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Abstract. We present case examples of foreshock density
holes and results from a statistical survey, which provide ad-
ditional characterizations of these recently-described struc-
tures. Specific effort is made to place these objects into
context with well-studied foreshock phenomena, such as hot
flow anomalies (HFAs) and large-amplitude magnetic pulsa-
tions (SLAMS). Density holes are observed during higher-
than-average solar wind speeds (∼620 km s−1), have well-
correlated density and magnetic field intensities, and anti-
correlated density and temperature variations. Like HFAs,
these structures occur over a wide range of foreshock geome-
tries, suggesting that this is not a determining factor. They
are embedded within IMF current sheets, but their cross-
structure magnetic shears are considerably lower than for
HFAs. When the Cluster spacecraft are widely separated,
they are able to measure structure time development, with
substantial changes occurring over 10s of seconds, confirm-
ing an earlier case study, and possibly indicating short life-
times as well. We find that density holes can occur in the ab-
sence of strong upstream magnetic pulsations and/or density
enhancements, which rules out a “wake effect” as the sole
explanation for their formation. Most important is the obser-
vation that the observed solar wind motional electric fields
tend to have components pointing away from the embedding
IMF current sheets. Density holes have no connection with
magnetic holes and foreshock cavities, and appear not to be
early-stage or weakly-formed HFAs.
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1 Introduction

Recently,Parks et al.(2006, 2007) reported Cluster and Dou-
ble Star observations of sub-minute depletions in density
and magnetic field intensity upstream of Earth’s bow shock.
These density holes typically exhibit a greatly reduced so-
lar wind beam that is partially replaced by isotropic supra-
thermal ions, and often have upstream overshoots in density
and field intensity. There is increased wave activity, includ-
ing enhanced ion cyclotron waves and whistler mode waves
in their interiors, along with strong electrostatic (ES) waves
near density minima. Although these reports included results
from a preliminary survey of events seen during a small num-
ber of foreshock transits, no comprehensive characterization
has yet been presented. Furthermore, no studies have yet
identified specific criteria for when these structures should
be observed, nor a mechanism for their production. No-
tably, those papers indicated that density holes were associ-
ated with backstreaming ions characteristic of the foreshock,
as well as with moderate cross-structure shears in the mag-
netic field that indicated they were embedded within inter-
planetary magnetic field (IMF) current sheets. In addition,
strong magnetic pulsations typically have such density holes
downstream.

Many shock and foreshock characteristics are strongly de-
termined by geometry, with a critical parameter beingθBn,
the angle between the average magnetic field direction and
the local shock normal. Quasi-parallel (Q‖) regions have
θBn.40◦ and are characterized by strong, turbulent, ultra-
low frequency (ULF) waves (Hoppe et al., 1981) and supra-
thermal, isotropic backstreaming ions that are broad in en-
ergy and can extend to>100 keV (Sentman et al., 1981;
Paschmann et al., 1981). Just inside (downstream of) the
ULF boundary the foreshock is characterized by waves that
instead appear monochromatic, and is populated by back-
streaming ions that are observed to be gyrating (peaked at
non-zero pitch angles) with energies<40 keV (Fuselier et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



3742 M. Wilber et al.: Foreshock density holes in context

1986; Meziane et al., 2001). Quasi-perpendicular (Q⊥) re-
gions (45◦.θBn.70◦) typically have very weak wave ac-
tivity, and coherent, backstreaming field-aligned ion beams
(Paschmann et al., 1981; Bonifazi and Moreno, 1981a,b).
Strongly perpendicular regions (θBn&70◦) have much more
energetic (100 keV–several MeV) backstreaming gyrating
ions (Sarris et al., 1976; Anderson, 1981; Meziane et al.,
1999).

Various foreshock plasma structures have been studied
over the past three decades, and it is important to place den-
sity holes into context. Magnetic pulsations of various forms
have been observed since the first spacecraft shock crossings,
but of particular interest here are the short, large-amplitude
magnetic pulsations (SLAMS) (Greenstadt et al., 1970a,b,
1977; Russell and Greenstadt, 1979; Thomsen et al., 1990;
Schwartz and Burgess, 1991) that have been associated with
density holes. These are magnetic intensity enhancements at
least a factor of 2.5× the ambient levels, which have time
scales on the order of 10 s in the spacecraft frame, and which
are relatively coherent. They are thought to form from steep-
ening foreshock ULF waves (Schwartz, 1991), and to play
a critical role in processing the solar wind over a distributed
shock transition inQ‖ regions (Schwartz and Burgess, 1991;
Lucek et al., 2008). The orientations of their upstream nor-
mals are aligned most closely with upstream field directions,
while their maximum interior fields are found at large angles
relative to model shock surfaces (Mann et al., 1994). The
orientations favorQ⊥ geometries for the SLAMS’ interior
fields, with ion behaviors similar to those atQ⊥ shocks. This
geometry can lead to some plasma heating.

Lucek et al.(2002, 2004a, 2008) have examined SLAMS
using the multi-point capabilities of Cluster and have found
that the structures are strongly correlated on spacecraft sepa-
ration scales of∼100 km, with magnetic field gradient scale
sizes 100–150 km, comparable to a solar wind ion inertial
length. At larger separations of∼600 km, the structures ap-
pear significantly different at each spacecraft. Previously,
density depletions had been reported downstream of SLAMS
(Thomsen et al., 1990), and were interpreted as “wake ef-
fects” due to solar wind flow being partially diverted around
the field enhancements (Behlke et al., 2003).

Other well-studied foreshock plasma structures include
hot flow anomalies (HFAs) that are characterized by large
flow deviations, which at times have sunward-directedxGSE
components, and interior particle temperatures greatly in
excess of the ambient solar wind (Schwartz et al., 1985;
Schwartz et al., 1988, 2000; Woolliscroft et al., 1986; Thom-
sen et al., 1986; Thomsen et al., 1988; Thomsen et al., 1993;
Paschmann et al., 1988; Lucek et al., 2004b). These appear
to be the result of current sheets, specifically, tangential dis-
continuities (Thomsen et al., 1993), in the IMF interacting
with Earth’s bow shock. In most cases, the hot interior re-
gions exhibit turbulent plasma and field structure, with field
intensities and densities that on average range from a half to
several times the exterior solar wind values. (Interior densi-

ties tend to remain closer to solar wind values than interior
magnetic fields.)

The structure edges are typically enhanced significantly
over the ambient solar wind values, and plasma parameters
and particle signatures provide evidence that these form fast
mode-like shock interfaces with the solar wind (Schwartz
et al., 1985; Fuselier et al., 1987; Paschmann et al., 1988;
Thomsen et al., 1988). HFAs have magnetosheath manifes-
tations and can impact the magnetopause and magnetosphere
(Paschmann et al., 1988; Sibeck et al., 1999; S̆afŕankov́a
et al., 2002; Eastwood et al., 2008). The paradigm adopted by
most authors at this time is that heated interior plasma results
in an overpressure relative to the solar wind, with explosive
expansion in the solar wind frame that drives the formation
of edge shocks (e.g.Thomsen et al., 1986).

As proposed byBurgess(1989), and later confirmed in
several observational studies referenced above, as well as in
simulations (Thomas et al., 1991), HFAs typically have so-
lar wind convection electric fields with components directed
inward on either or both edges of the structures. These mo-
tional fields are thought to be important for channeling ions
specularly reflected off of the bow shock into the current
sheet along its line of connection.Schwartz et al.(2000) have
further argued that reflected ions will not successfully reach
the current sheet (and thus fill it) unless their gyration veloc-
ities exceed the speed at which the current sheet connection
line convects along the shock. This condition is best satisfied
for IMF discontinuities that have normal orientations with
large components transverse to the solar wind flow direction.

Although there is some agreement that the structures de-
scribed byThomsen et al.(1986); Fuselier et al.(1987) are
of the same class as those considered by, e.g.Schwartz et al.
(1985) and Woolliscroft et al. (1986), the former applied
somewhat different selection criteria, which is reflected in
their original term: hot diamagnetic cavities. Most notably,
they considered cases where the magnetic field formed cav-
ities centered on the IMF current sheet, which apparently
were the result of the inferred plasma expansion. These hot
diamagnetic cavities (HDCs) also exhibited two populations
of ions, including a reduced solar wind beam and a back-
streaming component. An interpretation is that these rep-
resent an early phase of HFA development, with streaming
instabilities leading to a single hot interior population later.
In a superficial comparison, HDCs resemble the density cav-
ities described by (Parks et al., 2006), but the physical scales
for HDCs in the literature are larger, their frequency of oc-
currence is much lower, and their interior densities and fields
do not drop so precipitously.

Entirely different are foreshock cavities (Sibeck et al.,
2001, 2002), which are the result of upstream domains with
relatively higher interior pressures expanding into adjacent
regions. Although these seem similar to HFAs/HDCs, in-
cluding, e.g. plasma and field compressions on their edges,
their interior plasma does not show nearly as strong a temper-
ature increase over neighboring regions and they exhibit no
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strong flow deviations. Rather than resulting from a shock-
current sheet interaction, these are likely due to pressure dif-
ferences between adjacent plasma domains. When foreshock
regions connected toQ‖ shocks are embedded withinQ⊥ re-
gions, the former can be expected to have moderately higher
ion pressures. Particles emerging from quasi-parallel shocks
are actively scattered by upstream magnetic structures that
are convected Earthward, and subsequent interactions with
the shock lead to strong particle energization by a Fermi pro-
cess. In contrast, field-aligned beams apparently emanating
from Q⊥ shocks are disrupted very slowly, with little appar-
ent in-transit heating (Meziane et al., 2005).

Another class of structures requiring brief mention are so-
lar wind magnetic holes (Turner et al., 1977), which are char-
acterized by significant depletions in the magnetic field in-
tensity, and which exhibit a large range of scales (Stevens
and Kasper, 2007). These have been attributed variously to
non-propagating current sheets embedded within the solar
wind that exhibit diamagnetic pressure balance (Fitzenreiter
and Burlaga, 1978; Burlaga and Lemaire, 1978); to the mir-
ror mode instability in the case of small spatial-scale events
with small magnetic rotations (Winterhalter et al., 1994); to
Alfv énic solitary structures (Baumg̈artel, 1999; Buti et al.,
2001); and to diamagnetic holes generated through steep-
ened Alfv́en waves (Tsurutani et al., 2002) driven by pon-
deromotive heating of ions. Solar wind magnetic holes seem
to be unrelated to density holes, however, on at least two
counts: they are not constrained to the ion foreshock, but
rather are seen throughout the heliosphere; and they tend to
show no changes or increases in associated density (Winter-
halter et al., 1994), while a strong density depletion is a defin-
ing characteristic for the structures contemplated in this pa-
per. The association of density holes with the ion foreshock
suggests that the shock itself or backstreaming ions have a
role in their formation.

This study has been motivated by several outstanding
questions about density holes: What relationship, if any, do
they have to these other well-studied foreshock structures?
Density holes are observed in upstream regions that have
backstreaming particles and waves characteristic of both
quasi-parallel and quasi-perpendicular foreshocks, suggest-
ing that shock geometry is not the determining factor. Could
they, for example, be early-stage HFAs, or HFAs that fail to
fully develop for some reason? Or can we identify a physi-
cal basis for them being fundamentally different? Given that
SLAMS generally have density cavities downstream, can the
latter be accounted for by the “wake effect” suggested by
Behlke et al.(2003)? As we indicate in Sect.2 following im-
mediately, we have identified a large sample of events (num-
bering∼70) that appear to have no associated large upstream
pulsations or density overshoots, for which such a wake ef-
fect seems an unlikely explanation. In fact, these density
holes are characterized by a greatly diminished reduction in
the solar wind beam, and that raises a related question. Ab-
sent an upstream pulsation which might divert a fraction of

the solar wind, and edge overshoots indicating strong expan-
sion into the surrounding plasma, what mechanism expels
the majority of the solar wind beam, or blocks its entry into
a structure standing relative to the solar wind flow?

After describing the instrumentation used and criteria for
selecting our events in Sect.2, we begin by presenting a few
case events in Sect.3. These are contrasted with HFAs pre-
sented in the literature. We follow in Sect.4 with results
from a statistical survey of carefully-selected events having
no strong pulsations upstream, and show that most density
hole characteristics are uncorrelated with the magnetic shears
across the structures. Further, the normal components of the
convection electric field show a statistical tendency to point
out of the structures, rather than inward as has been found
for HFAs. Finally, after summarizing results we discuss the
implications of these results in Sect.5.

2 Instrumentation and data selection

The primary data used for this study are from the 5 eV–
40 keV Cluster/CIS hot ion analyzers (HIA) (Rème et al.,
2001) and the FGM fluxgate magnetometer (Balogh et al.,
2001), with additional proxy density measurements in the
form of spacecraft electric potentials from the EFW electric
fields and waves instrument (Gustafsson et al., 1997). The
HIA all-ion electrostatic analyzers return to ground moments
of the ion distribution functions at spin-resolution (4 s), and
full 3-D data averaged over 1–3 spins, depending upon the
telemetry mode.

Although all events were observed upstream of the bow
shock, we have eliminated events recorded when the CIS
instrument was in “solar wind” acquisition mode. For this,
the sunward-looking high-geometry factor measurements are
obtained with the energy sweep truncated below∼1 keV q−1,
in order to minimize saturation fluxes that damage the detec-
tor. We have found, however, that the low-geometry factor
measurements, which are based upon a fraction of velocity
space centered on the solar wind beam, do not capture suf-
ficient portions of the supra-thermal ions, and therefore un-
derestimate the temperature. In magnetosheath mode, all of
velocity space is measured by the high geometry-factor side
of the analyzer, although high fluxes from the fast-moving
cold solar wind beam tend to saturate the measurements. The
result is an underestimate of the density by factors as high as
2–3, and a modest overestimate of the temperature, but ve-
locities should remain rather accurate. Inside density holes,
where the fluxes are significantly reduced, the saturation er-
rors should be considerably lower. The most error prone
measurements therefore are the ratios of exterior to interior
densities, which are underestimated.

The survey results presented below employ calibrated,
spin-resolution magnetic field data, while case event anal-
yses include calibrated, full-resolution (22.5 Hz) magnetic
field data, all provide by the FGM team. Spacecraft potential
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Fig. 1.

Fig. 1. Hot flow anomaly, 2 April 2002, summary; spin-resolution
all-ion spectrogram and moments from CIS/HIA, and magnetic
field vectors from FGM (cf.Lucek et al., 2004b).

measurements from EFW serve two important purposes:
first, they typically provide proxy density information at 5 Hz
resolution (20× the cadence of the CIS moments); and sec-
ond, confirm that the sometimes-dramatic density drops ob-
served are not a CIS instrument artifact resulting from alias-
ing, as might occur were changes to the velocity space lo-
cation of the cold solar wind beam to cause it to appear anti-
synchronously with the combined angular and energy sweeps
of the analyzer.

In order to disentangle the possible effects of associated
plasma structures, we have sought events that lack strong,
adjacent upstream pulsations (e.g. SLAMS) or density over-
shoots. By our criteria, attached fluctuations in spin-averaged
density and magnetic field strength must not exceed 2×

the average values upstream (most are much lower), and
where strong ULF are present, the nearest upstream maxima
must not be significantly different from neighboring maxima
where no density holes are present. In other words, adja-
cent fluctuations must not be distinctive. Of the∼70 events
identified from dates in 2002–2004, almost half were elim-
inated from the statistical database due to multiple occur-

rences or other sub-structure that prevented unambiguous de-
termination of, e.g., density minima or structure widths. Of
the events retained, the majority were observed to have suit-
able characteristics by both spacecrafts 1 (C1) and 3 (C3),
for which the CIS/HIA instruments were operational. From
the magnetic field and spacecraft potential measurements, we
found that almost always the events were of sufficient spatial
and temporal scales to be seen by all four probes. In our
survey results, we present the C1 and C3 measurements sep-
arately as a consistency check.

3 Case events

3.1 2 April 2002 hot flow anomaly

In order to contrast our observations with those typical of
hot flow anomalies, we present in Fig.1 an example an HFA
observed by Cluster and examined in detail byLucek et al.
(2004b). The top panel provides ion energy fluxes from
the all-ion HIA instrument, and shows a clear broadening
of the spectrum near 03:40:30 UT, which resembles a mag-
netosheath distribution and includes fluxes extending up to
40 keV. In most places, the density for this event is near
or in excess of the solar wind values of 1–2 cm−3, although
we note a brief gap in the spectrogram and a drop in den-
sity at the trailing (upstream) edge near 03:45:30 UT. Very
large flow deviations are observed withvx reversing and at-
taining values>+200 km s−1, andvz reaching∼300 km s−1.
In places the temperature increased by a factor of 10 over
the ambient 1 MK level, with the last peak aligned with
the density drop at the upstream edge. The magnetic field
is highly structured, with intensity variations comparable
to, but not strongly-correlated with, the density variations.
Briefly near 03:42:15, and for a half-minute interval starting
at 03:42:25 UT the magnetic field intensity drops below the
ambient solar wind value, although for most times the field
strength exceeds it. It is evident from inspection of the field
components before 03:40 and after 03:46 UT that there was
a large shear in the IMF direction across the structure.

3.2 2 April 2002, density hole

Figure 2 shows a density hole recorded half an hour after
the HFA depicted in Fig.1. This is aQ⊥→Q‖ transition
seen under comparable plasma and field conditions, with
vsw∼700 km s−1. The change in shock geometry is sensi-
ble, since differently-oriented field lines on either side of the
current sheet can thread the bow shock at very different lo-
cations. The factor of 10 increase in temperature on the in-
terior is comparable to that of the HFA, but in contrast the
flow deviation is modest. These spin-resolution data show
a strong correlation between the densityn and the field in-
tensityB, supporting the fast magnetosonic character on the
scales sampled.
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Fig. 2.

Fig. 2. 2 April 2002 04:11–04:14 UT summary plot. Same format
as for Fig.1.

The n andB profiles, as well as the energy flux spectro-
gram are intriguing, as the upstream side shows a very abrupt
transition, while the downstream side changes gradually. The
spectrograms show that on the downstream edge the grad-
ual change occurs with evident energy dispersion, suggest-
ing a possible velocity filter effect. Spectrograms for C3 (not
shown) substantiate this dispersion.

Figure3 shows magnetic field data from FGM and space-
craft potentials,φSC, from EFW. Offsets of 1 V have been ap-
plied to the latter to make individual traces easier to discern.
A running average of 2 s has been applied to remove>1 Hz
structure. Although the maximum inB at 04:12:35 exceeds
double the value immediately upstream, we consider the ad-
jacent dip to reflect structure associated with the density hole,
rather than the ambient solar wind field intensity.

Putting aside for now the substructure within the middle
two dashed vertical lines, there is a clear rotation in the field
across the structure. AlthoughφSC varies somewhat crudely
with the log of the density, we see that upon entrance into the
structure it varies monotonically. The magnetic field traces,
on the other hand have additional structure, indicating that
on these (kinetic) scales the fast mode-like character of the
density hole breaks down.
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Fig. 3.

Fig. 3. 2 April 2002 04:11–04:14 UT, magnetic fieldsB and space-
craft potentialsφSC; from top down: FGM magnitude (log scale);
FGM GSE components; andφSC from EFW. Vertical lines denote
intervals for hodograms and timing analysis discussed in text.

In order to test the character of the larger scale rota-
tion in the magnetic field across the structure, we applied
a variance analysis toB for the interval delimited by the
outer dashed lines in Fig.3. The normals obtained by the
four spacecraft agreed to within 1◦, yielding a direction
nmv=[0.30, 0.23, 0.93]. Fields from C1 projected onto the
variance axes are depicted in the top row of Fig.4, with the
start of the interval in violet and the end in red. This shows
a fairly coherent rotation, and no normal component to the
minimum variance component, indicating a tangential dis-
continuity. There is, however, a conspicuous “ear” in green
which indicates a momentary deviation of the field from the
minimum variance plane. Those points correspond to the
brief transition out of the density hole on its upstream edge,
which is delimited in Fig.3 by the interior dashed lines.
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Fig. 4. 2 April 2002B hodograms; top) C1 in minimum variance
coordinates for 04:11:41–04:13:18 UT; bottom) all spacecraft, in
timing analysis coordinates for 04:12:34–04:12:41 UT, with, left to
right, rHT ×n4pt, r⊥×n4pt, r⊥×rHT . See text for details.

We analyzed the density hole’s (upstream) exit transition
using the multi-point timing analysis method (Harvey, 1998).
Although the high solar wind speed of∼700 km s−1 and the
∼100 km spacecraft separation scale made this challenging
even with FGM’s high-resolution data, we were able to ob-
tain sensible, if not accurate, results. The determinations for
the downstream edge were inconsistent when using different
field components, so we omit them. Application of a vari-
ance analysis to the magnetic field over the short exit interval
yielded nearly-degenerate medium and maximum eigenval-
ues, indicating a circularly polarized rotation of the field. We
used these two directions to construct maximum and medium
variance components for the field,Bmax andBmed, respec-
tively. These were adopted as two independent components
for the timing analysis. Agreement between timing normals
from Bmax andBmed was to within 5◦ of each of the indi-
vidual minimum variance normals obtained from the four
spacecraft, suggesting an excellent direction determination.
A third timing normal for the field magnitudeB resulted in
good agreement with the single-spacecraft normals, here to
within 8◦.

The average normal direction for the upstream cav-
ity edge obtained from timings ofBmax and Bmed was
n4pt=[0.97, 0.24, 0.05]. Normal incidence fast magne-
tosonic Mach numbers were variable, in part due to small
normal flow projection variations, as well as from sam-
pling resolutions that were marginal for this event. We
found MA=1.06±0.35, indicating that the upstream edge
was standing relative to the solar wind flow at approximately
the Alfvén speed.

The bottom row of Fig.4 shows overlapping hodograms
for the magnetic fields of the four spacecraft during the exit
transition selection interval. From left to right the panels
show projections onto then4pt×rHT , n4pt×r⊥ andrHT ×r⊥

planes, whererHT is along the de Hoffman-Teller velocity
constructed from the upstream conditions and the normal di-
rection, andr⊥ completes an orthogonal coordinate system.
There appears to be a small non-zero normal component to
the magnetic field∼1 nT, and the previously-noted circular
polarization is evident in the right panel. Consistent with
the small differences between the timing normal and the four
minimum variance normals, the four hodograms constructed
from minimum variance normals (not shown) are virtually
indistinguishable. This suggests that the leading edge of the
structure is a rotational discontinuity. For additional exam-
ples of magnetohydrodynamic (MHD) discontinuity analy-
ses applied to density holes and associated structures see Lin
et al. (2008).

Figure 5 shows a distribution function obtained at
04:12:32 UT, just as the spacecraft was exiting the density
hole. The left panel shows a slice through thev‖×v⊥ plane,
while the three others show slices in planes perpendicular
to B at values ofv‖=0, ±800 km s−1 relative to the paral-
lel component of the plasma velocity (indicated by dashed
colored lines in the left frame). The intensity of the solar
wind beam (red contours), included in thev‖×v⊥ slice and
in the middlev⊥0×v⊥1 slice, is reduced relative to ambient
values (not shown). All three slices perpendicular toB show
a sharp cut-off near their centers, which is consistent with a
remote-sensing distribution obtained at the edge of a sharply-
delimited region having occupied guiding centers (Meziane
et al., 2003; Schwartz et al., 2006). In contrast, distributions
obtained around the downstream edge (not shown) indicate
a gradual variation in the supra-thermal population, but no
clear remote-sensing edge, consistent with a gradient scale
on the downstream edge>1 ion Larmor radius.

3.3 16 March 2003, nascent density hole

On 16 March 2003 Cluster observed a nascent density hole
forming just upstream of the shock. This occurred during a
transition fromQ⊥→ oblique shock geometries. The space-
craft were well separated alongxGSE by ∼11 200 km, which
resulted in a difference of 15 s between the first and last ob-
servation by C3 and C1, respectively. Separations transverse
to the solar wind flow were only 3800 km, decreasing the
likelihood of measuring spatial differences along the struc-
ture. Figure6 shows a summary of plasma parameters for
C1 as it crossed the shock at 22:33:30 UT, and intercepted a
small density hole a couple of minutes later at 23:35:15 UT.
The spectrogram, which was obtained at 3-spin resolution,
does not capture the density hole seen in the 4-s data. Again
the solar wind speed was∼700 km s−1, with otherwise un-
remarkable upstream field and plasma values. The density
hole was centered on a distinct rotation in the magnetic field,
but no density hole is apparent a minute later when the field
rotates partially back to its pre-density hole orientation.

Figure7 shows the magnetic field intensity and the space-
craft potential for a sub-interval 23:33:30–23:37:00 UT,
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Fig. 6.

Fig. 6. 16 March 2003 23:32–23:38 UT summary plot. Same format
as for Fig.1.

which excludes the shock crossing observed by C1. C2, C3
and C4 detected the density hole at nearly the same time,
while C1 observed it last. C1 was closest to the shock, where
it detected the cavity at its deepest.
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Fig. 7.

Fig. 7. 16 March 2003 23:33:30–23:37:00 UT, magnetic field in-
tensity andφSC.

3.4 19 February 2003, time-developing structure

Not all events observed during the spring of 2003, while
Cluster separations were large, show a clear signature of
growth. On 19 February the spacecraft recorded a density
hole during the passage of an IMF current sheet having a
cross-structure magnetic rotation ofθ1B=141±8◦. We see
in Fig. 8 Q⊥ foreshock characteristics on either side. While
there is a very small amount of density overshoot to either
side, this is not apparent in the magnetic field data. The so-
lar wind speed was∼550 km s−1, and the flow deviation is
barely discernible.

Figure9 showsB andφSC profiles that present somewhat
conflicting pictures of what the structure is doing as it passes
by the spacecraft formation. The spacecraft potentials sug-
gest a mild broadening of the structure, with accompanying

www.ann-geophys.net/26/3741/2008/ Ann. Geophys., 26, 3741–3755, 2008



3748 M. Wilber et al.: Foreshock density holes in context

Fig. 8.

Fig. 8. 19 February 2003 21:42–21:46 UT summary plot. Same
format as for Fig.1.

reductions in the density hole depth as it is successively ob-
served over time. The magnetic field intensities, in contrast,
show no clear trend in depth. The difference may be ac-
counted for by large-amplitude 7.5 s magnetic field waves
occurring within the density hole, which when superposed
on top of macroscopic structure could significantly modify
instantaneous minima. The previous event showing density
hole growth was recorded when the spacecraft were in a con-
figuration that was elongated alongxGSE, while in this case
the formation was much closer to an equal-sided tetrahedron
with separations of∼4000 km. We favor the interpretation
that theφSC values best reflect the temporal change to the
structure, with the 7.5 s waves leaving the density unper-
turbed.

3.5 29 February 2004, no-shear density hole

For the final case example we present in Fig.10 a den-
sity hole observed simultaneously with very coherent UFL
waves, which are commonly associated with gyrating ion
distributions in oblique foreshocks (Meziane et al., 2001;
Mazelle et al., 2003). This is also of interest because it was
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19 Feb 2003 2142:00-2146:00
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Fig. 9.

Fig. 9. 19 February 2003 21:42–21:46 UT, magnetic field intensity
andφSC.

Table 1. Occurrence counts for embedding foreshock geometries.

Q⊥ oblique Q‖ Q⊥↔Q‖ Q⊥↔oblique unknown

5 2 10 15 2 3

one of only two events (out of 37) that lacked a clear cross-
structure magnetic shear, withθ1B=7±10◦. (The other
event was embedded within aQ‖ foreshock.) As in the pre-
vious case the solar wind speed was∼600 km s−1, and the
flow deviation was minimal. (Here the perturbations tovx

were larger, but still weak, at C1.)

4 Statistical examination of density holes

Using the selection criteria described in Sect.2 we found
∼70 “isolated” density hole events (without large adjacent
upstream perturbations). Of these, 37 were suitable for char-
acterization, with the remainder having problematic struc-
tures that could not cleanly be delimited. The latter included,
e.g., structures with non-unique minima or indicators of suc-
cessive density holes for which determinations ofθ1B were
impossible. The case studies presented above show various
types of embedding foreshocks, and we have examined the
particle and magnetic field signatures for all density holes in
our sample to categorize them as well. These results are sum-
marized in Table 1. The significant magnetic shears across
some structures resulted in a boundary between two different
types of foreshocks, in which case the embedding foreshocks
were determined to be transitional, e.g.Q⊥↔oblique. While
theQ‖→Q⊥ transitions number 9 and theQ⊥→Q‖ transi-
tions number 6, the statistics do not permit us to conclude a
significant preference for one sequence over another. Nor do
we expect a physical basis for any difference, as the direction
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of the IMF rotation in combination with the location of the
spacecraft determine the sequence. The statistics do allow us
to see that density holes occur in a wide range of foreshock
domains.

Characterization of other density hole attributes required
a determination of interior and exterior plasma and field val-
ues. This was facilitated with an interactive routine that dis-
played the data and allowed the user to select representative
upstream and downstream regions, and to delimit the extent
of the density cavities. The final case example (Sect.3.5
above) presented selection intervals (Fig.10) for a near-worst
case example, 29 February. In order to minimize aliasing ef-
fects, the exterior regions were selected to contain an integral
number of the coherent pulsations seen, and the hole bound-
aries were selected to match where the interior densities fell
below the mean values for the exterior intervals. The routine
also drew horizontal fiducial lines corresponding to 2× the
mean upstream values forB andn, in order to help establish
that the events were within the maximum upstream pulsa-
tion size. Average exterior plasma and field conditions, along
with variances, were computed and saved in a database. For
the results presented below, we take as the density hole in-
terior values spin-resolution plasma and field measurements
obtained at the instant of each hole’s density minimum (all
parameters subscripted with “min”).

An important parameter is the angle between the embed-
ded current sheet and the motional electric field. We have
determined the current sheet normals using the coplanarity
method due toColburn and Sonett(1966). As a consistency
check these values were compared with those obtained using
the methods due toAbraham-Shrauner(1972) andAbraham-
Shrauner and Yun(1976), which yielded similar results. Be-
low follow some of the more salient results.

4.1 Occurrence statistics

Figure11 presents frequency histograms of various param-
eters determined for each of the density holes in the sta-
tistical sample. Black symbols and text correspond to C1,
with green used for C3. Of the 37 events, there were 5 for
which good determinations could not be made for C3, and
2 for which only C3 measurements were used. The first
panel shows average upstream solar wind speeds, which were
638±105 km s−1 and 603±129 km s−1, for C1 and C3, re-
spectively. (Mean values are denoted byµ, standard devi-
ations byε and medians bym.) Differences between the
two spacecraft are accounted for by the fact that of the 5
events included for C1 only, three had solar wind speeds
>700 km s−1, while the two events exclusive to C3 had solar
wind speeds∼325 km s−1.

The second (top right) panel shows event durations, which
we regard as a rough proxy for scale size. However, the ori-
entations found for the IMF current sheets were fairly uni-
formly distributed, suggesting that many1t values should be
lengthened by significant cosine factors as they transited the
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Fig. 10.29 February 2004 18:02–18:10 UT summary plot. HIA ion
energy spectrogram,B, and various HIA moments. Representative
selection intervals indicated (see text for details).

spacecraft. (No attempt has been made to correct for this.)
The mean values of 32.0±20.0 s and 27.9±13.5 s for C1 and
C3, respectively, are marginally larger than found in an ear-
lier study (Parks et al., 2006) that was not constrained to “iso-
lated” density holes.

The third panel shows a distribution of the cross-structure
magnetic shear angleθ1B , which largely reproduces the re-
sult of Parks et al.(2006), with moderately larger aver-
age shear values. The average values of 54.2±38.8◦ and
52.7±39.0◦, respectively, correspond to a preponderance of
events withθ1B<90◦. This contrasts with hot flow anoma-
lies that tend to have substantially largerθ1B values. The
fourth frame presents frequencies of the plasma flow devi-
ation anglesθ1v, which are determined from the flows up-
stream and during measurements obtained at density minima.
With mean flow perturbations near 4.8◦, this sample of den-
sity holes has deviations much lower than seen for HFAs (for
which large flow deviations are a defining characteristic).

The majority of events havenext/nmin<20, with the mean
values of 10.1±12.2 and 7.7±8.1 representing a substantial
interior solar wind beam reduction in most cases. The distri-
bution of temperature ratios are rather comparable, and likely
have their origins in the same fact. As the cold solar wind
beam is expelled from these structures the isotropic supra-
thermal components make a more significant contribution to
the temperature moments.
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Fig. 11. Frequency distributions:f vs.vsw; f vs.1t ; f vs. θ1B ;
f vs.θ1v ; f vs.next/nmin; f vs.Tmin/Text; f vs.θd

E·n; f vs.θu
E·n;

C1 results are black; those for C3 are green.

The bottom two panels show distributions of the angles the
convection electric fieldsEconv make with the inferred cur-
rent sheet normals for the downstream and upstream sides,
respectively. These angles are defined such that values<90◦

correspond to electric fields pointing outward. The down-
stream anglesθd

E·n have mean values that are lower than
90◦, 84.0±7.9◦ and 83.8±8.4◦ for C1 and C3, respectively.
Again, this contrasts with the determinations made for HFAs

(Schwartz et al., 2000; Paschmann et al., 1988; Thomsen
et al., 1993), which have the normal components to the fields
pointing inward. The upstream anglesθu

E·n are 84.9±8.5◦

and 88.5±10.5◦. The statistics for C3 are not compelling,
although removal of the outlier at 125◦ would shift the peak
another 1.5◦ from 90◦.

4.2 Correlations

We have tested for correlations between several parameters
– 1t , θ1v, θ1B , vsw, next/nmin, Tmin/Text, θu

E·n andθd
E·n – to

look for indications of controlling factors in the development
of density holes. For the modest number of events in the
sample, only a handful of relationships were manifest, which
we present in Fig.12. The most striking relationship found
is betweenTmin/Text andnext/nmin, which we have accounted
for above as resulting from interior temperatures being in-
creasingly dominated by the supra-thermal population as the
cold, dense solar wind beam is excluded. The only depen-
dence uponvsw – and a weak one at that – is fornext/nmin.
This may be related to the high average solar wind speeds
observed for this sample; if decreases invsw lead to weaker
density holes, they will be increasingly difficult to detect.

The parameters most inclined to bear out correlations with
other parameters are the angles betweenEconv and the down-
stream and upstream IMF current sheet normals,θd

E·n and
θu
E·n, respectively. The third panel of Fig.12 shows a weak,

but probable relationship betweenθd
E·n and1t (p<0.04 and

p<0.1 for C1 and C3). It is notable that the outward-
pointing normal component approaches 0 (θd

E·n→90◦) as1t

increases; larger events appear to have weaker normal elec-
tric field components. This dependence, while suggested by
the best fit line, is not statistically demonstrated for the up-
stream side of the structure, however (fourth panel). More
compelling are the relationships betweenθE·n andθ1B (bot-
tom panels). Asθ1B→180◦, θE·n decreases from 90◦ (tan-
gency) to 75–80◦. This is to say that as the cross-structure
magnetic shear increases, the normal component of the mo-
tional electric field is increasingly outward.

5 Discussion

We began Sect.3 by presenting a hot flow anomaly studied
by Lucek et al.(2004b). In addition to its relatively long
duration of∼5.5 min, this was characterized by very large
flow deviations, broad magnetosheath-like ion distributions,
and magnetic field intensities that were usually, but not al-
ways larger than the solar wind values. We noted a density
hole-like structure on the upstream edge, with a brief corre-
lated field and density depression, and a momentary increase
in temperature. Other instances of such edge structures ex-
ist, such as for an HFA observed near 04:16 UT on 2 April
2002 (shortly after the density hole presented in Sect.3.2,
not shown), which had a density hole-like structure at its
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downstream limit. It is difficult to draw conclusions, given
that the highly-structured magnetic fields observed are local
to the spacecraft, and may not reflect global conditions, but
possibilities include HFA expansion into regions containing
density holes, HFAs being built up out of merging density
holes, and the emergence of density holes out of embedded
turbulence that may produce conditions favorable for density
hole creation. Based upon the statistical results of Sect.4, we
conclude (below) that density holes have a different genesis
and are unlikely to form HFAs through merging.

In Sect. 3.2 we presented what we consider to be an
archetypal “isolated” density hole, which merits detailed dis-
cussion. It is centered upon an IMF tangential discontinu-
ity, exhibits a fast mode-like character on time scales corre-
sponding to spatial extents&2000 km in the structure frame,
has an order of magnitude temperature excess over surround-
ing solar wind, and moderate flow deviations. The ion dis-
tributions have two populations (Fig.5), with an isotropic
supra-thermal population and a solar wind beam intensity
that has been greatly reduced. These characteristics are typi-
cal of density holes overall. Differences between the higher-
resolution magnetic field profiles and the proxy densities pro-
vided by spacecraft potentials suggest that the fast mode-like
character breaks down on scales corresponding to.500 km.
This is not a surprise, as these are of the order of a solar wind
ion Larmor radius, for which a break-down of MHD behav-
ior might be expected.

We noted an asymmetry in the structure profile, with a dis-
persive decrease in the solar wind beam flux on the down-
stream side. We have found one event that shows a reverse
asymmetry, indicating that the affect can occur on both the
upstream and downstream edges. (Other events show “re-
verse” asymmetry in the density profiles, but were not ob-
served in burst mode, for which the spectrograms could re-
solve the dispersion.) If some mechanism prevents new, ther-
mal solar wind ions from gaining access to a density hole
field line, more-rapid streaming along these flux tubes may
lead to losses of the most energetic ions first, with the deepest
part of the hole being the location where such a loss process
may have been in effect the longest. This picture is not con-
sistent, however, with rarefaction due to explosive expansion
caused by an interior overpressure. Testing for excess inte-
rior pressure is difficult, if not impossible, since the RAPID
solid state detectors on Cluster do not provide measurements
with high enough sampling rates, while a substantial partial
pressure may be present above 40 keV. Efforts to analyze the
stress balance at density hole edges have so far yielded no
conclusive results.

The magnetic structure of the 2 April 2002 density hole
is interesting as the variance and multi-point timing analy-
sis points to a rotational discontinuity on the upstream edge
embedded within a larger tangential discontinuity across the
whole structure. Although RDs are consistent with reconnec-
tion topologies, it remains to be seen whether tearing could
take place in the presence of backstreaming ions that have
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plasma frame parallel speeds many times in excess of the
Alfv én speed. The RD topology is interesting as it would
suggest easy streaming access between the density hole inte-
rior and the upstream. This seems to be contradicted by the
remote-sensing distribution for supra-thermal ions (Fig.5)
that indicates strict confinement to guiding centers within the
density hole, and by the abrupt drop in thermal solar wind
ions at that edge.

The timing analysis on the upstream edge of this struc-
ture indicates that it is standing relative to the flow at ap-
proximately the upstream Alfv́en speed. The 0.35 fractional
uncertainty allows for values ranging from sub-Alfvénic
to super-fast mode values, although a supercritical relative
speed is unlikely. This relatively deep density hole with
next/nmin∼20, indicates substantial changes from the ambi-
ent solar wind medium by this stage of development. The
local maxima inB and φSC at 04:12:41 UT may indicate
the beginning of an upstream overshoot, and an intriguing
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possibility is that the density hole formation is an antecedent
to subsequent upstream pulsation growth, rather than the re-
verse as was proposed byBehlke et al.(2003).

A few cases, such as the event shown in Sect.3.3, indicate
substantial growth (increasing density depletion) of density
holes during the 15–30 s spanning first and last observations
by Cluster spacecraft. This corroborates a case event pre-
sented byParks et al.(2006), which was observed first by
Cluster, and then by Double Star. Our third density hole case
event (Sect.3.4) suggests instead a measurable decay over
∼15 s, which raises the prospect of these events being rather
transient. Whether forming or decaying, rapid temporal vari-
ation is certain to muddy the statistical results of Sect.4. As
a proxy for size,1t is subject to projection effects due to
variable structure orientations, as well as to the stage of de-
velopment at which an event is observed.

In combination, the different case events presented, and
the summary of embedding foreshock geometries for the sta-
tistical sample (Table 1), show that density holes can occur
over a wide range of foreshock geometries. We therefore
conclude that geometry does not significantly constrain their
formation, nor does the presence of differing backstreaming
ion populations or ULF waves. While HFA phenomenology
appears to be strongly dependent upon the magnetic shear of
TDs interacting with the bow shock, it is notable that most
of the density holes in this study haveθ1B values<44◦. The
only discernible relationship withθ1B involved θE·n. The
tendency for the normal component ofEconv to point increas-
ingly away from the structure asθ1B increases further distin-
guishes these structures from HFAs. However, the absence of
a dependence for physical characteristics such asTmin/Text or
θ1v might be masked by the varying phases of development
at which events are captured. Hybrid simulations byThom-
sen et al.(1993) predict much weaker interactions between
tangential discontinuities and shocks whenEconvhas compo-
nents pointing outward on both sides. These predict no edge
enhancements, and notably do not produce density cavities.
It may be the case that charge separation effects are impor-
tant, which would require full particle methods. The flow de-
viations reported here (θ1v∼5◦) are much smaller than previ-
ously indicated, and the difference may be accounted for by
our selection of “isolated” events; large upstream pulsations
are likely to divert plasma flows.

It is notable that these events are found to occur for rel-
atively high solar wind speeds∼620 km s−1. The highvsw

values may in fact suffer from selection bias, as we have re-
stricted ourselves to measurements obtained with the mag-
netosheath mode of the HIA detector. In other words, these
observations were constrained by mode settings that were de-
signed to capture the foreshock when it was at or inside of the
nominal shock location. This would predispose the events
to occur during higher than average dynamic pressure inter-
vals. (Had we selected events for which the analyzer was in
solar wind mode, our sample would have been similarly bi-
ased towards lower than average dynamic pressure intervals;

mixing both data sets, having different sources of measure-
ment error, would have also introduced complications.) We
note, however, that the frequency histogram forvsw (Fig. 11)
is two-tailed, indicating that it is not seriously constrained
at its lower limit. S̆afŕankov́a et al.(2000) had found solar
wind speeds nearly as high in their survey of magnetosheath
HFAs.

A final consideration is that the distribution of IMF cur-
rent sheet orientations we found (not shown) were fairly uni-
formly distributed in cone angleθvn. Large cone angles favor
slow current sheet motions along the shock surface near the
subsolar point.Burgess(1989); Schwartz et al.(2000) have
argued that low contact speeds would be favorable for inject-
ing shock-reflected ions into the current sheet.

6 Conclusions

We have presented case examples of foreshock density holes,
and survey results from a sample of 37 events. In order to
minimize the influence of upstream structures that could sig-
nificantly alter plasma conditions, we have specifically se-
lected events that lack strong trailing pulsations and density
overshoots. Density holes can be observed to develop sig-
nificantly over time scales as short as∼10 s, and may have
comparably short lifetimes. The dispersive signatures seen
in the few burst mode ion spectrograms may indicate that
density holes do not form through explosive expansion fol-
lowing strong heating. In addition to confirming results ob-
tained using broader selection criteria, the simple existence
of a statistical sample of such isolated density holes suggests
that large-amplitude pulsations are not required for their for-
mation.

As is the case for HFAs, density holes are observed over a
wide range of foreshock geometries, are preferentially seen
during fast solar wind flows (vsw∼620 km s−1), and are em-
bedded within IMF current sheets. Unlike HFAs, isolated
density holes lack particles with energies below that of the
solar wind, and flow deviations tend to be rather small. (The
large flow deviations for previously-identified events can be
accounted for by large upstream pulsations, which stand rela-
tive to the solar wind flow with large normal incidence speeds
and likely cause the deflections in a manner similar to fast
mode shocks.) Additional characteristics that further distin-
guish density holes from hot flow anomalies include mag-
netic shears that are typically much lower (〈θ1B〉∼50–55◦),
and normal components for the motional electric field that
tend to point outward from, rather than into, the current
sheets on both the downstream and upstream sides. This
inverted field scenario had been modeled (Thomsen et al.,
1993), but density holes were not predicted. The similarities
in characteristics for the particular hot diamagnetic cavities
identified byThomsen et al.(1986) suggest merely a differ-
ence in degree or development, but their identification with
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inward-pointing motional electric field components seems to
make these HDCs fundamentally distinct as well.

Finally, density holes seem to be unrelated to the fore-
shock cavities described by, e.g.Sibeck et al.(2001), or to
long-studied solar wind magnetic holes (Turner et al., 1977).
Foreshock cavities appear to occur whereQ‖ foreshock do-
mains are embedded withinQ⊥ regions, while density holes
are found to be embedded within either type, or combination,
of foreshock domains. Magnetic holes exhibit field intensity
depletions, but not the defining, correlated density drops of
density holes. The apparent association of the latter with the
ion foreshock points to a mechanism involving backstream-
ing ions or the bow shock itself, while magnetic holes are
seen throughout the heliosphere, where no shock association
is manifest.
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