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Abstract. A new signal processing method is presented forthat sometimes large and unacceptable differences are ob-
the suppression of intermittent clutter echoes in radar windserved between the profiler data and independent reference
profilers. This clutter type is a significant problem during measurements. In many cases these differences are clearly
the seasonal bird migration and often results in large discrepattributable to either clutter echoes or Radio Frequency in-
ancies between profiler wind measurements and independetgrference. Spurious signals are often easily discernible in
reference data. The technique presented makes use of a dithe Doppler spectrum by human experts, but not always ade-
crete Gabor frame expansion of the coherently averaged timguately handled by the automatic processing. For that reason,
series data in combination with a statistical filtering approachresearch on improvements in wind profiler signal processing
to exploit the different signal characteristics between signalhas remained a very active field over the last decade.

and clutter. The rationale of this algorithm is outlined and  In this paper we deal with so-called intermittent clutter and
the mathematical methods used are presented in due detairopose a new filtering algorithm for the detection and sup-
A first test using data obtained with an operational 482 MHzpression of these clutter signals in the profiler raw data. Of
wind profiler indicates that the method outperforms the pre-particular importance are echoes caused by migrating birds
viously used clutter suppression algorithm. in spring and fall. It is well known that birds are effective tar-

Keywords. Meteorology and atmospheric dynamics (Instru- 9€tS forawide range of radars from X-band to UNBI{ghn
ments and techniques) — Radio science (Remote sensin&%s Bruderer19973. In fact, most of the knowledge about
Signal processing) migrating birds come from radar observations. That concerns

in particular their flight behavior under the influence of en-
vironmental factorsBruderer 19978. Radar ornithology is
meanwhile a mature field and it is no surprise, that birds are
also detected by the sensitive radar systems used for wind
profiling. The susceptibility of wind profiler radar systems
to bird echoes depends primarily on wavelength and antenna
characteristics. It mostly affects L-band and UHF-systems,
that is Boundary Layer profilers and Tropospheric profilers,
s discussed iWvilczak et al.(1995. Intermittent clutter is

o i ‘an issue for the standard Doppler-beam swinging radars as
among others, bsage(1990; Rotiger and Larse(1990; well as for spaced antenna and imaging radar systems, where

azvrlglljt?nned azprgllic(}:(;'ggr?S;\(/jvl\él:ti?rlzzlr(\ll(iiggégngstﬁgce;z?i/milapew mitigation techniques like adaptive beamforming have
tion of the data in Numerical Weather Prediction Models is recently been proposecheong et aj.200§ Chen et al.
an indicator for the degree of maturation that this technolog
has achieved, see efonna and Chadwick1998; Bout-

tier (2001); Benjamin et al(2004h; St-James and Laroche

(2009; Ishihara et al(200§. However, it is a matter of fact

1 Introduction

Radar wind profilers (RWP) were developed from MST-
RadarsYan Zandf 2000 and have meanwhile become stan-
dard instruments for measuring wind velocities in the atmo-
sphere. Overviews of the technical and scientific aspect
of RWP including its signal processing have been provided

2007. We mention in passing that other remote sensing in-
Ystruments used in Meteorology are also affected by migrat-
ing birds (Mastrantonio et al. 1999 Gauthreaux and Belser
1998 Gauthreaux et 311998 Zhang et al.2005 Liu et al,,

2005.
Correspondence tdv. Lehmann Intermittent clutter echoes caused by aircraft were already
(volker.lehmann@dwd.de) mentioned byHogg et al.(1983, and a few years later it
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760 V. Lehmann and G. Teschke: Advanced intermittent clutter filtering for radar wind profiler

became obvious that especially echoes from migrating bird§orm — a suboptimal signal separation in the wavelet domain,
can be a serious issue in wind profilirigaklund et al.199Q especially near zero Doppler shift, makes an efficient separa-
Barth etal, 1994). If present, such spurious signals can causetion of clutter and signal difficult.

a significant deterioration of the quality of the derived winds.  |deally one would like to have an intermittent clutter sup-
To give an example, the investigation of low-level jets us- pression algorithm that reduces the clutter part of the sig-
ing RWP data is hampered by bird migration cluttten-  nal as best as possible, given the sampled data and that fur-
srud 1996. This makes it necessary to either use extensivether quantifies itslegree of contaminatidoy providing some
quality control procedures to identify and skip contaminatedmeasure of clutter energy for quality control purposes. Fur-
data Daniel et al, 1999 Song et al.2009 or to limit the  thermore, the algorithm must not degrade both data quality
studies to periods where bird migration is negligibhn{  and availability in the no-clutter case, but it should perform
derson and Arritt2003). Many other investigations using as well as the proven standard processing methods. This re-
RWP data have mentioned the bird contamination problemquirement is more stringent than it may appear at first glance.
e.g.Ralph et al.(1998; Locatelli et al.(1998; Parker and  |n this paper, we propose a new signal-clutter separation
Johnson(2000; Lundquist(2003; Nielsen-Gammon et al. method that attempts to meet these objectives. It is based
(2007). While the need for an extensive manual data qual-on a redundant frame decomposition of the time series fol-

ity control and cleaning might be acceptable for research actowed by the statistical filtering approach suggested/iey-
tivities, it is surely not feasible in any operational setting. ritt (1995.

Nevertheless it is mandatory to avoid the assimilation of bird e paper is organized as follows: Sect. 2 gives an

contaminated profiler wind data, as this can have significanyerview of RWP signal characteristics and signal process-
effects on the quality of the forecas8gmple2003. Due to  jng and identifies shortcomings of the currently used meth-
the nature of the problem, a bird migration check at the operyds when intermittent clutter signals are present. Section 3
ational center itself is not the best approaBerjamin etal.  reyiews basic results of the mathematical theory of frames,
20043. While current state-of-the art profilers nowadays run yhich deals with linear discrete signal representations. The
more or less sophisticated algorithms on site to reduce birgyog is here to find a signal representation, that achieves op-
contamination ilerritt, 1995 Jordan et a).1997 Ishihara  (imga| separation between the atmospheric and the clutter part
etal, 2000, practical experience supports the statement thatys e signal. This is achieved by the discrete Gabor rep-
the problem has not been fully resolved. resentation, which is discussed next. Section 4 focuses on
The problem of bird contamination has been well-known g statistical approach to objectively identify the atmospheric
for more than a decad@\ficzak et al, 1995 Engelbartetal.  gignal component, based on well-justified statistical assump-
1998 and it stillis a research topic in RWP signal processing.tjons. A comparison of the new algorithm with the previ-
The first successful attempt to reduce bird contamination Wagysly used signal processing techniques is shown in Sect. 5.
made byMerritt (1999, who suggested a selective averaging The data used were obtained during routine operation of a
method of the individual Doppler spectra based on a statistiygo MHz wind profiler radar of the Deutscher Wetterdienst

cal criterion. The same method can also be applied off-liney; Bayreuth, Germany in the fall of 2005. Finally, a sum-
to averaged spectra, when data with higher resolution are n%ary and conclusions are given in Sect. 6.

available Pekour and Coulterl999. Weber (2005 used

neural networks for a classification of contaminated single

spectra, followed by a selective averaging. Other proposals

have concentrated on modified peak detection in the Dopple? RWP signal characteristics

spectrum to address spurious flier returns, among other clut-

ter types Griesser and Richnet998 Cornman et a).1998 2.1 General properties of the received signal

Morse et al. 2002 Weber et al.2004. The disadvantage

of all these methods is that the mitigation processing buildsThe relationship between the signal received by the radar and
upon the Doppler spectra (either before or after spectral inthe scattering medium is the topic of radar instrument the-
tegration). Given the highly non-stationary characteristics ofory, which basically describes how atmospheric properties
the intermittent clutter signal, it is necessary to deal with theare mapped to the measurable function at the radar receiver
problem before the Doppler spectrum is estimated, becauseutput Woodman1991 Muschinskj 2004). Itis known that
Fourier methods are generally inadequate for nonstationarynodels for the scattering processes and the technical prop-
signals. In other words, the necessary nonlinear filtering ha®rties of the radar system must be considered here, which
to be performed in the time domain. This approach was firstmakes the task quite formidable. However, for the problem
suggested bylordan et al(1997 and further byLehmann  at hand it is not required to consider such theories in detalil,
and Teschkg2001), who suggested wavelet decomposition because we are only interested in some rather general prop-
and wavelet coefficient thresholding, to remove the cluttererties of the received signal, like statistical stationarity. For
part of the signal. However, the a-priori unclear choice of thea pulsed RWP, the received signal at the antenna output has
mother wavelet and — at least for the dyadic wavelet transthe following properties:
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1. Continuous real-valued random voltage signal: Everyandw the mean Doppler frequency. Furthermbji] is nar-
measurable physical quantity is real. The randomness isowband compared to the receiver bandwidth sz /At
the result of the random nature of the scattering process(Nyquist criterion). Becaus&[k] is the result of the de-
o ) o _ ~modulation of a real valued zero-mean and stationary Gaus-
2. Intrinsically nonstationary: This is due to the impulsive gjan random process, the resulting Gaussian complex random
character of the transmitted signal and the inhomogeyocess is also wide-sense stationary and zero-mean. Fur-
neous vertical structure of the atmosphere. thermore, the sequence has a vanishing pseudo-covariance,
3. Multi-component: Beside the ubiquitous noise, there that is we haveE(S[k]S[l]):O. SUCh. a process Is usu-
ally called proper, circular or phase-invariatNeeser and

may be signal contributions from several independent,\/I 1993 We wil thi W later i "
scattering processes, like Bragg scattering at fluctua- assey1993. We will use this property later in connection

tions of the refractive index, Rayleigh scattering at pre- with a moments_ theorem_ for t_hgse proces&e( 1962. .

cipitation and scattering at various clutter targets. BecauseS[k] is Gaussian, it is completely characterized
through its covariance matriR with entries

4. Narrowband: The signal is band-limited, with a maxi-

mum width that is largely determined by the bandwidth (R)k.1 = CoV(SIk], Sl = E(SIKISI

of the transmitted pulse. = BT DD 4 EN[KIN[I])
5. Large dynamic range: The s:igngl varies easily over — O‘|2Q[k _ []eletk=DaAr +G§5k_z,o,
many orders of magnitude, which is typical for all radar
systems. whereg is specified below. Furthermore, stationarity is as-

sumed over typical dwell-times @ (1 min). While this is a
After a linear low-noise amplification, the first processing classical assumption in radar signal processigi¢, 1975
step is a (digital) quadrature demodulation of the analogi979 woodman 1985 Frehlich and Yadlowsky 1994
band-limited signal. This leads to a complex baseband rept gttman and Frehlich1997), it is unknown for which max-
resentation, where the signal is described through the timgmga| time series length this assumption can be made safely.
series of its in-phase (I) and quadrature-phase (Q) compowe found that bird clutter signals are significantly nonsta-
nents. Property 1 is thus modified, because the signal hagonary over typically used dwell times of about 30s to 60's.
now become complex. Furthermore, uniform sampling for This is in sharp contrast to observed atmospheric signals,
N fixed delay times (after pulse transmission, correspondingyhich exhibit a high degree of stationarity on that time scale,
to N fixed ranges) at multiples of the radar inter-pulse pe-we|| in line with the classical assumptions.
riod is then applied to generate N quasi-stationary sequences Therefore we get the following expression for the autoco-
from the nonstationary signal. This stationarity assumptionygriance function
is usually valid for atmospheric scattering, ground clutter and
noise, provided the scattering medium at a fixed height doe®\Cov (k) = o20[k]e’“*> + o28r.0 = o2plk] , )
not change its properties significantly over the length of the
time series\Voodman 1991). It is one of the basic assump- where we set
tions of signal processing for atmospheric radesgler and
Passarellil990. The process of generating the N sequences;2 . — Cf|2 + Uﬁ and p[k] := > .
is called range-gate sampling and thereby, property 2 is mod- o + oy

ified. The remaining signal properties 3-5 are preserved for,

the N discrete data sequences, provided processing is linedy! '€ Sequence will be of importance when constructing ad-

Finally, matched filtering of the band-limited signal is per- equa}te mean and variance estimators.) Finally, the aut_ocor—

formed to achieve an optimal signal-to-noise ratio. relatlon.functlorp[k] |s.often assumed to follow a Gguss!an
correlation model, which corresponds to a Gaussian signal

2.2 Classical signal model and its limitations peak in the power spectrum. If the spectral width of the sig-
nal isw, then we have4rnic, 1979 Frehlich and Yadlowsky

The classical RWP signal model assumption is that the de1994

modulated discrete voltage sequence at the receiver output 5 20202

can be written as o[k] = e7 2T WAL 3)

O.IZQ[k]eia)kAt + 0§5k,0

Slk] = I[k]€' A" 4+ N[k], (1) Note that this Gaussian correlation model must not be con-

fused with the characterization of the random process as
wherel[k]~N (0, alz) andN[k]~N (0, aﬁ) are independent Gaussian, which covers a much wider class of signals. The
complex zero-mean Gaussian random vectors describingssertions are normally very well justified and therefore often
the atmospheric signal and the receiver noise, respectivelysed in simulations of the radar signatiic, 1975 Frehlich
(Zrni€, 1979, At is the sampling interval of the sequence and Yadlowsky1994 Muschinski et al.1999.
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In reality, however, there is sometimes a third component2.3 Consequences for signal processing
contributing to the signal, namely cluttévigschinski et al.

2005, so that the signal model must be written as: Signal processing can be regarded as the art of extracting the
maximum amount of information from a given measurement.

ik A This obviously means that the general properties of the sig-
Stk] = l[k]e + NIk] + CIk] . (4) nal determine the optimal mathematical processing methods.
A stationary Gaussian stochastic process is without loss of

Clutter is the totality of undesired echoes and interfering sig-information described by its time-independent second-order
nals, therefore it is impossible to generalize the propertiedroperties, that is the autocovariance function or, equiva-
of C[k]. In the case of RWP, clutter includes in particular lently, the power spectrum. This assumption holds when
echoes from airborne objects such as aircraft and birds aEd. (1) is valid, and the classical way to process RWP data is
well as returns from the ground. Interfering signals may bethen based on a non-parametric estimation of the power spec-
caused by other radio transmitters operating in the RWP retrum using a discrete Fourier transform of the (usually coher-

ceiver band. In the remainder of the paper, we restrict our£ntly integrated) raw signal over the dwell-time. The power

selves to intermittent clutter signals. spectrum is commonly called the Doppler spectrum. Its first
. . . . three moments are estimated after the noise contribution to
While the properties of the intermittent clutter component . .
. : . . . the spectrum has been subtracted, to describe the basic prop-
have not been systematically investigated, it is instructive to_ " o
erties of the atmospheric sign&/6odman1985. However,
take a look at a few examples. Such have been presented Q/};e have seen that the clutter contribution can be highly non-
various authorsWilczak et al.(1995 described the distinct gnly

characteristic of bird contaminated | and Q data when seen tationary. If the signaB{k] contains nonstationary compo-

) . . . ... nents, then the Doppler spectrum is no longer an adequate
in an A-scope display, but the shown time series taken with . . . i
: C representation of the stochastic process because information
a 924 MHz RWP is only 0.5 s long, which is too short to see oo . )
. : 2 regarding time dependency is already lost. So it cannot be
its essential characteristicdordan et al(1997) show an ex- . ; o
. . . expected that a successful intermittent clutter filtering strat-
ample of a 30 s long time series taken with a 915 MHz RWP
. : o . I e egy can be developed based on the Doppler spectrum. There-
during bird migration, which exhibits a variation in the enve- o . .
. . . : fore it is tempting to try methods that were developed in the
lope of the signal due to modulation of signal amplitude by

the antenna beam pattern. Another example of intermittenIramgworl.( of ngnstat|onary S|gnal processing. A necessary
.condition is obviously a separation 6fk] from the station-

c!utter cau;ed by airplanes and a S|mpI§ t'heoretlcal model 'Séry component$[kJe! ™A LN[k]. To achieve this, we look
given byBoisse et al(1999. The most distinct feature here . . . . .
for a representation of the signal in which we are able to dis-

is also the time-dependent amplitude of the signal. A 19s . " . : .
criminate between stationary and nonstationary signal com-

fumr—_: Series O.f a 482 .MHZ. RWP containing an airplane eChoponents. This is the goal put forward\Wvilczak et al (1995:
is discussed iMuschinski et al(2009. ) . . ) .
Clearly, a superior technique would be one in which the bird
In the fall of 2005, time series data of the coherently in- signal and atmospheric signal could be differentiated from
tegrated 1/Q signal of the RWP at Bayreuth, Germany Wereeach other and processed independenﬂy_
saved in the wind low mode to get a unique dataset for the So far we have considered either a pure time representation
investigation of bird migration. For 13 October, it was sub- of the signal, namely its discrete time series, or its complex
jectively judged that the data showed a maximum of bird Fourier transform as a pure frequency representation. Both
echoes. We have therefore selected this day for demonare not optimal for transient phenomena, although they are
stration of the proposed algorithm. One particular dwell is complete representations of the same information. Therefore
shown in Fig.3. The time series has a length of about 35 swe |ook for an intermediate representation that aims at the
and its nonstationarity is striking. joint time-frequency structure of the signal, so it needs to de-

When data containing intermittent clutter components arePend on both time and frequency. This is the topic of the
compared to both clear air and ground clutter signals (seé€xt section. If we are able to separate stationary and nonsta-
Muschinski et al.2005 for an example), it is very obvious, tionary signal components in such a representation, then we
that the main difference is the transient character of the intermight be able to suppress the nonstationary clutter part while
mittent clutter signal component. Followifgiedlander and  leaving the stationary signal component essentially intact.
Porat(1989, we define a transient signal as a signal whose
duration is short to the observation interval, in our case the
dwell time. Such a behavior clearly reflects a nonstationarity
of the underlying scattering process. It is not the sinusoidal
signature that makes the difference, as a sufficiently strong
clear air signal also exhibits a sinusoidal nature (see Figs. 1
and 2 inMuschinski et al.2005 — the most distinct property
of intermittent clutter is its nonstationarity.

Ann. Geophys., 26, 75983 2008 www.ann-geophys.net/26/759/2008/
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3 Signal representation via Gabor frame expansions 0)

3.1 The windowed Fourier transform and the time-
frequency plane

Let us consider continuous signals first, although in practice | ﬁ ((1)) | Gt

we are always given a discretized signal. A quite natural P —

way to analyze_a cont_inuous signal _simultaneous!y intime | + o
and frequency is provided by the windowed Fourier trans- ®

form (WFT), seeGabor(1949; Daubechieg1992; Kaiser
(1999); Mallat (1999. It is essentially an extension of the
well-known Fourier transform, where time localization is
achieved by a pre-windowing of the signal with a normal-
ized window functionzeL?(R). For any given function

SelL?(R), the WFT is defined as 0 0 t
+00 )
— _ —iwt
ViS(@, @) = /_oo SOt —1)e dt.. () Fig. 1. Schematic representation of the time-frequency plane and

the Heisenberg-box (resolution) of the window functibg, (1),
The operatorV;, maps isometrically betweeh?(R) and  centered at time=to and frequency=wo.
L2(R?), that is a one-dimensional function/signal is with
no loss of energy transformed via the WFT into a two-
dimensional function depending on both timeand fre-
quencyw. The(z, w)-plane is called the time-frequency (TF)
plane or briefly the phase space. This repres_entation Was Sugs. §); g, = ||S||12L2(R) = VhS”iz(Rz)
gested byGabor(1946 to illustrate thatboth time and fre- .
guency are legitimate references for describing a sigiiake = (ViS, VaSirowe) = (Vi Vi, S)i2r)
squared modulus of}, S is called the spectrogram, denoted g therefore
by

* 1 i
fjhs(.[7 (,()) — |VhS(T, C())|2 , (6) S(t) = Vh VhS([) = Z \/\/RZ VhS(T, (,())h(t —T)e lda)dl’ .

and provides a measure for the energy of the signal in the ©)
time-frequency neighborhood of the point w) and thus in-  Hence, in the continuous setting we still have signal analysis,
Slght about the time-frequency structureSofHowever, due transform Eq 5)' and Signa] Synthesis' transform EQ),(

to Heisenberg's uncertainty relation, there is no arbitrary resin some straightforward way available and therefore time-
olution in time and frequency simultaneously, i.e. a point- frequency signal filtering can be performed in three simple
wise frequency description in time domain and a point-wisesteps (see e.gilawatsch and Boudreaux-Bartgl992):

time description in frequency domain is impossible. For-

mally, one considers in the uncertainty context for some cen- 1. Analysis: Computation of the WFT using E&)(

tralized signah with ||2]|=1, time and frequency variances

discrete version of Eq5f. Since the WFT is an isometry,
the inversion ofV;, can be performed by its adjoint,

2. Madification of the WFT (e.g. time-dependent filter-

+oo 1 [+ .. ing).
o? =/ P2lh(0))?dt o2 = Z/ w?h(@)dw (7)
—00

—oo 3. Synthesis: Reconstruction of the modified signal using
for which the Heisenberg uncertainty relation yields Eq. ©.
1 3.2 From windowed Fourier transform to Gabor frame ex-
010y = 5 (8) pansions

It can be shown, that equality in EgB)(is achieved when For discrete signals, continuous transfor&)sand @) are not

h is a translated, modulated or scaled version of the Gaussuitable and would create very redundant representations of
sian function (equality means achieving optimal resolutionthe signal. A first adjustment can be achieved when Ejs. (
in the time-frequency plane). Their time-frequency spread isand @) are approximated by discrete sums. Discretizing
visualized through a rectangle with widthsando,, in the Eqg. @) means taking only values of the WFT at some dis-
TF-plane, this is called a Heisenberg box — see Eidlhis crete lattice in phase space. As it was pointed out, e.qg.
optimality result shall be used later on, when elaborating ain Daubechieg1992), the sampling density in phase space

www.ann-geophys.net/26/759/2008/ Ann. Geophys., 26, 7832008
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plays a significant role for the existence and stability of a This approach was originally proposed Bgstiaang1980.

reconstruction formula, i.e. of a discrete version of B (

Assume we are given some discrete suldséto be spec-
ified below) of the TF-plane, then a naive discrete version of§(¢) =

the inversion formulag) would be

?

S@t) ~ Z Vi S(mT, kS)hy i (1) (10)
(m,k)eA

with

hmic(t) = h(t —mT)e'™

where the parametdr controls the discrete linear shiftT
along the time axis and2 the sampling shiftkQ2 in the
frequency domain. In order to verify whether Eq.0X

Inserting now Eq.12) into Eq. (L1) yields

> [ St i)

(m,k)eA
-/ s<z’)< 3 gm,w’)hm,k(t)) ar' |
(m,k)eA

Equality in the latter equation is assured as long as

D am ki (t) =8t — 1) . (13)

m,k

Condition @L3) is called thebiorthogonality relationand re-
stricts the choice of in dependence on the preassigned func-
tion 4. The particular choice of the window functiégn(e.qg.

indeed exhibits a reconstruction formula, we first observejis varianceo,), the time shift7 and the frequency shift
that for a family of elementary signals or so-called atomsg, girectly controls the existence, uniqueness, convergence

{hm.k}em.kyea that is complete ifL2(R) any SeL?(R) can
be represented by a linear expansion of the form

S =Y amkhmi() . (11)

(m,k)eA

But only in very specific cases, e.g. Whéh,, i}on.k)ea
forms an orthonormal basis,

amk = (S, hm k) = Vi S(mT, kS2)
and then Eq.10) would indeed be an equality,

SO = > (S hm ) hmi () .

(m,)eA

In general, this is not the case, i.e. we only have

St # Y (S h i)k (t) = F*FS(1)

(m,k)eA

where the operatoF*F and its properties are briefly dis-
cussed in Appendix A. For a detailed analysis and discus
sion on this subject we refer the interested reader to, e.g

Daubechieg1992. To reconstructS (i.e. to invert F*F),

properties and the numerical stability of the Gabor expansion
(11), which exists for arbitrary signal$(z) only if QT <2r;

this is a frame theoretical result, Seaubechie$1990; Mal-

lat (1999. The physical meaning of this inequality is nothing
but the Nyquist sampling criterion and represents the sam-
pling density. QT =2 is called critical sampling. This was
Gabor's original suggestion, as he was aiming at elementary
signalsconveying exactly one datum or one “quantum of in-
formation”. In other words, there was no interest in any re-
dundancy.

Gabor (1946 called the sampling density anformation
diagram In his attempt to derive a theory of communication,
each area represents one elementary quantum of information
which Gabor proposed to call lagon Although concep-
tually simple and appealing, the Gabor expansion at mini-
mal sampling density in the TF-plan=2x) has no nice
mathematical structure. In particular, it does not form a ba-
sis with the basis functions localized in time and frequency.
A relaxation of the equality27T=2x is therefore required
and generates a crucial degree of freedom in the Gabor ex-
pansion, this at the expense of oversampling and a possible

non-uniqueness. F&RT >2r the stability of the expansion
is lost.

special properties om\ and on the analyzing atoms (the 3.3 Gapor frame expansions for discretely sampled signals

dual functions tohk) are required.

In what follows, we

shall focus on the practically relevant biorthogonal case, ingo far we have discretized EqQ)(resulting in the Ga-

which the construction of the analyzing atoms becomes simpor frame expansionl() for SeLZ(R).

But when it

ple and, moreover, numerically stable. To this end, sup-comes to real applications, only finitely many discretely

pose there is some auxiliary famiby, 1 (1)=g(t—mT)e' ¥

sampled values of are available; namelg[n]=SnAt),

(yet unknown) available that serves as a reservoir of analyz,—0, ..., N—1. Therefore it becomes necessary to develop

ing atoms used to compute the Gabor coefficienis via

Eq. ©),

g = (S, gmi) = Vo ST, k) = f SW)ama ()t
(12)

Ann. Geophys., 26, 75983 2008

a fully discrete concept for evaluating the Gabor coeffi-
cients (2). Moreover, the discrete subsatin Eq. (11) is

in general infinite and hence also not suitable for a numeri-
cal implementation. The sum needs to be appropriately trun-
cated and, in addition, a discrete version of the dual function
g needs to be derived.

www.ann-geophys.net/26/759/2008/
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We now illustrate how to proceed for discrete daté/lore
details can be found in the original paperWgxler and Raz

(1990 and Appendix B. Assume we are given some dis-A, o), ,_h(]+qK)W”’

crete and finite time (periodic) sign@with sampling points
n=0, ..., N—1, thatis§[n]=S[n+N]. We therefore have to
periodize the analysis and synthesis windows as well,

hin] = Zh[n—i—lN], aln] = Zg[n—i—lN]

Slightly abusing the notation, we omit the tilde denoting pe-

riodic (finite) functions in the following. The sign&can be
discretely represented by

M-1K-1

Z Z Am, khm klnl,

m=0 k=

(14)

whereas the Gabor coefficients can be derived from

N-1

amk = Y _ SnlGniln]. (15)
n=0

Introducing integersAM and AK and the toral component

Wy=exp[2ri/N], the discrete analysis and synthesis win-

dows can be rewritten as
o i[n] = h[n — mAMIWIkAK

On k] = gln — mAMIWIFAK,

As can be seem\ M denotes the time and K the frequency
step size. They correspond Toand 2. In our setting they
are constrained by M-M=AK-K=N. The reconstruction
formula becomes

M-1K-1

S[J] = am,khm,k[j]
k=0

M—1K—
Sl/] Z Z Om k[ (Th k],

=z 3
— O

~

=0
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the vector representing the discretely sampled dual frame,
and letA be the matrlx of sizeAMAK x N with entries

, then the dual frame atomis the
solution of the linear system
For oversamplingAMAK <N, system 17) is under-
determined, and the solution is no longer unique and there-
fore there is a variety of possible dual frame atams

3.4 On the choice of the analysis and synthesis atom and
the TF-plane lattice

As we have seen, there is a high degree of freedom when
constructing a frame representation of some sign#h par-
ticular,

i) the choice of the synthesis winddw

i) the choice of the time-frequency sampling grid,
i.e. the choice ofAM and AK, which specifies the
redundancy/non-redundancy and therewith the non-
unigueness/uniqueness of the Gabor frame expan-
sion (14)

iii) the choice ofyin case ofAMAK <N, i.e. in the over-
sampling situation, one may add further desirable con-
straints on the solutiog of system 17), e.g. minimum
energy-norm.

These three aspects shall now be discussed:

At i): Any absolute and square integrable functioms ap-
propriate. However, as mentioned above, Heisenberg’s un-
certainty relation&) requires for optimal time-frequency res-
olution a Gaussian function. Therefore, we choose

h(t) = 7 Yo, Y2 1?10 suchthat|h =1,  (18)

where we have assumed that the following discrete versioiwhere the scaling parametey, (determined below) shall

of biorthogonality relationX3) for the sequenceds andg is
fulfilled,

ZZ k[0 kL] = 81, .
m=0 k=0

allow either a better resolution in time or in frequency. As
we shall see in iii), the time-frequency localization properties
of synthesis functiof carry over to analysis functiog.

At ii): The most important parameters that control the sam-
pling density in the TF-plane arAK and AM. Together

It can be shown (for a proof see Appendix B) that the with the specificatiors;, they fully determine (up to non-

biorthogonality relation is satisfied if

N-1

> hlj+gKIwy Mg = ——
j=0

8p,004,0 (16)

MK
for O<p<AM-1 and kg<AK-1. System 16) can

be rewritten in matrix form: Lev=(N/(MK),O0,...,07
be a vector of lengtnMAK and g=(g[O0], ..., g[N—1])

www.ann-geophys.net/26/759/2008/

canonical choices of) the discrete Gabor representation
of some given function. In principle, the only require-
ment is AKAM<N. But because of Heisenberg’s prin-
ciple, too dense sampling (high redundancy) of the TF-
plane is not worth the trouble. More precisely, It de-
note the sampling size d§, i.e. S[r]=S(nAt), with to-

tal period of S of NAt=T, (often referred to as the dwell
time). Then, in the classical FFT context, the frequencies

Ann. Geophys., 26, 7832008
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in greater detail inQian and Cher(1993 and Qian et al.
(1992: SinceA is underdetermined, we may rewrite E4j7)
by applying the QR decomposition to its transposed form as

60

40

X
B (R"[0)Q"g = (R[0) (35 ) =v
REs d
OF LLF and thus<=(R7)~v. Becaus€Q7 =Id, it follows

:
£

i,:l_:"i

g=Q (;) = () (;) = QX +Qyy.

Since h is in the range(Qyx) and because rangy)L
range&Qy), one hasQ&h:O (which is of interest below).
Moreover, we observe that the analysis windpig the sum

of two orthogonal vectors withig||?=|/x||2+|ly||%. Due to
Eq. (17), Qux=Qx(R7)~1v, but Qyy may depend on other
Fig. 2. Gabor phase space representation of a simulated RWP sign&onstraints. When searching for the minimum norm solution,
containing only noise and an atmospheric component. The x-axigve simply set|Qyy|I?=|ly||>=0 and obtain

shows time (in seconds) and the y-axis frequency (in Hz). Color

contours (logarithmic scaling in dB) denote the power of the Gaborg = QxX = QX(RT)_lV = Omin

coefficients.

which is nothing thammin = AT (AAT)~1v. However, for a
meaningful interpretation of the Gabor expansion, we would
are due to Nyquist's law automatically spaced with reso-prefer an analysis windogthat is locally concentrated in the
lution 1/7y within [—1/2At,1/2At]. Through the flexi-  TF-plane. The design of such a functigwhen the synthesis
bility of the Gabor representation we may individually set functionh as well asAK and AM are given is a nontrivial
up the time and frequency spacing. Let us consider to thissroblem, which was addressed@ian and Chei(1993 and
end the Heisenberg box size, i.e. the time and frequencyQian et al.(1992. The problem can be formulated as fol-
variances (Eq7), which take for our particulak the form  |ows: Given an optimally concentrated functibn(e.g. the
of=0f/2 ando3=(202)"1. If we restrict the spacing of the preassigned synthesis function), find its biorthogonal func-
TF-plane to this box size (essentially smaller would producetion g whose shape best approximates time and frequency
an overlapping of the boxes), i.e. setting =AM At=0? shifted versions ofi, i.e. minimize
and Aa):AK/Td:aj, Heisenberg's uncertainty principle

(Eq.8) and the solvability of Eq.1(7) yields 2

E(Q.a.b) = H”—g” N

1
=2({1-—N{(g,h ,
( T “”’>>

The right inequality in Eq.19) represents an upper sampling while Ag=v. For fixeda andb, the optimal vectoy in the

bou’?d' which prevents an unnecessary He|sgnberg box .oveFépresentation fag (x is still fixed through the biorthogonal-
lapping. If now an application requires a time resolution

At in the Gabor representation, we immediately obtain inIty relation) is given by

1
N> AMAK > 2N . (19)

the context of Heisenberg’s uncertainty principle the optimal K ,
scaling factor for the synthesis (and therewith for the analy-y = WQy Na.p -
sis) atom, QX hap)
. e Tw
th — Az, Choosingh, »=h yields Qy h,.»=0 (see above) and thus

y=0 and consequenthg=gmin, i.e. the shape ofjmin best
and a suggestion for the sampling density in time and fre-2PProximates the shape lof Therefore, the TF-plane local-
quency. ization properties oh carry over tog in this case. But note
’ that in principle any functiom, ; is allowed and thus there
N N is a large variety of possible analysis atogms
AM = |[At/At], — > AK > ——. 9 yorp y oo
AM A4AM .
3.5 Gabor representation of two examples
Atiii): In the oversampling situatiorA M AK <N), the non-

unigueness can be used to add desirable constraints to tho illustrate the signal separation property of the discrete Ga-
solution, for example minimum energy. This was discussedbor expansion for a single dwell, we consider two examples.
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Bayreuth 13.10.2005, Beam South, Height 1625 m @ 00: 09: 45
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Fig. 3. Time series of the in-phase (upper plot) and quadrature (lower plot) component of the baseband signal measured with the 482-MHz
RWP at Bayreuth, Germany, at 00:09:45UTC on 13 October 2005 (south beam, range gate 9). The complex time series contains 4608
samples. Each sample is the coherent sum of 94 echoes from subsequent pulses.

The method oZrni€ (1975 was first used to simulate a sig-
nal in line with the classical signal model, which contains
only noise and a stationary atmospheric component. In the
frequency domain, the atmospheric signal peak is assumed *°
to be a Gaussian centeredfatw/27=—10.9s 1 and with

a spectral width ofv=0.9s~1. The discrete spectrogram of 20
this signal is shown in Fi®. The atmospheric signal compo-
nentis represented as a horizontal line (stationarity) centered
at the prescribed Doppler frequency. Noise is spread over the
complete TF plane.

.100.

- 90.

-20

Now lets take a look at measured time series data contain-
ing an additional intermittent clutter component. This dataset ~*°
is further discussed in Se&. The original I/Q data is shown
in Fig. 3. Clearly, this time series is not stationary but con- -so
tains transient components due to migrating birds. Assuming ° 5 10 15 20 25 30
that a time resolution of(1s) is sufficient to resolve these
transients, we select a time resolution of about 0.5 s for the_.

Gabor expansion. This corresponds to a frequenc resolu-lg' 4. Same representation as in Fiy.but for the data shown in
P ) P q y Fig. 3. The three transient signal components are clearly separated

tion of about 2Hz. An appropriate sampling density in the ¢ oo stationary atmospheric signal component.
TF-plane is achieved wittAM=64 andAK=64. Setting

M=128 andKk =128, we get an oversampling factor ab3

the optimal scaling is given bzyhzwl. In contrast to the sim-

ulated case, the spectrogram of the measured signal showaf the signal it is difficult to identify the separate transients,
in Fig. 4 shows additional nonstationary signal components,which show up as maxima of the envelope of the I/Q signal.
which are a typical signature of contamination by intermit- However, Fig.4 shows the same signal, but now its Gabor
tent clutter. Taking a look at the pure time representationphase-space representation. This clearly provides a far better
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picture of the signal transients, even if the spectrogram showdg.2 Mean and variance estimator for Gabor spectrogram

only the modulus of the Gabor coefficients (the Gabor coeffi- coefficients

cients itself are complex). Visible are three distinct transitory

bird-events. Two of them overlap in time and can thereforeSince we aim at constructing a statistical test (see the next

not easily be distinguished in the time representation. Allsection below) which is based on the expectation and the

bird signals are much stronger in amplitude than the atmovariance of the individual Gabor spectrogram coefficients

spheric signal of interest. The latter can be seen as a line detn.k|% We need to define adequate estimators for the ex-

quasi-constant frequency, centered at about 3Hz. By comPectation and the variance based on our observations (given

paring Fig.2 with the real data shown in Fid, the goal of  throughS).

the filtering process becomes evident. First, to simplify the notation, we introdueeg, as a short-
hand notation ofi,, ¢, i.e. in what follows we set=(m, k).
Then, the Gabor spectrogram coefficients take the form

4 Filtering through the statistics of Gabor frame coeffi- X N-1 N-1
cients lax =" Sinlgiln] ) SI1G. 111,
n=0 =0
4.1 Motivation for the statistical approach As mentioned in the previous section, we assume that the
data sequenc@satisfies for alh=0, ..., N—1,

With the tool of the Gabor representation at hand, the next _
step is to derive an appropriate filtering strategy for removalES[n] = 0 and ES[n]S[n + 1] = o2p[l] .

of the transient clutter signals. Our intention is to use the ) . _
available a-priori knowledge about the signal components/Vith these two assumptions, the expectation and the covari-
(atmosphere, noise, clutter) to construct an objective deci@"Ce of the Gabor spectrogram coefficients are given by

sion process aiming at a proper signal component separatio%m 2

It is well-justified that both the atmospheric and the noise
signal component are stationary Gaussian random processeSov(|ay |2, |a,7|2) =o*(p * g, g,7>|2 ,

The atmospheric signal has a bounded spectral width mucOvhich is shown in Appendix C (Lemma and Lemmad).

smaller than Nyquist interval, whereas noise is white and . . .
. . The “«"-symbol stands here for the discrete convolution. The
spread over the full TF plane. Not much is known in contrast .
latter two formulas show the influence of the dependency of

about intermittent clutter, only the non-property that this sig- ;
nal component is nonstationary over typical dwell-times. WeS and the rgdundgncy of the Ga_bor frame expansion. In case
Swould be i.i.d. (i.ep[l] = §;,0), it follows

make use of this a-priori information to derive a filter that has
a pass-characteristics for realizations of wid.e—'sense statiorE|aA|2 — 2 and Cov(la |2, |an|2) = (g1, 9n>|2~
ary random processes and a stop-characteristics for all non-
stationary processes. That is, signals looking like the simudf, moreover,{g; },ca forms an orthonormal system, the co-
lated example shown in Fi@.should not be affected by the variance matrix becomes diagonal; i.e. as long as we deal
filtering process. The goal is thus to derive an objective pro-with a redundant frame, the Gabor spectrum is always corre-
cedure, which modifies the Gabor phase space representatidated with a range of dependency described by the decay of
of signals in such a way, that stationary Gaussian signal comthe Gramian matrix ofg,},ca (up to the convolution with
ponents are preserved. p). The essential observation for our purpose is

One can imagine several strategies for implementing such B 4 5 22
afilter. For instance, this could be based on image processin@'1@i1” = o [{0 * 9x, 91)|” = (Elai )" .
techniques or a fuzzy-logic approach similar to the one use
by Cornman et al(1998. We follow a simpler statistical ap-
proach, which has first been used lerritt (1995 for the (Ela;|?)?
same problem, where it is applied to the temporal sequence\m =1, (20)
of Doppler spectral coefficients at fixed frequency bins. The *
goal is to construct a similar test, but this time in Gabor phasewhich holds true for independent as well as dependent sam-
space. We therefore need to analyze the statistical propertigdes S[n] that follow a distribution which is determined by
of the Gabor coefficients with respect to the different sig-its moments. As property2(Q) constrains only the first two
nal components, in order to distinguish between clear air anamoments, it may hold true for a much richer class of distri-
clutter return. This immediately leads to the question of howbutions (in particular, it holds true for normally distributed
the properties of Gaussian stationary processes are mappeandom variables).
to the Gabor coefficients,, ; or |am’k|2. This problem is In order to construct a statistical test that verifies prop-
discussed in the next paragraph. erty (20), we have to find optimal estimators f&ita; |? and

=d%(px0,0),

q:onsequently,
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Var|a, |? that are based on a finite number of observationswhich can be easily seen with the help of formu®i). If,

To this end, we introduce an index subSet C A contain- moreover,{g;} forms an orthonormal basis, we end up with
ing A and L—1 further different indices, i.e. |, |=L. As the classical variance estimator

an estimator foE|a, |2=02(p % gx, g,), Which is based o

neighboring observation variables, we define V() = —— Z (|an| — E(Q))?.
L-1 i,
E(Q) = —Z|a,,| (21) - T
U peo, 4.3 A statistical test performing signal identification
where the constant is given by After having established estimatofy$2,) and V(2;), we
(0 %Gy, Oy) aim now for the construction of a test that identifies Ga-

Co,= )y — 1= >1. bor coefficients associated with intermittent clutter returns.

ney (0% . G) Typically, an atmospheric return is stationary and assumed

to follow a Gaussian distribution, i.e. a test on the first two
moments of the signal will give us some indication if this is
true.

The basic idea goes back Merritt (1995, who statis-
tically tested a sequence of single (non-averaged) Doppler

For i.i.d. samplesS[n], the correcting multiplier in estima-
tor (21) reduces taCq, =|Q2,|=L, and therefore Eq2(Q) is
then nothing but the well-known mean estimator,

E(@) = Z |a'7| spectra in to order decide whether a particular Fourier power
”EQA spectrum coefficient was due to a Gaussian or non—Gaussian
Assuming there exists some sma#0 with signal. For this, he used the classical testidflebrand and
Sekhon(1974 in a modified way. Following this approach,
Z [{p * Gy, g,,)|2 < Cé;g , we consider the squared modulus of the Gabor phase space
e coefficients, |a,, x|>. Because we are interested in station-

ary signal components, we consider the sequémgg|? for
fixed frequency bins, i.e. we just pick individual rows and
let only the time index change. For a fixed frequency index
lim E|E(S2X) _ E|ak|2|2 _ k, we have to test 'Fhe elemer1tz?m,k|2 to be of stationary
—00 Gaussian type. Typically, we assume the observed sequence
lam.x|? to be possibly affected by non-stationary intermittent
clutter. Then, we will gef (2,)2/V (€2,)<1. We also make
By the same reasoning, we define an estimator for variance US€ of the fact that intermittent clutter signals are almost al-
ways stronger than the (clear air) atmospheric return.
\A/(QA) =C Z(|an|2—12"(£21))2, (22) To identify intermittent clutter practically, we pro-
ISV ceed as follows: in a first step, define the index
set representing the-th row, which we denote by
Qr={(m, k): m=0, ..., M—1}, and sort for eaclt the se-
2 quence{|am,k|2}(m’k)egk in decreasing order. That is, we
cl.=-2 Z C—”—'—(L—ZCQ)L)( Z ) derive the order statistic qﬂam,k|2}(m,k)egk which we de-
2 2, Cn)2 cach, note by {|[aln.k|?}m.0ce, ([-] Stands for the order statis-
(23)  tic map). Therefore, we havéial, 2> |[aln+1.x]? for

Lemmasb and6 (see Appendix C) verify that Eq2Q) is a
consistent estimator fd|a; |2, i.e.

Jim (Var(é(sm) + (Elaz)? —E(E())%) =0

where the constant is defined by

neR CA.

all (m,k)eQ. Forl=0,...,M-1, we define subsets
Similar as before, it is shown (see Lemma Appendix C) Qr(Hh={(m, k) : m=l,..., M—1}. The largest coefficients
that estimatorZ2) is unbiased (and certainly consistent, but are stepwise discarded, which has the goal of eliminating the
the proof is omitted). Switching to the i.i.d. case yields clutter signal component. Using the quantitie&2 (/)) and
1 V(Qx (1)) of the subset, the test statisti@ss computed for
C‘1=2L+(L—2L)<1+ﬁ Z céa> [=0,...,M—1aslong as
E,O{EQ)L
1 E@0)? _
=L—7 ) l{g gl P(laliil?) = o
L, 5%, V(%)
and therefore Eq2@) simplifies to holds. The largest coefficient of the first subset for which the

test (positive for clutter) is not satisfied (a clutter-free sub-
L Z (|an|2 — E(2)))2 set) is then taken as a threshold for a frequency-dependent
— Dk wen, (G, Ga)I? el identification of the clutter component.

V() =
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.100. 1, is the average value of the remaining coefficients,

1
T v lgna e
| KA on e\

The main resultof this paper — the nonlinear filtering — is
now formulated in the following:

LetS be the given RWP signal. Based on our model assump-
tions, the filtered component is given by

K-1
<I><S)[n]=2{ > amihpalnl +

k=0 { (m,k)eQi\

D et A%k hm,k[n]} :

(m,k)eQ

Finally, we discuss a practical aspect of the filtering method:
Fig. 5. Same as in Fig4, but after filtering. For the transient The evaluation of the clutter index s@f requires the com-
signal components, the Gabor coefficients were replaced by estipytation of the modified variance estimator. However, the
mated thresholds for the stationary signal contribution at the givencomputational overhead involved in calculating the modified
frequency. variance estimator is obviously greater than in the case of the
classical variance estimator. Our experience has shown that
. . - the variance estimates obtained with the two methods usually
4.4 _S|gnal separation through Gabor coefficient threshold—do not differ much. It may therefore be appropriate to use the
Ing classical variance estimator, if a saving of processing power

All coefficients|a,, 1 |? greater than the threshold determined IS necessary for a real time implementation of the algorithm.
’ This is left for a future study.

in the last section are regarded as clutter. One problem ex-
ists, if the subsef2; (/) becomes too small in this iterative
process. Then the statistical estimate will become unstablg A real example: comparison with classical processing
and the estimation of a local threshold is no longer meaning-
ful. This should not happen if the dwell time is sufficiently 5.1 Data set
long, but it is not always known how long the dwell time
must be for various types of intermittent clutter. Further in- Now let us illustrate the performance of the proposed fil-
vestigations are needed to clarify this question. However, ittering algorithm by applying it to RWP data obtained with
might nevertheless be attempted to clean data sets regardletee 482 MHz wind profiler at Bayreuth, Germany on 13 Oc-
of the dwell time used. In such cases it can happen that som@ber 2005. This radar is one of three operational systems
nonstationary components have a duration on the order of ththat the Deutscher Wetterdienst currently uses in its aerolog-
dwell time. Then it can be useful to replace the local thresh-ical network. The technical characteristics are summarized
old with a non frequency-dependent global threshold, whichin Table1. More details and an overview of the standard
could be derived from stable estimates of local thresholds asignal processing steps are givenLishmann et al(2003.
other frequencies. Such a global threshold should be con- For wind measurements, the system is running in a four-
structed in such a way, that it reflects the noise level in thebeam Doppler beam swinging configuration using two dif-
Gabor representation. For instance, it could be estimated bferent pulse widths of 1667 ns (low mode) and 3333 ns (high
averaging over a certain number of the smallest local threshmode). The averaging time for wind measurement is 26 min,
olds. This method, however, has a risk of clipping also theanother 4 min are used for RASS measurements of the vir-
atmospheric (clear-air) signal component. tual temperature. For the investigation of bird migration we
Leaving this problem aside, we can formulate the filter- consider only low mode data. The relevant sampling pa-
ing procedure as follows: A coefficietiia]; x|> for which rameters are given in Tab2 Of interest are further the
19(|[a]l’k|2)21 holds is associated with clear air return. resolution of the time serieAr=0.007708 s, the number of

Based on the test, we introduce a clutter index set as data samplesv=4608 and the total length or dwell time
Ty=N Ar=35.518464s.
¢ =1{0m, k) : 1}(|[a]n1,k|2) <1, m=0,....M -1} During the bird migration season in October of 2005, full

time series data of the coherently integrated demodulated
The coefficientsi,, ,€Qf, are finally set taze’ 29, where receiver voltage signal were saved in the wind low mode.
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Table 1. Technical parameters of the 482 MHz RWP/RASS at Bayreuth/Germany.

Center frequency 482.0078 MHz
Peak (Average) power 16 (2.4) kW
Pulse modulation Amplitude (B/W)

Phase (pulse compression)

Pulse widths (vert. resolution) 1.5 (250 m)
2.215(330m)
3.3us (500 m)
4.4, (660m)

Antenna type Phased array of 180 CoCo antennas
Antenna aperture (area) 142112.4x11.5m)

On-axis gain above isotropic >34dBi

One-way half power (3 dB) beamwidth <3

Obligue beam zenith distance .25

RX type Heterodyne (IF 60 MHz), Digital IF
LNA noise figure <£0.6dB

A/D conversion 14 bit (@ max 66 MHz)

Pulse compression Bi-phase, complementary, max 32 bit
System sensitivity <—154dBm

Vertical measuring range 16 km (wind), 4 km (virt. temp.)

Both wind and spectral data were manually reviewed to iden-The consensus method is normally not able to suppress the
tify days with significant bird migration. It is well known, effect of the bird echoes because of their frequent occurrence.
that a human expert can easily detect bird migration eventdhe operationally used intermittent clutter removal algorithm
by searching for typical patterns in the wind measurementgICRA), a particular implementation of the statistical averag-
(northeasterly directions in fall, discontinuities at sunrise anding method proposed by Merritt (1995), could only alleviate
sunset), which are additionally accompanied by irregular andhe problem, see Fid.1l. Also, the operational quality con-
wide, sometimes multiple peaks in the Doppler spectra. Introl (Weber-Wuertz continuity check, not shown) was only
contrast to most clutter-free situations, those peaks often exable to flag a small percentage of the contaminated data, be-
hibit a poor time and range gate continuity. Time-height cause the erroneous wind data exhibited the typical intrinsic
plots of the estimated moments (power, radial velocity andconsistency.
spectral width) are helpful to get a quick overview of poten-
tially interesting cases, and a closer look into the time se-5.2 Processing details and results
ries data then typically confirms the conjecture of bird mi-
gration. Particulary significant bird migration was noted on A software was developed for reading and writing of the pro-
13 October and we therefore selected this day as a test cagier time series data using the proprietary binary data format.
for the new bird mitigation algorithm. A significant frac- This made it easy to process the data using the Gabor filter
tion of this data was contaminated with bird returns; the and to save them again in the original file format. The repro-
effect is best seen in Fid0. Here, the winds have been cessed data could therefore be seamlessly integrated in the
computed without any intermittent clutter removal algorithm. off-line version of the operational wind profiler software, to
compare the performance of the different algorithms.
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Bayreuth 13.10. 2005, Beam Sout h, Height 1625 m @ 00:09: 45
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Fig. 6. Same as in Fig3, but for the cleaned signal obtained from the filtered Gabor representation shownn Fig.

result that clutter energy leaks through the filter. One way
to remedy this problem is to replace local thresholds with a
global threshold as described above. For the example data,
this was done if more than 30 percent of the Gabor coeffi-

Table 2. TX and RX sampling parameters in routine operation.

Wind Low-Mode

Inter Pulse Period 8i2s cients at a particular frequency were classified as clutter. The
Pulse Width 1%s global threshold was then computed as the median over 15
TxDuty 2.07% percent of the smallest local thresholds, to get an estimate for
ﬁl?lfsgogga?;t;ower oep 1 (phfgi\;\';p) the noise level. Another way to handle this situation would
(PEP) be to either flag this range gate as suspect or to replace the
Spacing (on RX) 1.0s data with random WhiFe nqise. F'urther research is needeq to
# of Gates 50 learn more about typical intermittent clutter characteristics
First Gate 8.6us and to optimize both the data sampling and the performance

of the filter. The method described in this paper should be a
useful tool for such investigations.
Application of the filtering strategy yields a filtered Ga-
As an example, we consider again the measurement takelpor phase-space representation, which is shown in 5zig.
in the south beam of the profiler at range gate 9 (1.6 kmHere, the moduli of the coefficients, ; representing the
height a.g.l.), with a start time of the dwell at 00:09:45 UTC. transient (bird) contributions have been replaced by an es-
This time series was already discussed in S&ctAs de-  timation of the stationary signal component at that frequency
scribed in Sect4, local (constant frequency) thresholds were (either noise or atmospheric signal). The reconstructed 1/Q
estimated to separate the clutter part of the signal from thdime series after back-transformation from the Gabor phase
stationary components atmosphere and noise. During prospace domain is presented in Fég.The nonstationary signal
cessing of the complete dataset it was revealed that the dwetlomponents have been suppressed and also the amplitude has
time of about 35s was apparently rather short to guarantebeen significantly reduced. It is easy to measure the reduc-
that every observed intermittent clutter signal exhibits a cleartion of total power by computing the difference in variance
transient behavior. Sometimes the duration of the clutter sigbetween the unfiltered and the filtered data, to get an infor-
nal component was on the order of the dwell time instead. Ifmation about how much clutter energy was removed by the
this is the case, then the estimation of the local threshold mailter.
become unstable and signal separation can partly fail with the
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Fig. 7. Stacked plot of Doppler spectra for all low mode range gates, obtained through standard processing without any bird mitigation
algorithm. Data were measured with the 482-MHz RWP at Bayreuth, Germany, at 00:09:45UTC on 13 October 2005 (south beam). The
estimated first and second moments are symbolized as a cross, where the vertical line shows the first moment (mean Doppler speed) and tf
horizontal line denotes spectral width. Massive bird contamination can bee seen in the range gates below 3.0 km height.

Gabor filtering was performed for the complete datasetduced, but there are still range gates which show spurious
and the resulting bird-cleaned time series data were use@eaks. This indicates that ICRA was unable to reduce the
for reprocessing of the whole day. This was comparedclutter energy completely. FiguBeshows the processing re-
with two additional processing methods: Method 1 usedsults of the newly suggested filtering algorithm. The spurious
no intermittent clutter filtering algorithm, whereas method 2 remnants of the bird clutter are almost completely gone, al-
used the routinely employed Intermittent Clutter Algorithm though range gates 15 and 16 (2.49 and 2.64 km height agl)
(ICRA), an implementation of the Statistical Averaging show apparently some bird clutter energy leaking through.
Method (SAM) originally proposed bierritt (1995. The This is also reflected in the somewhat larger spectral width at
results for all range gates for the dwell taken at 00:09:45 UTCthese heights. However, the spectral peak is now continuous
(stacked Doppler spectra) are shown in Figéo filtering), across all heights and the spectral width estimates are mostly
8 (ICRA filtering) and9 (Gabor filtering). Without filtering,  unaffected by the clutter.
the lowest 17 range gates show spurious peaks and also large
spectral widths due to the transient bird echoes. Note espe- Finally, the horizontal wind vector data derived through
cially the discontinuity in height of the location of the esti- the three different processing methods are shown in Eigs.
mated signal peak (derived Doppler velocity). With ICRA (no clutter filtering),11 (ICRA processing) and 2 (Gabor
processing, the effect of the birds has been drastically refiltering), respectively. The color coding is due to the wind

speed (magnitude of the horizontal wind vector). Obviously,
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Fig. 8. Same as in Fig7, but Doppler spectra were estimated using the operational bird-mitigation algorithm ICRA. Bird contamination
below 3.0 km height is reduced compared to Figout still significant.

the clutter contamination has been drastically reduced by théy the elementary signals (or time-frequency atoms). In the
new algorithm. Gabor (WFT) approach, the tiling is uniform with fixed res-
olution. This is in contrast to the wavelet approach, where
the tiling is generally variable. For example, an orthonor-
mal wavelet basis decomposes the frequency axis in dyadic
intervals whose sizes grow exponentially. In other words,

arati d sh how the sianal be d the frequency resolution gets worse the more the time reso-
migration and shown, now he signais can be decomposeq, ., i improved. This is wanted if the signals under inves-
into a time-frequency representation. A Gabor frame repre-

. . . tigation have high-frequency components of short duration
sentation was used for a time-frequency analysis of the dat%mbedded within low-frequency components of slow tem-
and turned out to be a good method for signal-clutter separ

i Previ it ts for intermittent clutter filtering h aboral variation. For the RWP signals however, we found
lon. Frevious attempts for intermittent clutter Titernng nave o, o\ .qence for such a behavior. The intermittent clutter

”.‘ade use of the wavelet transform (WT) and its discrete Ver'components occur at nearly all frequencies within the typ-
sions (ordan et aJ..1£_99.7§ Bmssg et al.1999¢ Lghmann and_ ical Nyquist range, with no obvious difference in temporal

Teschke200)), so itis mterestmg to briefly discuss the dif- characteristics. In particular, they can occur close to zero
ference between the dyadic wavelet and the Gabor approaclﬂ‘equency where the temporal resolution of the WT is the
and to point out why we favor the Gabor method in compari-

The dvadic WT i th ¢ vzi ati worst. Especially in this case, the WT seems not to be ideal
son. the dyadic ¥V IS another way ot analyzing nonstation-¢, resolving the transient nature of the intermittent clutter.
ary signals. The difference lies in the tiling of the TF-plane

6 Conclusions

We have dealt with wind profiler signals obtained during bird
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Fig. 9. Same as in Figz, but Doppler spectra were estimated after statistical Gabor filtering of the original time series. Only minor remnants
of bird contamination can be seen in range gates 15 and 16 (at 2.5 and 2.6 km height).

Examples of clutter signals in both representations shown byhas to be modified to guarantee its unbiasedness and consis-
Justen and Lehman{2003 illustrate this quite clearly. So tency. Proofs for the necessary modifications are given in
the argument which is often used against the WFT, namelydetail.
its constant time-frequency resolution, turns out to be advan-
tageous. Additionally, the Gabor expansion using a Gaussian Finally, the algorithm has been applied to a dataset ob-
window achieves the best possible time-frequency resolutioriained with a 482 MHz wind profiler during bird migration.
by reaching the lower limit of the Heisenberg uncertainty It could be demonstrated that the performance of the new al-
constraint. gorithm was superior to the performance of the operationally
used intermittent clutter reduction algorithm, without obvi-
To identify the clutter contribution to the signal, we make ous negative side effects. Application of the algorithm has
use of the a-priori information that the atmospheric signalshown, that sampling settings of the wind profiler play an
component of interest can be adequately modelled as a stamportant role in the clutter mitigation capabilities of the al-
tionary, proper complex Gaussian random process. Usingjorithm. This is not unexpected, since both the sampling
this assumption, a test statistic is constructed to serve as period and the dwell time determine the resolution of the
criterion for the discrimination between stationary and non-Doppler spectrum and obviously also the resolution of any
stationary signal components. This follows the approach firstime-frequency representation. Furthermore, longer dwell
suggested bierritt (1995. However, in case of the redun- times may ease the identification of transient clutter signals
dant Gabor transform it turns out, that the variance estimatoand the stable estimation of the thresholds for noise and the
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Mean Winds: No bird mitigation processing
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Fig. 10. Wind barb plot of horizontal winds measured in the low mode at Bayreuth on 13 October 2005. The x-axis shows time and the
y-axis denotes height. Data have been color coded by wind speed. The signal processing was using no bird mitigation algorithm. Relatively
strong northeasterly winds below about 3.5 km indicate strong bird migration, this can be seen between 00:00 and 05:00 UTC at heights
around 1000 m and above 1600 m and especially after 18 UTC from the lowest gate to about 3500 m.

stationary atmospheric component. This is especially impor-Appendix A
tant for cases where atmospheric and clutter signal overlap in
frequency. Frame theory
Future work is suggested for a better quantitative charac-
terization of intermittent clutter signals during dense bird mi- We briefly review some basic facts on frames using the ab-
gration. This should allow to optimize both sampling and stract notation of functional analysis, but the reader is ad-
processing settings for operational wind profiler systems. Avised to consult the comprehensive literature for detédésil(
long-term evaluation of the new algorithm would be useful and Walnut 1989 Daubechies199Q Carmona et a].1998
to determine its limits and to estimate the performance im-Mallat, 1999 Christensen200J).
provements of the new methods, in comparison with pre- The frame theory generalizes the concept of bases in
viously used algorithms. This would be facilitated by an Hilbert spaces (even in more general spaces) H.be some
online-implementation of the method and a means to comHilbert space (e.g. the space of function of finite energy de-
pare the profiler wind measurement with independent datanoted withL?(R) to which our signaf§(z) normally belongs
e.g. radiosonde measurements. to), the pair of parenthesis, -) the associated inner product
and ||-||§1=(-, -) the induced norm. A fram@i; : AeA}in
H is a system of functions for which there exist constants
O<A<B<oo such that for alke H

AlSIZ < Y 1S ) < BISIZ, . (A1)
reEA
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Height Mean Winds: Standard bird mitigation processing (ICRA)
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Fig. 11. Same as in Figl0. The signal processing was using the standard ICRA algorithm. Bird contamination has been reduced compared
to Fig. 10, but is still significant after 19:00 UTC. A few other northeasterly wind barbs around 02:00 UTC are affected by intermittent clutter
echoes.

The map,F : H— (5, defined viaF : f > {(f, h;)}isusu-  Since(F*F)~1is self-adjoint and denoting~* F)~1h; =g;,
ally referred to as the frame operator (analysis operator). S@ne consequently has

the signal is characterized by inner products with the frame.

To answer the question of hoy can again be synthesized Z(S, g)h, = F*F(F*F)"ls=§

from the inner product$(f, &,)}, we consider the adjoint 1iea

frame operator given by *c=7", _, cihy. This allows us = (F*F)"1F*FS = 2(5, h3) g (A3)

to write reA

F*Ff =Y (f.h)hy . (A2)  In frame lore,g; is referred to as the canonical dual frame
ACA with respect ta;,.

If F*F equals the identity IdF* performs a perfect recon-  In general,(F*F)~1 cannot be explicitly computed but

struction. This is the case when,} forms an orthonor- must be approximated by an iterative approach. However,
mal basis. However, in general one has to ag@yF) ! the situation can be essentially relaxed when assuming that

to Eq. (A2). This is possible since the inverse exists and isthe frames{s;} and{g;} form not a primal-dual, but a bi-

bounded because of EdpT), orthogonal frame pair, i.6/1;, g,)=58 5. If F denotes the
frame operator with respect ig, then F=F (F*F)~! and
A-ld< F*F <B-Id one may write({’;, g,)). nea=F F*, which is diagonal.
and thus Therefore F is an analysis anfi* a synthesis operator yield-
ing perfect reconstruction (and vice versa, i.e. exchanging
Bl d<FFt<atd. the roles ofF" and F*). If now the bi-orthogonality relation
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Height Mean winds: Gabor filter bird mitigation processing
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Fig. 12. Same as in Figl0. The signal processing was using the new Gabor filter algorithm. Bird contamination has again been reduced
compared to Figl1l There are no indications of bird migration between 00:00 and 05:00 UTC, and only a few obvious outliers and missing
data after 19:00 UTC.

yields a way to deriveg;, the inverse o *F needs notto be biorthogonality relation

computed.

M-1K-1

D0 Guallhn kLj1=51,
Appendix B m=0 k=0
Biorthogonal discrete Gabor frame expansion holds true.

The following lemma can be retraced to its original form Proof. This assertion can be shown directly. Let
in Wexler and RaZ1990), it gives an explicit proof of the

biorthogonality relation. Mo1K-1
fa, = O k[T k[ ],
Lemma 1 Assume the relation m=0 k=0
N-1 o o then
gljIhlj +¢KIW™/P" = N/(MK) 8p,084,0 (B1)
=0 M—-1 K—1 -
L,jy=) 0l —mAMIn[j —mAM whU=DAK
is fulfilled for 0<p<AM -1 and 0O<g<AK-1. Then the £ mX:;)g[ mAMIAL —m ]kX:(:)
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We still have, the time-frequency space and the range of dependency of
S. In caseS is a sequence of i.i.d. random variables, the
Z WhG-DAK _ Z o1 2Tk =D/ K dependency of;, is fully characterized by the reproducing

kernel(g,, g,).
_{ ,if(j=D/K eZ
0, else ' Proof. By Lemma2, Cov(ay, a,)=E(a;a,). Therefore,

Since(j—I)/K €Z means there exists someZ such that
g=(j—1)/K or j—l—gK=0, we may consequently write
(by the Poisson Summation Formula and the made assump-

N-1 N-1
tion) Cov(ay, ap) = <Z [nlgiln], ) S[l]g[l])
M-1 =0 1=0
. jy=>Y ol —mAMIh[j —mAMIK > "8; i 4k.0 ==
mZ_O Z,: Joimak =y Z E(S[nISI1)g; (118, (1]
n=0 =0
=K 5 [l —mAMIh[l +gK — mAM] =
Z = q“;)g 7 =02 pll — n1gx [n1G, 1]
n=0 [=0
—KZ‘SJIqKO X N-1
= 0% ) (P * NG = 0%(p s, Gy).
AM-1,N-1 3 =
AMTE Y ( > Gl + g KIW ™ PM) wirM
j’=0
AM-1 ]
=K 8 1-qkoM/N > N/(MK)S,08,0W""
q p=0
=5 A special case of Lemmis E|ay |?=02(p * 0., Gy).
O
Lemma 4 Make the same assumptions as in Len3m&hen
Appendix C
Statistical properties of the Gabor coefficients Cov(|ak|2, |a,7|2) = G4|(,0 * 0O, g,7)|2 .

Lemma?2 Let S be given and assumg&S[r]=0 for all

n=0, ..., N—1 and thata, is as defined irEq. (15). Then

Ea, =0. Proof. First, note that for proper Gaussian com-
plex random variables S[k] with ESk]=0 and

Proof. By definition, a,= Y"""3 S[n]g\[n]. Therefore,  Cov(S[k]S[I])=E(SIkIS[/])=02p(—k) we have Reed

Ea= YN ESIn]gs[n]=0. 0 1962

Lemma 3 Let S be given and assumg&S[r]=0 for all

n=0, ..., N—1and thata, is as defined ifEq. (15). More-

over, assume a range of dependency of neighboring sam@éS[k1S[/]S[n]S[m])
of Swhich is characterized by the auto-covariance function

p Of S, i.e. E(S[n]S[n+1])=02p[l]. Then = E(SIKISIDE(SI2]SIm]) + E(S[kISImD)E(SI/1S[n])
Cov(ay, an)=02(p * Gi, Gy), = o*(pll — Klplm — n]+ plm — k1pln — 11).
where “«” denotes the discrete convolution.

The latter lemma states that the Gabor coefficientsurn ~ With the help of Lemma (special case),

into dependent random variables (even wheis a delta

sequence, i.e. for independent samplesShf The range

of dependency is determined by the sampling density inCov(|a |, |a,|?) = E(la:|?lay|?)—o*(p*0s, Gi) (p*Ty, Oy)
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and thus it remains to deriv(|a,|?|a,|?). Using the mo- O
ment theorem 0Reed(1963 we have,

, N-1
Elax[?lay|?) _< Z Slk1gx[k] Z Si1g, /] x Lemma 6 Assume, for the dual franfe), : €A} there ex-

ists some >0 such that the condition

N-1 -
> Slnlg,ln] Z é[m]gn[m]>
n=0

=0 > Hoxgy.g)? < CE*
N-1 _ _ n' neQ;
= Z E(SIk1S[/1S[n]1S[m]) 95 [k10:.[719; [118,[m]
k.d,n,m=0 is fulfilled. Then the estimatdt (2,) satisfies
N-1
= l—k — —klpln —1 A
k 12_0@[ Iolm —nl+ plm —KIpln 1D % a Shcat
J,n,m= 78
0x[k105.[119y 118y [m]
and is therefore consistent.
= 1 [l —k k
(1;0%[ 19y [m { Z Pl =g ]} ) Proof. Similar as in the proof of Lemméwe directly obtain
N-1 A
{ > plm— ”]gn[n]} + Var(E()) = E(E@)? = o*l(0 % gi, 902
n=0
Edlay ’lay1®) — o*(p * g1, 91}
Z gn[n]gn[m]{ Z plm — k] gx[k]} x T, ,729 v e
m,n=0

4

N-1 =a—< {(p*g',g’)(P*g»G) +
{ >l —l]QA[l]D C3, nnz:Q e
=0

(o * Gy gn>|2} — C3,1(p * G gA>|2>
( Z G2.[01Gy [m1(p * g1 (p * Gy lm] +

= =z > Hpxgy. gl <o’Cyr .
_ - -

§ : gn[”]gn[m](/?*gx)[m](p*gk)[n]> RS

m,n=0

= 04((0 * O, Oi) (P * Gy, Oy) + {0 * Qs 9n>|2> ,

and consequently,

Lemma 7 The estimatorV(A) is unbiased, i.e. it holds

Cov(lasl?, lay|?) = o*(p * Gr, 9y)1° . N
A1 D O EV(Q)=0%(p * G 02) 2.

O

After having verified the basic properties of the Gabor powerProof. With similar arguments as in the proof of Lemra
coefficients, we prove that estimatd@1j is consistent and and with the shorthand notations

that estimatorZ2) is unbiased (The proof of consistency is

omltted, because this requires the computation of the 8the, := (p x g, g,) and Gy = (P * 0, Oy)

mixed moment).

Lemma5 The estimator £(Q;) unbiased, i.e. it holds Wwe have the following expressions
EE(Q)=0%(p * g1, Oh)-

4_ 4,2, 2 42
Proof. This follows by the definition o€g, and Lemmas, Elay|” = 0%(c; +¢;) =20"¢
4
N A o
EE(Q,) = Z Elay 2 E(lay2E(2:)) = c > (eyes +¢20)
25 ney L EeQ
= > 020 %8y ) = 0P * G G E(E@)? = 2 3 (eacs +c2y)
= Co P *0y, Oy) = P *0y, O - Py = aCE £a)
SN Q. £,0eQ)
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