha,b=0 (see above) and thus

y=0 and consequently,g=gmin, i.e. the shape ofgmin best
approximates the shape ofh. Therefore, the TF-plane local-
ization properties ofh carry over tog in this case. But note
that in principle any functionha,b is allowed and thus there
is a large variety of possible analysis atomsg.

3.5 Gabor representation of two examples

To illustrate the signal separation property of the discrete Ga-
bor expansion for a single dwell, we consider two examples.
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Fig. 31. Schematic representation of the time-frequency plane and
the Heisenberg-box (resolution) of the window functionhτ,ω(t),
centered at timeτ = t0 and frequencyω = ω0.
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Fig. 32. Gabor phase space representation of a simulated RWP
signal containing only noise and an atmospheric component. The
x-axis shows time (in seconds) and the y-axis frequency (in Hz).
Color contours (logarithmic scaling in dB) denote the power of the
Gabor coefficients.
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Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

Fig. 33. Time series of the in-phase (upper plot) and quadrature
(lower plot) component of the baseband signal measured with the
482-MHz RWP at Bayreuth, Germany, at 00:09:45 UTC on October
13, 2005 (south beam, range gate 9). The complex time series con-
tains 4608 samples. Each sample is the coherent sum of 94 echoes
from subsequent pulses.

Fig. 3. Time series of the in-phase (upper plot) and quadrature (lower plot) component of the baseband signal measured with the 482-MHz
RWP at Bayreuth, Germany, at 00:09:45 UTC on 13 October 2005 (south beam, range gate 9). The complex time series contains 4608
samples. Each sample is the coherent sum of 94 echoes from subsequent pulses.

The method ofZrnić (1975) was first used to simulate a sig-
nal in line with the classical signal model, which contains
only noise and a stationary atmospheric component. In the
frequency domain, the atmospheric signal peak is assumed
to be a Gaussian centered atfd=ω/2π=−10.9 s−1 and with
a spectral width ofw=0.9 s−1. The discrete spectrogram of
this signal is shown in Fig.2. The atmospheric signal compo-
nent is represented as a horizontal line (stationarity) centered
at the prescribed Doppler frequency. Noise is spread over the
complete TF plane.

Now lets take a look at measured time series data contain-
ing an additional intermittent clutter component. This dataset
is further discussed in Sect.5. The original I/Q data is shown
in Fig. 3. Clearly, this time series is not stationary but con-
tains transient components due to migrating birds. Assuming
that a time resolution ofO(1s) is sufficient to resolve these
transients, we select a time resolution of about 0.5 s for the
Gabor expansion. This corresponds to a frequency resolu-
tion of about 2 Hz. An appropriate sampling density in the
TF-plane is achieved with1M=64 and1K=64. Setting
M=128 andK=128, we get an oversampling factor of 3.5;
the optimal scaling is given byσ 2

h≈1. In contrast to the sim-
ulated case, the spectrogram of the measured signal shown
in Fig. 4 shows additional nonstationary signal components,
which are a typical signature of contamination by intermit-
tent clutter. Taking a look at the pure time representation
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Fig. 34.Same representation as in Figure 32, but for the data shown
in Figure33. The three transient signal components are clearly sep-
arated from the stationary atmospheric signal component.
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Fig. 35. Same as in Figure 34,but after filtering. For the transient
signal components, the Gabor coefficients were replaced by esti-
mated thresholds for the stationary signal contribution at the given
frequency.
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Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

Fig. 36. Same as in Figure 33, but for the cleaned signal obtained
from the filtered Gabor representation shown in Figure 35.

Table 31. Technical parameters of the 482 MHz RWP/RASS at
Bayreuth/Germany

Center frequency 482.0078 MHz
Peak (Average) power 16 (2.4) kW
Pulse modulation Amplitude (B/W)

Phase (pulse compression)
Pulse widths (vert. resolution) 1.7µs ( 250 m)

2.2µs ( 330 m)
3.3µs ( 500 m)
4.4µs ( 660 m)

Antenna type Phased array of 180 CoCo antennas
Antenna aperture (area) 142m2 (12.4× 11.5 m)
On-axis gain above isotropic > 34 dBi
One-way half power (3 dB) beamwidth 6 3

Oblique beam zenith distance 15.2

RX type Heterodyne (IF 60 MHz), Digital IF
LNA noise figure 6 0.6 dB
A/D conversion 14 bit (@ max 66 MHz)
Pulse compression Bi-phase, complementary, max 32 bit
System sensitivity 6 -154 dBm
Vertical measuring range 16 km (wind), 4 km (virt. temp.)

Table 32.TX and RX sampling parameters in routine operation

Wind Low-Mode
Inter Pulse Period 82µs
Pulse Width 1.7µs
Tx Duty 2.07 %
# of code bits 1 (phase flip)
Pulse Peak Power (PEP) 16 kW
Spacing (on RX) 1.0µs
# of Gates 50
First Gate 8.6µs

Fig. 4. Same representation as in Fig.2, but for the data shown in
Fig. 3. The three transient signal components are clearly separated
from the stationary atmospheric signal component.

of the signal it is difficult to identify the separate transients,
which show up as maxima of the envelope of the I/Q signal.
However, Fig.4 shows the same signal, but now its Gabor
phase-space representation. This clearly provides a far better
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768 V. Lehmann and G. Teschke: Advanced intermittent clutter filtering for radar wind profiler

picture of the signal transients, even if the spectrogram shows
only the modulus of the Gabor coefficients (the Gabor coeffi-
cients itself are complex). Visible are three distinct transitory
bird-events. Two of them overlap in time and can therefore
not easily be distinguished in the time representation. All
bird signals are much stronger in amplitude than the atmo-
spheric signal of interest. The latter can be seen as a line at
quasi-constant frequency, centered at about 3 Hz. By com-
paring Fig.2 with the real data shown in Fig.4, the goal of
the filtering process becomes evident.

4 Filtering through the statistics of Gabor frame coeffi-
cients

4.1 Motivation for the statistical approach

With the tool of the Gabor representation at hand, the next
step is to derive an appropriate filtering strategy for removal
of the transient clutter signals. Our intention is to use the
available a-priori knowledge about the signal components
(atmosphere, noise, clutter) to construct an objective deci-
sion process aiming at a proper signal component separation.

It is well-justified that both the atmospheric and the noise
signal component are stationary Gaussian random processes.
The atmospheric signal has a bounded spectral width much
smaller than Nyquist interval, whereas noise is white and
spread over the full TF plane. Not much is known in contrast
about intermittent clutter, only the non-property that this sig-
nal component is nonstationary over typical dwell-times. We
make use of this a-priori information to derive a filter that has
a pass-characteristics for realizations of wide-sense station-
ary random processes and a stop-characteristics for all non-
stationary processes. That is, signals looking like the simu-
lated example shown in Fig.2 should not be affected by the
filtering process. The goal is thus to derive an objective pro-
cedure, which modifies the Gabor phase space representation
of signals in such a way, that stationary Gaussian signal com-
ponents are preserved.

One can imagine several strategies for implementing such
a filter. For instance, this could be based on image processing
techniques or a fuzzy-logic approach similar to the one used
by Cornman et al.(1998). We follow a simpler statistical ap-
proach, which has first been used byMerritt (1995) for the
same problem, where it is applied to the temporal sequence
of Doppler spectral coefficients at fixed frequency bins. The
goal is to construct a similar test, but this time in Gabor phase
space. We therefore need to analyze the statistical properties
of the Gabor coefficients with respect to the different sig-
nal components, in order to distinguish between clear air and
clutter return. This immediately leads to the question of how
the properties of Gaussian stationary processes are mapped
to the Gabor coefficientsam,k or |am,k|

2. This problem is
discussed in the next paragraph.

4.2 Mean and variance estimator for Gabor spectrogram
coefficients

Since we aim at constructing a statistical test (see the next
section below) which is based on the expectation and the
variance of the individual Gabor spectrogram coefficients
|am,k|

2, we need to define adequate estimators for the ex-
pectation and the variance based on our observations (given
throughS).

First, to simplify the notation, we introduceaλ as a short-
hand notation ofam,k, i.e. in what follows we setλ=(m, k).
Then, the Gabor spectrogram coefficients take the form

|aλ|
2
=

N−1∑
n=0

S[n]gλ[n]

N−1∑
l=0

S̄[l]ḡλ[l].

As mentioned in the previous section, we assume that the
data sequenceS satisfies for alln=0, . . . , N−1,

ES[n] = 0 and ES[n]S̄[n + l] = σ 2ρ[l] .

With these two assumptions, the expectation and the covari-
ance of the Gabor spectrogram coefficients are given by

E|aλ|
2

= σ 2
〈ρ ∗ gλ, gλ〉 ,

Cov(|aλ|
2, |aη|

2) = σ 4
|〈ρ ∗ gλ, gη〉|

2 ,

which is shown in Appendix C (Lemma3 and Lemma4).
The “∗”-symbol stands here for the discrete convolution. The
latter two formulas show the influence of the dependency of
S and the redundancy of the Gabor frame expansion. In case
Swould be i.i.d. (i.e.ρ[l] = δl,0), it follows

E|aλ|
2

= σ 2 and Cov(|aλ|
2, |aη|

2) = σ 4
|〈gλ, gη〉|

2.

If, moreover,{gλ}λ∈3 forms an orthonormal system, the co-
variance matrix becomes diagonal; i.e. as long as we deal
with a redundant frame, the Gabor spectrum is always corre-
lated with a range of dependency described by the decay of
the Gramian matrix of{gλ}λ∈3 (up to the convolution with
ρ). The essential observation for our purpose is

Var|aλ|
2

= σ 4
|〈ρ ∗ gλ, gλ〉|

2
= (E|aλ|

2)2 .

Consequently,

(E|aλ|
2)2

Var|aλ|
2

= 1 , (20)

which holds true for independent as well as dependent sam-
plesS[n] that follow a distribution which is determined by
its moments. As property (20) constrains only the first two
moments, it may hold true for a much richer class of distri-
butions (in particular, it holds true for normally distributed
random variables).

In order to construct a statistical test that verifies prop-
erty (20), we have to find optimal estimators forE|aλ|

2 and
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Var|aλ|
2 that are based on a finite number of observations.

To this end, we introduce an index subset�λ ⊂ 3 contain-
ing λ andL−1 further different indicesη, i.e. |�λ|=L. As
an estimator forE|aλ|

2
=σ 2

〈ρ ∗ gλ, gλ〉, which is based onL
neighboring observation variables, we define

Ê(�λ) :=
1

C�λ

∑
η∈�λ

|aη|
2 , (21)

where the constant is given by

C�λ =

∑
η∈�λ

〈ρ ∗ gη, gη〉

〈ρ ∗ gλ, gλ〉
> 1 .

For i.i.d. samplesS[n], the correcting multiplier in estima-
tor (21) reduces toC�λ=|�λ|=L, and therefore Eq. (21) is
then nothing but the well-known mean estimator,

Ê(�λ) =
1

L

∑
η∈�λ

|aη|
2 .

Assuming there exists some smallε>0 with∑
η′,η∈�λ

|〈ρ ∗ gη′ , gη〉|
2

≤ C2−ε
�λ

,

Lemmas5 and6 (see Appendix C) verify that Eq. (21) is a
consistent estimator forE|aλ|

2, i.e.

lim
L→∞

E|Ê(�λ) − E|aλ|
2
|
2

=

lim
L→∞

(Var(Ê(�λ)) + (E|aλ|
2
− E(Ê(�λ))

2) = 0.

By the same reasoning, we define an estimator for variance,

V̂ (�λ) := C
∑
η∈�λ

(|aη|
2
− Ê(�λ))

2 , (22)

where the constant is defined by

C−1
:= 2

∑
η∈�λ

c2
η

c2
λ

+(L−2C�λ)

(
1+

1

(
∑

η cη)2

∑
ξ,α∈�λ

c2
ξ,α

)
.

(23)

Similar as before, it is shown (see Lemma7 in Appendix C)
that estimator (22) is unbiased (and certainly consistent, but
the proof is omitted). Switching to the i.i.d. case yields

C−1
= 2L + (L − 2L)

(
1 +

1

L2

∑
ξ,α∈�λ

c2
ξ,α

)
= L −

1

L

∑
ξ,α∈�λ

|〈gξ , gα〉|
2

and therefore Eq. (22) simplifies to

V̂ (�λ) =
L

L2 −
∑

ξ,α∈�λ
|〈gξ , gα〉|2

∑
η∈�λ

(|aη|
2
− Ê(�λ))

2,

which can be easily seen with the help of formula (C1). If,
moreover,{gλ} forms an orthonormal basis, we end up with
the classical variance estimator

V̂ (�λ) =
1

L − 1

∑
η∈�λ

(|aη|
2
− Ê(�λ))

2 .

4.3 A statistical test performing signal identification

After having established estimatorŝE(�λ) and V̂ (�λ), we
aim now for the construction of a test that identifies Ga-
bor coefficients associated with intermittent clutter returns.
Typically, an atmospheric return is stationary and assumed
to follow a Gaussian distribution, i.e. a test on the first two
moments of the signal will give us some indication if this is
true.

The basic idea goes back toMerritt (1995), who statis-
tically tested a sequence of single (non-averaged) Doppler
spectra in to order decide whether a particular Fourier power
spectrum coefficient was due to a Gaussian or non–Gaussian
signal. For this, he used the classical test ofHildebrand and
Sekhon(1974) in a modified way. Following this approach,
we consider the squared modulus of the Gabor phase space
coefficients,|am,k|

2. Because we are interested in station-
ary signal components, we consider the sequence|am,k|

2 for
fixed frequency bins, i.e. we just pick individual rows and
let only the time index change. For a fixed frequency index
k, we have to test the elements|am,k|

2 to be of stationary
Gaussian type. Typically, we assume the observed sequence
|am,k|

2 to be possibly affected by non-stationary intermittent
clutter. Then, we will getÊ(�λ)

2/V̂ (�λ)<1. We also make
use of the fact that intermittent clutter signals are almost al-
ways stronger than the (clear air) atmospheric return.

To identify intermittent clutter practically, we pro-
ceed as follows: in a first step, define the index
set representing thek-th row, which we denote by
�k={(m, k): m=0, . . . ,M−1}, and sort for eachk the se-
quence{|am,k|

2
}(m,k)∈�k

in decreasing order. That is, we
derive the order statistic of{|am,k|

2
}(m,k)∈�k

which we de-
note by {|[a]m,k|

2
}(m,k)∈�k

([·] stands for the order statis-
tic map). Therefore, we have|[a]m,k|

2
≥|[a]m+1,k|

2 for
all (m, k)∈�k. For l=0, . . . ,M−1, we define subsets
�k(l)={(m, k) : m=l, . . . ,M−1}. The largest coefficients
are stepwise discarded, which has the goal of eliminating the
clutter signal component. Using the quantitiesÊ(�k(l)) and
V̂ (�k(l)) of the subset, the test statisticsϑ is computed for
l=0, . . . ,M−1 as long as

ϑ(|[a]l,k|
2) :=

(Ê(�k(l)))
2

V̂ (�k(l))
< 1

holds. The largest coefficient of the first subset for which the
test (positive for clutter) is not satisfied (a clutter-free sub-
set) is then taken as a threshold for a frequency-dependent
identification of the clutter component.
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Fig. 34.Same representation as in Figure 32, but for the data shown
in Figure33. The three transient signal components are clearly sep-
arated from the stationary atmospheric signal component.
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Fig. 35. Same as in Figure 34,but after filtering. For the transient
signal components, the Gabor coefficients were replaced by esti-
mated thresholds for the stationary signal contribution at the given
frequency.
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Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

Fig. 36. Same as in Figure 33, but for the cleaned signal obtained
from the filtered Gabor representation shown in Figure 35.

Table 31. Technical parameters of the 482 MHz RWP/RASS at
Bayreuth/Germany

Center frequency 482.0078 MHz
Peak (Average) power 16 (2.4) kW
Pulse modulation Amplitude (B/W)

Phase (pulse compression)
Pulse widths (vert. resolution) 1.7µs ( 250 m)

2.2µs ( 330 m)
3.3µs ( 500 m)
4.4µs ( 660 m)

Antenna type Phased array of 180 CoCo antennas
Antenna aperture (area) 142m2 (12.4× 11.5 m)
On-axis gain above isotropic > 34 dBi
One-way half power (3 dB) beamwidth 6 3

Oblique beam zenith distance 15.2

RX type Heterodyne (IF 60 MHz), Digital IF
LNA noise figure 6 0.6 dB
A/D conversion 14 bit (@ max 66 MHz)
Pulse compression Bi-phase, complementary, max 32 bit
System sensitivity 6 -154 dBm
Vertical measuring range 16 km (wind), 4 km (virt. temp.)

Table 32.TX and RX sampling parameters in routine operation

Wind Low-Mode
Inter Pulse Period 82µs
Pulse Width 1.7µs
Tx Duty 2.07 %
# of code bits 1 (phase flip)
Pulse Peak Power (PEP) 16 kW
Spacing (on RX) 1.0µs
# of Gates 50
First Gate 8.6µs

Fig. 5. Same as in Fig.4, but after filtering. For the transient
signal components, the Gabor coefficients were replaced by esti-
mated thresholds for the stationary signal contribution at the given
frequency.

4.4 Signal separation through Gabor coefficient threshold-
ing

All coefficients|am,k|
2 greater than the threshold determined

in the last section are regarded as clutter. One problem ex-
ists, if the subset�k(l) becomes too small in this iterative
process. Then the statistical estimate will become unstable
and the estimation of a local threshold is no longer meaning-
ful. This should not happen if the dwell time is sufficiently
long, but it is not always known how long the dwell time
must be for various types of intermittent clutter. Further in-
vestigations are needed to clarify this question. However, it
might nevertheless be attempted to clean data sets regardless
of the dwell time used. In such cases it can happen that some
nonstationary components have a duration on the order of the
dwell time. Then it can be useful to replace the local thresh-
old with a non frequency-dependent global threshold, which
could be derived from stable estimates of local thresholds at
other frequenciesk. Such a global threshold should be con-
structed in such a way, that it reflects the noise level in the
Gabor representation. For instance, it could be estimated by
averaging over a certain number of the smallest local thresh-
olds. This method, however, has a risk of clipping also the
atmospheric (clear-air) signal component.

Leaving this problem aside, we can formulate the filter-
ing procedure as follows: A coefficient|[a]l,k|

2 for which
ϑ(|[a]l,k|

2)≥1 holds is associated with clear air return.
Based on the test, we introduce a clutter index set as

�c
k := {(m, k) : ϑ(|[a]m,k|

2) < 1 , m = 0, . . . ,M − 1}

The coefficientsam,k∈�c
k are finally set totkei argam,k , where

tk is the average value of the remaining coefficients,

tk =
1

|�k \ �c
k|

∑
(m,k)∈�k\�

c
k

|am,k| .

The main resultof this paper – the nonlinear filtering – is
now formulated in the following:

LetSbe the given RWP signal. Based on our model assump-
tions, the filtered component is given by

8(S)[n] =

K−1∑
k=0

{ ∑
(m,k)∈�k\�

c
k

am,khm,k[n] +

∑
(m,k)∈�c

k

tke
i argam,k hm,k[n]

}
.

Finally, we discuss a practical aspect of the filtering method:
The evaluation of the clutter index set�c

k requires the com-
putation of the modified variance estimator. However, the
computational overhead involved in calculating the modified
variance estimator is obviously greater than in the case of the
classical variance estimator. Our experience has shown that
the variance estimates obtained with the two methods usually
do not differ much. It may therefore be appropriate to use the
classical variance estimator, if a saving of processing power
is necessary for a real time implementation of the algorithm.
This is left for a future study.

5 A real example: comparison with classical processing

5.1 Data set

Now let us illustrate the performance of the proposed fil-
tering algorithm by applying it to RWP data obtained with
the 482 MHz wind profiler at Bayreuth, Germany on 13 Oc-
tober 2005. This radar is one of three operational systems
that the Deutscher Wetterdienst currently uses in its aerolog-
ical network. The technical characteristics are summarized
in Table 1. More details and an overview of the standard
signal processing steps are given inLehmann et al.(2003).
For wind measurements, the system is running in a four-
beam Doppler beam swinging configuration using two dif-
ferent pulse widths of 1667 ns (low mode) and 3333 ns (high
mode). The averaging time for wind measurement is 26 min,
another 4 min are used for RASS measurements of the vir-
tual temperature. For the investigation of bird migration we
consider only low mode data. The relevant sampling pa-
rameters are given in Table2. Of interest are further the
resolution of the time series1t=0.007708 s, the number of
data samplesN=4608 and the total length or dwell time
Td=N1t=35.518464 s.

During the bird migration season in October of 2005, full
time series data of the coherently integrated demodulated
receiver voltage signal were saved in the wind low mode.
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Table 1. Technical parameters of the 482 MHz RWP/RASS at Bayreuth/Germany.

Center frequency 482.0078 MHz

Peak (Average) power 16 (2.4) kW

Pulse modulation Amplitude (B/W)
Phase (pulse compression)

Pulse widths (vert. resolution) 1.7µs (250 m)
2.2µs (330 m)
3.3µs (500 m)
4.4µs (660 m)

Antenna type Phased array of 180 CoCo antennas

Antenna aperture (area) 142 m2 (12.4×11.5 m)

On-axis gain above isotropic >34 dBi

One-way half power (3 dB) beamwidth 63

Oblique beam zenith distance 15.2

RX type Heterodyne (IF 60 MHz), Digital IF

LNA noise figure 60.6 dB

A/D conversion 14 bit (@ max 66 MHz)

Pulse compression Bi-phase, complementary, max 32 bit

System sensitivity 6−154 dBm

Vertical measuring range 16 km (wind), 4 km (virt. temp.)

Both wind and spectral data were manually reviewed to iden-
tify days with significant bird migration. It is well known,
that a human expert can easily detect bird migration events
by searching for typical patterns in the wind measurements
(northeasterly directions in fall, discontinuities at sunrise and
sunset), which are additionally accompanied by irregular and
wide, sometimes multiple peaks in the Doppler spectra. In
contrast to most clutter-free situations, those peaks often ex-
hibit a poor time and range gate continuity. Time-height
plots of the estimated moments (power, radial velocity and
spectral width) are helpful to get a quick overview of poten-
tially interesting cases, and a closer look into the time se-
ries data then typically confirms the conjecture of bird mi-
gration. Particulary significant bird migration was noted on
13 October and we therefore selected this day as a test case
for the new bird mitigation algorithm. A significant frac-
tion of this data was contaminated with bird returns; the
effect is best seen in Fig.10. Here, the winds have been
computed without any intermittent clutter removal algorithm.

The consensus method is normally not able to suppress the
effect of the bird echoes because of their frequent occurrence.
The operationally used intermittent clutter removal algorithm
(ICRA), a particular implementation of the statistical averag-
ing method proposed by Merritt (1995), could only alleviate
the problem, see Fig.11. Also, the operational quality con-
trol (Weber-Wuertz continuity check, not shown) was only
able to flag a small percentage of the contaminated data, be-
cause the erroneous wind data exhibited the typical intrinsic
consistency.

5.2 Processing details and results

A software was developed for reading and writing of the pro-
filer time series data using the proprietary binary data format.
This made it easy to process the data using the Gabor filter
and to save them again in the original file format. The repro-
cessed data could therefore be seamlessly integrated in the
off-line version of the operational wind profiler software, to
compare the performance of the different algorithms.
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Fig. 34.Same representation as in Figure 32, but for the data shown
in Figure33. The three transient signal components are clearly sep-
arated from the stationary atmospheric signal component.
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Fig. 35. Same as in Figure 34,but after filtering. For the transient
signal components, the Gabor coefficients were replaced by esti-
mated thresholds for the stationary signal contribution at the given
frequency.
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Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

Fig. 36. Same as in Figure 33, but for the cleaned signal obtained
from the filtered Gabor representation shown in Figure 35.

Table 31. Technical parameters of the 482 MHz RWP/RASS at
Bayreuth/Germany

Center frequency 482.0078 MHz
Peak (Average) power 16 (2.4) kW
Pulse modulation Amplitude (B/W)

Phase (pulse compression)
Pulse widths (vert. resolution) 1.7µs ( 250 m)

2.2µs ( 330 m)
3.3µs ( 500 m)
4.4µs ( 660 m)

Antenna type Phased array of 180 CoCo antennas
Antenna aperture (area) 142m2 (12.4× 11.5 m)
On-axis gain above isotropic > 34 dBi
One-way half power (3 dB) beamwidth 6 3

Oblique beam zenith distance 15.2

RX type Heterodyne (IF 60 MHz), Digital IF
LNA noise figure 6 0.6 dB
A/D conversion 14 bit (@ max 66 MHz)
Pulse compression Bi-phase, complementary, max 32 bit
System sensitivity 6 -154 dBm
Vertical measuring range 16 km (wind), 4 km (virt. temp.)

Table 32.TX and RX sampling parameters in routine operation

Wind Low-Mode
Inter Pulse Period 82µs
Pulse Width 1.7µs
Tx Duty 2.07 %
# of code bits 1 (phase flip)
Pulse Peak Power (PEP) 16 kW
Spacing (on RX) 1.0µs
# of Gates 50
First Gate 8.6µs

Fig. 6. Same as in Fig.3, but for the cleaned signal obtained from the filtered Gabor representation shown in Fig.5.

Table 2. TX and RX sampling parameters in routine operation.

Wind Low-Mode

Inter Pulse Period 82µs
Pulse Width 1.7µs
Tx Duty 2.07%
# of code bits 1 (phase flip)
Pulse Peak Power (PEP) 16 kW

Spacing (on RX) 1.0µs
# of Gates 50
First Gate 8.6µs

As an example, we consider again the measurement taken
in the south beam of the profiler at range gate 9 (1.6 km
height a.g.l.), with a start time of the dwell at 00:09:45 UTC.
This time series was already discussed in Sect.3. As de-
scribed in Sect.4, local (constant frequency) thresholds were
estimated to separate the clutter part of the signal from the
stationary components atmosphere and noise. During pro-
cessing of the complete dataset it was revealed that the dwell
time of about 35 s was apparently rather short to guarantee
that every observed intermittent clutter signal exhibits a clear
transient behavior. Sometimes the duration of the clutter sig-
nal component was on the order of the dwell time instead. If
this is the case, then the estimation of the local threshold may
become unstable and signal separation can partly fail with the

result that clutter energy leaks through the filter. One way
to remedy this problem is to replace local thresholds with a
global threshold as described above. For the example data,
this was done if more than 30 percent of the Gabor coeffi-
cients at a particular frequency were classified as clutter. The
global threshold was then computed as the median over 15
percent of the smallest local thresholds, to get an estimate for
the noise level. Another way to handle this situation would
be to either flag this range gate as suspect or to replace the
data with random white noise. Further research is needed to
learn more about typical intermittent clutter characteristics
and to optimize both the data sampling and the performance
of the filter. The method described in this paper should be a
useful tool for such investigations.

Application of the filtering strategy yields a filtered Ga-
bor phase-space representation, which is shown in Fig.5.
Here, the moduli of the coefficientsam,k representing the
transient (bird) contributions have been replaced by an es-
timation of the stationary signal component at that frequency
(either noise or atmospheric signal). The reconstructed I/Q
time series after back-transformation from the Gabor phase
space domain is presented in Fig.6. The nonstationary signal
components have been suppressed and also the amplitude has
been significantly reduced. It is easy to measure the reduc-
tion of total power by computing the difference in variance
between the unfiltered and the filtered data, to get an infor-
mation about how much clutter energy was removed by the
filter.
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Fig. 37. Stacked plot of Doppler spectra for all low mode range gates, obtained through standard processing without any bird mitigation
algorithm. Data were measured with the 482-MHz RWP at Bayreuth, Germany, at 00:09:45 UTC on October 13, 2005 (south beam). The
estimated first and second moments are symbolized as a cross, where the vertical line shows the first moment (mean Doppler speed) and the
horizontal line denotes spectral width. Massive bird contamination can bee seen in the range gates below 3.0 km height.

Fig. 7. Stacked plot of Doppler spectra for all low mode range gates, obtained through standard processing without any bird mitigation
algorithm. Data were measured with the 482-MHz RWP at Bayreuth, Germany, at 00:09:45 UTC on 13 October 2005 (south beam). The
estimated first and second moments are symbolized as a cross, where the vertical line shows the first moment (mean Doppler speed) and the
horizontal line denotes spectral width. Massive bird contamination can bee seen in the range gates below 3.0 km height.

Gabor filtering was performed for the complete dataset
and the resulting bird-cleaned time series data were used
for reprocessing of the whole day. This was compared
with two additional processing methods: Method 1 used
no intermittent clutter filtering algorithm, whereas method 2
used the routinely employed Intermittent Clutter Algorithm
(ICRA), an implementation of the Statistical Averaging
Method (SAM) originally proposed byMerritt (1995). The
results for all range gates for the dwell taken at 00:09:45 UTC
(stacked Doppler spectra) are shown in Figs.7 (no filtering),
8 (ICRA filtering) and9 (Gabor filtering). Without filtering,
the lowest 17 range gates show spurious peaks and also large
spectral widths due to the transient bird echoes. Note espe-
cially the discontinuity in height of the location of the esti-
mated signal peak (derived Doppler velocity). With ICRA
processing, the effect of the birds has been drastically re-

duced, but there are still range gates which show spurious
peaks. This indicates that ICRA was unable to reduce the
clutter energy completely. Figure9 shows the processing re-
sults of the newly suggested filtering algorithm. The spurious
remnants of the bird clutter are almost completely gone, al-
though range gates 15 and 16 (2.49 and 2.64 km height agl)
show apparently some bird clutter energy leaking through.
This is also reflected in the somewhat larger spectral width at
these heights. However, the spectral peak is now continuous
across all heights and the spectral width estimates are mostly
unaffected by the clutter.

Finally, the horizontal wind vector data derived through
the three different processing methods are shown in Figs.10
(no clutter filtering),11 (ICRA processing) and12 (Gabor
filtering), respectively. The color coding is due to the wind
speed (magnitude of the horizontal wind vector). Obviously,
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Fig. 38.Same as in Figure 37, but Doppler spectra were estimated using the operational bird-mitigation algorithm ICRA. Bird contamination
below 3.0 km height is reduced compared to Figure 37, but still significant.

Fig. 8. Same as in Fig.7, but Doppler spectra were estimated using the operational bird-mitigation algorithm ICRA. Bird contamination
below 3.0 km height is reduced compared to Fig.7, but still significant.

the clutter contamination has been drastically reduced by the
new algorithm.

6 Conclusions

We have dealt with wind profiler signals obtained during bird
migration and shown, how the signals can be decomposed
into a time-frequency representation. A Gabor frame repre-
sentation was used for a time-frequency analysis of the data
and turned out to be a good method for signal-clutter separa-
tion. Previous attempts for intermittent clutter filtering have
made use of the wavelet transform (WT) and its discrete ver-
sions (Jordan et al., 1997; Boisse et al., 1999; Lehmann and
Teschke, 2001), so it is interesting to briefly discuss the dif-
ference between the dyadic wavelet and the Gabor approach,
and to point out why we favor the Gabor method in compari-
son. The dyadic WT is another way of analyzing nonstation-
ary signals. The difference lies in the tiling of the TF-plane

by the elementary signals (or time-frequency atoms). In the
Gabor (WFT) approach, the tiling is uniform with fixed res-
olution. This is in contrast to the wavelet approach, where
the tiling is generally variable. For example, an orthonor-
mal wavelet basis decomposes the frequency axis in dyadic
intervals whose sizes grow exponentially. In other words,
the frequency resolution gets worse the more the time reso-
lution is improved. This is wanted if the signals under inves-
tigation have high-frequency components of short duration
embedded within low-frequency components of slow tem-
poral variation. For the RWP signals however, we found
no evidence for such a behavior. The intermittent clutter
components occur at nearly all frequencies within the typ-
ical Nyquist range, with no obvious difference in temporal
characteristics. In particular, they can occur close to zero
frequency where the temporal resolution of the WT is the
worst. Especially in this case, the WT seems not to be ideal
for resolving the transient nature of the intermittent clutter.
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Fig. 39. Same as in Figure 37, but Doppler spectra were estimated after statistical Gabor filtering of the original time series. Only minor
remnants of bird contamination can be seen in range gates 15 and 16 (at 2.5 and 2.6 km height).
Fig. 9. Same as in Fig.7, but Doppler spectra were estimated after statistical Gabor filtering of the original time series. Only minor remnants
of bird contamination can be seen in range gates 15 and 16 (at 2.5 and 2.6 km height).

Examples of clutter signals in both representations shown by
Justen and Lehmann(2003) illustrate this quite clearly. So
the argument which is often used against the WFT, namely
its constant time-frequency resolution, turns out to be advan-
tageous. Additionally, the Gabor expansion using a Gaussian
window achieves the best possible time-frequency resolution
by reaching the lower limit of the Heisenberg uncertainty
constraint.

To identify the clutter contribution to the signal, we make
use of the a-priori information that the atmospheric signal
component of interest can be adequately modelled as a sta-
tionary, proper complex Gaussian random process. Using
this assumption, a test statistic is constructed to serve as a
criterion for the discrimination between stationary and non-
stationary signal components. This follows the approach first
suggested byMerritt (1995). However, in case of the redun-
dant Gabor transform it turns out, that the variance estimator

has to be modified to guarantee its unbiasedness and consis-
tency. Proofs for the necessary modifications are given in
detail.

Finally, the algorithm has been applied to a dataset ob-
tained with a 482 MHz wind profiler during bird migration.
It could be demonstrated that the performance of the new al-
gorithm was superior to the performance of the operationally
used intermittent clutter reduction algorithm, without obvi-
ous negative side effects. Application of the algorithm has
shown, that sampling settings of the wind profiler play an
important role in the clutter mitigation capabilities of the al-
gorithm. This is not unexpected, since both the sampling
period and the dwell time determine the resolution of the
Doppler spectrum and obviously also the resolution of any
time-frequency representation. Furthermore, longer dwell
times may ease the identification of transient clutter signals
and the stable estimation of the thresholds for noise and the
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Fig. 310. Wind barb plot of horizontal winds measured in the low mode at Bayreuth on October 13, 2005. The x-axis shows time and the
y-axis denotes height. Data have been color coded by wind speed. The signal processing was using no bird mitigation algorithm. Relatively
strong northeasterly winds below about 3.5 km indicate strong bird migration, this can be seen between 00 and 05 UTC at heights around
1000 m and above 1600 m and especially after 18 UTC from the lowest gateto about 3500 m.

Fig. 10. Wind barb plot of horizontal winds measured in the low mode at Bayreuth on 13 October 2005. The x-axis shows time and the
y-axis denotes height. Data have been color coded by wind speed. The signal processing was using no bird mitigation algorithm. Relatively
strong northeasterly winds below about 3.5 km indicate strong bird migration, this can be seen between 00:00 and 05:00 UTC at heights
around 1000 m and above 1600 m and especially after 18 UTC from the lowest gate to about 3500 m.

stationary atmospheric component. This is especially impor-
tant for cases where atmospheric and clutter signal overlap in
frequency.

Future work is suggested for a better quantitative charac-
terization of intermittent clutter signals during dense bird mi-
gration. This should allow to optimize both sampling and
processing settings for operational wind profiler systems. A
long-term evaluation of the new algorithm would be useful
to determine its limits and to estimate the performance im-
provements of the new methods, in comparison with pre-
viously used algorithms. This would be facilitated by an
online-implementation of the method and a means to com-
pare the profiler wind measurement with independent data,
e.g. radiosonde measurements.

Appendix A

Frame theory

We briefly review some basic facts on frames using the ab-
stract notation of functional analysis, but the reader is ad-
vised to consult the comprehensive literature for details (Heil
and Walnut, 1989; Daubechies, 1990; Carmona et al., 1998;
Mallat, 1999; Christensen, 2001).

The frame theory generalizes the concept of bases in
Hilbert spaces (even in more general spaces). LetH be some
Hilbert space (e.g. the space of function of finite energy de-
noted withL2(R) to which our signalS(t) normally belongs
to), the pair of parenthesis〈·, ·〉 the associated inner product
and‖·‖

2
H =〈·, ·〉 the induced norm. A frame{hλ : λ∈3} in

H is a system of functions for which there exist constants
0<A≤B<∞ such that for alls∈H

A‖S‖
2
H ≤

∑
λ∈3

|〈S, hλ〉|
2

≤ B‖S‖
2
H . (A1)
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Fig. 311. Same as in Figure 310. The signal processing was using the standard ICRA algorithm. Bird contamination has been reduced
compared to Figure 310, but is still significant after 19 UTC. A few other northeasterly wind barbs around 02 UTC are affected by intermittent
clutter echoes.

Fig. 11. Same as in Fig.10. The signal processing was using the standard ICRA algorithm. Bird contamination has been reduced compared
to Fig.10, but is still significant after 19:00 UTC. A few other northeasterly wind barbs around 02:00 UTC are affected by intermittent clutter
echoes.

The map,F : H→`2, defined viaF : f 7→ {〈f, hλ〉} is usu-
ally referred to as the frame operator (analysis operator). So
the signal is characterized by inner products with the frame.
To answer the question of howf can again be synthesized
from the inner products{〈f, hλ〉}, we consider the adjoint
frame operator given byF ∗c=

∑
λ∈3 cλhλ. This allows us

to write

F ∗Ff =

∑
λ∈3

〈f, hλ〉hλ . (A2)

If F ∗F equals the identity Id,F ∗ performs a perfect recon-
struction. This is the case when{hλ} forms an orthonor-
mal basis. However, in general one has to apply(F ∗F)−1

to Eq. (A2). This is possible since the inverse exists and is
bounded because of Eq. (A1),

A · Id ≤ F ∗F ≤ B · Id

and thus

B−1
· Id ≤ (F ∗F)−1

≤ A−1
· Id .

Since(F ∗F)−1 is self-adjoint and denoting(F ∗F)−1hλ=gλ,
one consequently has∑
λ∈3

〈S, gλ〉hλ = F ∗F(F ∗F)−1S = S

= (F ∗F)−1F ∗FS =

∑
λ∈3

〈S, hλ〉gλ. (A3)

In frame lore,gλ is referred to as the canonical dual frame
with respect tohλ.

In general,(F ∗F)−1 cannot be explicitly computed but
must be approximated by an iterative approach. However,
the situation can be essentially relaxed when assuming that
the frames{hλ} and {gλ} form not a primal-dual, but a bi-
orthogonal frame pair, i.e.〈hλ, gη〉=δλ,η. If F̃ denotes the
frame operator with respect togλ, thenF̃=F(F ∗F)−1 and
one may write(〈hλ, gη〉)λ,η∈3=F̃F ∗, which is diagonal.
Therefore,F̃ is an analysis andF ∗ a synthesis operator yield-
ing perfect reconstruction (and vice versa, i.e. exchanging
the roles ofF̃ andF ∗). If now the bi-orthogonality relation
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Fig. 312.Same as in Figure 310. The signal processing was using the new Gabor filter algorithm. Bird contamination has again been reduced
compared to Figure 311. There are no indications of bird migration between 00 and 05 UTC, and only a few obvious outliers and missing
data after 19 UTC.

Fig. 12. Same as in Fig.10. The signal processing was using the new Gabor filter algorithm. Bird contamination has again been reduced
compared to Fig.11. There are no indications of bird migration between 00:00 and 05:00 UTC, and only a few obvious outliers and missing
data after 19:00 UTC.

yields a way to derivegλ, the inverse ofF ∗F needs not to be
computed.

Appendix B

Biorthogonal discrete Gabor frame expansion

The following lemma can be retraced to its original form
in Wexler and Raz(1990), it gives an explicit proof of the
biorthogonality relation.

Lemma 1 Assume the relation

N−1∑
j=0

ḡ[j ]h[j + qK]W−jpM
= N/(MK) δp,0δq,0 (B1)

is fulfilled for 0≤p≤1M−1 and 0≤q≤1K−1. Then the

biorthogonality relation

M−1∑
m=0

K−1∑
k=0

ḡm,k[l]hm,k[j ]=δl,j

holds true.

Proof. This assertion can be shown directly. Let

f (l, j) :=

M−1∑
m=0

K−1∑
k=0

ḡm,k[l]hm,k[j ],

then

f (l, j) =

M−1∑
m=0

ḡ[l − m1M]h[j − m1M]

K−1∑
k=0

W k(j−l)1K .
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We still have,

K−1∑
k=0

W k(j−l)1K
=

K−1∑
k=0

ei2πk(j−l)/K

=

{
K , if (j − l)/K ∈ Z
0 , else

.

Since(j−l)/K∈Z means there exists someq∈Z such that
q=(j−l)/K or j−l−qK=0, we may consequently write
(by the Poisson Summation Formula and the made assump-
tion)

f (l, j) =

M−1∑
m=0

ḡ[l − m1M]h[j − m1M]K
∑
q

δj−l−qK,0

= K
∑
q

δj−l−qK,0

M−1∑
m=0

ḡ[l − m1M]h[l + qK − m1M]

= K
∑
q

δj−l−qK,0 ×

1M−1
1M−1∑
p=0

(N−1∑
j ′=0

ḡ[j ′
]h[j ′

+ qK]W−j ′pM

)
W lpM

= K
∑
q

δj−l−qK,0M/N

1M−1∑
p=0

N/(MK)δp,0δq,0W
lpM

= δj,l .

�

Appendix C

Statistical properties of the Gabor coefficients

Lemma 2 Let S be given and assumeES[n]=0 for all
n=0, . . . , N−1 and thataλ is as defined inEq. (15). Then
Eaλ=0.

Proof. By definition, aλ=
∑N−1

n=0 S[n]gλ[n]. Therefore,

Eaλ=
∑N−1

n=0 ES[n]gλ[n]=0. �

Lemma 3 Let S be given and assumeES[n]=0 for all
n=0, . . . , N−1 and thataλ is as defined inEq. (15). More-
over, assume a range of dependency of neighboring samples
of S which is characterized by the auto-covariance function
ρ of S, i.e.E(S[n]S̄[n+l])=σ 2ρ[l]. Then

Cov(aλ, aη)=σ 2
〈ρ ∗ gλ, gη〉,

where “∗” denotes the discrete convolution.

The latter lemma states that the Gabor coefficientsaλ turn
into dependent random variables (even whenρ is a delta
sequence, i.e. for independent samples ofS). The range
of dependency is determined by the sampling density in

the time-frequency space and the range of dependency of
S. In caseS is a sequence of i.i.d. random variables, the
dependency ofaλ is fully characterized by the reproducing
kernel〈gλ, gη〉.

Proof. By Lemma2, Cov(aλ, aη)=E(aλāη). Therefore,

Cov(aλ, aη) = E
(N−1∑

n=0

S[n]gλ[n],

N−1∑
l=0

S̄[l]ḡ[l]

)

=

N−1∑
n=0

N−1∑
l=0

E(S[n]S̄[l])gλ[n]ḡη[l]

= σ 2
N−1∑
n=0

N−1∑
l=0

ρ[l − n]gλ[n]ḡη[l]

= σ 2
N−1∑
l=0

(ρ ∗ gλ)[l]ḡη[l] = σ 2
〈ρ ∗ gλ, gη〉.

�

A special case of Lemma3 is E|aλ|
2
=σ 2

〈ρ ∗ gλ, gλ〉.

Lemma 4 Make the same assumptions as in Lemma3. Then

Cov(|aλ|
2, |aη|

2) = σ 4
|〈ρ ∗ gλ, gη〉|

2 .

Proof. First, note that for proper Gaussian com-
plex random variables S[k] with ES[k]=0 and
Cov(S[k]S̄[l])=E(S[k]S̄[l])=σ 2ρ(l−k) we have (Reed,
1962)

E(S[k]S̄[l]S[n]S̄[m])

= E(S[k]S̄[l])E(S[n]S̄[m]) + E(S[k]S̄[m])E(S̄[l]S[n])

= σ 4(ρ[l − k]ρ[m − n] + ρ[m − k]ρ̄[n − l]).

With the help of Lemma3 (special case),

Cov(|aλ|
2, |aη|

2) = E(|aλ|
2
|aη|

2)−σ 4
〈ρ∗gλ, gλ〉〈ρ∗gη, gη〉
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and thus it remains to deriveE(|aλ|
2
|aη|

2). Using the mo-
ment theorem ofReed(1962), we have,

E(|aλ|
2
|aη|

2) =

(N−1∑
k=0

S[k]gλ[k]

N−1∑
l=0

S̄[l]ḡλ[l] ×

N−1∑
n=0

S[n]gη[n]

N−1∑
m=0

S̄[m]ḡη[m]

)

=

N−1∑
k,l,n,m=0

E(S[k]S̄[l]S[n]S̄[m])gλ[k]ḡλ[l]gη[n]ḡη[m]

= σ 4
N−1∑

k,l,n,m=0

(ρ[l − k]ρ[m − n] + ρ[m − k]ρ̄[n − l]) ×

gλ[k]ḡλ[l]gη[n]ḡη[m]

= σ 4
( N−1∑

l,m=0

ḡλ[l]ḡη[m]

{N−1∑
k=0

ρ[l − k]gλ[k]

}
×

{N−1∑
n=0

ρ[m − n]gη[n]

}
+

N−1∑
m,n=0

gη[n]ḡη[m]

{N−1∑
k=0

ρ[m − k]gλ[k]

}
×

{N−1∑
l=0

ρ̄[n − l]ḡλ[l]

})

= σ 4
( N−1∑

l,m=0

ḡλ[l]ḡη[m](ρ ∗ gλ)[l](ρ ∗ gη)[m] +

N−1∑
m,n=0

gη[n]ḡη[m](ρ ∗ gλ)[m](ρ ∗ gλ)[n]

)
= σ 4

(
〈ρ ∗ gλ, gλ〉〈ρ ∗ gη, gη〉 + |〈ρ ∗ gλ, gη〉|

2
)

,

and consequently,

Cov(|aλ|
2, |aη|

2) = σ 4
|〈ρ ∗ gλ, gη〉|

2 .

�

After having verified the basic properties of the Gabor power
coefficients, we prove that estimator (21) is consistent and
that estimator (22) is unbiased (The proof of consistency is
omitted, because this requires the computation of the 8th-
mixed moment).

Lemma 5 The estimatorÊ(�λ) unbiased, i.e. it holds
EÊ(�λ)=σ 2

〈ρ ∗ gλ, gλ〉.

Proof. This follows by the definition ofC�λ and Lemma3,

EÊ(�λ) =
1

C�λ

∑
η∈�λ

E|aη|
2

=
1

C�λ

∑
η∈�λ

σ 2
〈ρ ∗ gη, gη〉 = σ 2

〈ρ ∗ gλ, gλ〉 .

�

Lemma 6 Assume, for the dual frame{gλ : λ∈3} there ex-
ists someε>0 such that the condition∑
η′,η∈�λ

|〈ρ ∗ gη′ , gη〉|
2

≤ C2−ε
�λ

is fulfilled. Then the estimator̂E(�λ) satisfies

Var(Ê(3)) ≤ σ 4C−ε
�λ

and is therefore consistent.

Proof. Similar as in the proof of Lemma4 we directly obtain

Var(Ê(�λ)) = E(Ê(�λ))
2
− σ 4

|〈ρ ∗ gλ, gλ〉|
2

=
1

C2
�λ

∑
η′,η∈�λ

E(|aη′ |
2
|aη|

2) − σ 4
|〈ρ ∗ gλ, gλ〉|

2

=
σ 4

C2
�λ

( ∑
η′,η∈�λ

{
〈ρ ∗ gη′ , gη′〉〈ρ ∗ gη, gη〉 +

|〈ρ ∗ gη′ , gη〉|
2
}

− C2
�λ

|〈ρ ∗ gλ, gλ〉|
2
)

=
σ 4

C2
�λ

∑
η′,η∈�λ

|〈ρ ∗ gη′ , gη〉|
2

≤ σ 4C−ε
�λ

.

�

Lemma 7 The estimatorV̂ (3) is unbiased, i.e. it holds
EV̂ (�λ)=σ 4

|〈ρ ∗ gλ, gλ〉|
2.

Proof. With similar arguments as in the proof of Lemma4
and with the shorthand notations

cλ := 〈ρ ∗ gλ, gλ〉 and cλ,η := 〈ρ ∗ gλ, gη〉

we have the following expressions

E|aη|
4

= σ 4(c2
η + c2

η) = 2σ 4c2
η ,

E(|aη|
2Ê(�λ)) =

σ 4

C�λ

∑
ξ∈�λ

(cηcξ + c2
η,ξ ) ,

E(Ê(�λ))
2

=
σ 4

C2
�λ

∑
ξ,α∈�λ

(cαcξ + c2
ξ,α) .
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Therefore withL=|�λ| and the definition ofC in Eq. (23),

EV̂ (�λ) = C
∑
η∈�λ

E(|aη|
2
− Ê(�λ))

2

= C
∑
η∈�λ

{
E|aη|

4
− 2 E(|aη|

2Ê(�λ)) + E(Ê(�λ))
2
}

= σ 4C
∑
η∈�λ

{
2c2

η −
2

C�λ

∑
ξ∈�λ

(cηcξ + c2
η,ξ ) +

1

C2
�λ

∑
ξ,α∈�λ

(cαcξ + c2
ξ,α)

}
= σ 4C

∑
η∈�λ

{
2cη(cη − cλ) −

2

C�λ

∑
ξ∈�λ

c2
η,ξ +

c2
λ +

1

C2
�λ

∑
ξ,α∈�λ

c2
ξ,α

}
= σ 4C

{
2
∑
η∈�λ

cη(cη − cλ) + Lc2
λ +

L − 2C�λ

C2
�λ

∑
ξ,α∈�λ

c2
ξ,α

}

= σ 4c2
λC

{
2
∑
η∈�λ

c2
η

c2
λ

+

(L − 2C�λ)

(
1 +

1

(
∑

η cη)2

∑
ξ,α∈�λ

c2
ξ,α

)}
= σ 4c2

λ .

�
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