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Abstract. We present results from a coordinated camera
and radar study of the auroral ionosphere conducted during
March of 2006 from Poker Flat, Alaska. The campaign was
conducted to coincide with engineering tests of the first quar-
ter installation of the Poker Flat Incoherent Scatter Radar
(PFISR). On 31 March 2006, a moderately intense auroral
arc, (∼10 kR at 557.7 nm), was located in the local mag-
netic zenith at Poker Flat. During this event the radar ob-
served 7 distinct periods of abnormally large backscattered
power from the F-region. These were only observed in the
field-aligned radar beam, and radar spectra from these seven
times show naturally enhanced ion-acoustic lines (NEIALs),
the first observed with PFISR. These times corresponded to
(a) when the polar cap boundary of the auroral oval passed
through the magnetic zenith, and (b) when small-scale fila-
mentary dark structures were visible in the magnetic zenith.
The presence of both (a) and (b) was necessary for their oc-
currence. Soft electron precipitation occurs near the mag-
netic zenith during these same times. The electron density
in the vicinity where NEIALs have been observed by previ-
ous studies is roughly between 5 and 30×1010 m−3. Broad-
band extremely low frequency (BBELF) wave activity is ob-
served in situ by satellites and sounding rockets to occur with
similar morphology, during active auroral conditions, associ-
ated with the poleward edge of the aurora and soft electron
precipitation. The observations presented here suggest fur-
ther investigation of the idea that NEIALs and BBELF wave
activity are differently-observed aspects of the same wave
phenomenon. If a connection between NEIALs and BBELF
can be established with more data, this could provide a link
between in situ measurements of downward current regions
(DCRs) and dynamic aurora, and ground-based observations
of dark auroral structures and NEIALs. Identification of in
situ processes, namely wave activity, in ground-based signa-
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tures could have many implications. One specific example
of interest is identifying and following the temporal and spa-
tial evolution of regions of potential ion outflow over large
spatial and temporal scales using ground-based optical ob-
servations.

Keywords. Ionosphere (Plasma waves and instabilities;
Wave-particle interactions) – Magnetospheric physics (Au-
roral phenomena)

1 Introduction

The ground-based camera and radar communities and the in
situ satellite and sounding rocket communities observe the
same auroral processes using very different methods. The
motivation for this study is to interpret ground-based obser-
vations from imagers and radars in the context of recent ob-
servations made by sounding rockets and satellites. The re-
cent NSF commissioning of PFISR, which is based on Ad-
vanced Modular Incoherent Scatter Radar (AMISR) tech-
nology, at Poker Flat Research Range (PFRR) (Kelly et al.,
2006) allows a new high-resolution view of nightside auroral
processes.

PFISR allows for observation of the nightside auroral
oval using frequencies in the 450 MHz range. In compari-
son, the location of the well-established European Incoher-
ent Scatter (EISCAT) Svalbard Radar (ESR), which operates
at 500 MHz is optimized for dayside studies. The EISCAT
mainland radars however are located under the nightside au-
roral oval (like PFISR), but operate at different frequencies
(933 MHz and 224 MHz). It is well known that the auro-
ral processes that occur on the dayside can be very differ-
ent from those on the nightside, in fact, the auroral morphol-
ogy is often more ordered on the nightside (Paschmann et al.,
2003). Therefore identification of processes associated with
specific auroral forms is likely to be more straightforward
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on the nightside. PFISR provides an opportunity for making
these types of nightside observations in the 450 MHz range.

In this paper we present an event study from some of
the very first available PFISR data. We show an example
of the morphology and structure of naturally enhanced ion
acoustic line (NEIAL) occurrence in nightside discrete au-
rora, and draw connections to well-established in situ obser-
vations. Specifically, the data suggest that nightside NEIALs
are observed to contain matching morphology and overlap-
ping parameters with broad-band extremely low-frequency
(BBELF) waves that are seen in situ with satellites and rock-
ets. These observations motivate the need for further investi-
gation of this possible connection.

The outline of this paper is as follows. First, we review
the in situ measurements which will provide context for our
ground-based observations. A review of previous studies in-
volving incoherent scatter radar observations of NEIALs is
presented in the next section. Then we describe the methods
used and present the observations from this camera and radar
study. In the last sections, we discuss these observations in
the context of the scientific background and conclude with a
summary and the implications of this study.

2 Scientific context

2.1 In situ

We wish to consider radar observations of NEIALs in
the context of in situ measurements of auroral processes.
Based on the known NEIAL morphology (Rietveld et al.,
1991; Collis et al., 1991; Rietveld et al., 1996; Sedgemore-
Schulthess et al., 1999; Ogawa et al., 2000; Grydeland et al.,
2003, 2004; Blixt et al., 2005; Ogawa et al., 2006; Lunde
et al., 2007), we are interested primarily in auroral processes
associated with the polar cap boundary and Alfvénic regions,
especially those associated with ion outflow. These are the
nightside regions containing the same in situ processes as the
dayside auroral regions shown to contain NEIALs. In situ
measurements of upflowing ion beams have been shown to
be associated with luminous auroral arcs (McFadden et al.,
1998), but the dominant source of nightside ion outflow
from the ionosphere to the magnetosphere has been shown
to occur in the polar cap boundary and Alfvénic regions, in
both nightside and cusp aurora (Bonnell et al., 1996; Lynch
et al., 1996; Kintner et al., 1996; Norqvist et al., 1998; André
et al., 1998; Knudsen and Wahlund, 1998; Lynch et al., 2002;
Strangeway et al., 2005; Zheng et al., 2005). The polar cap
boundary and Alfv́enic regions are characterized by their
soft electron precipitation, with energies of less than 1 keV,
typically a few hundred eV (Louarn et al., 1994; Chaston
et al., 2003, 1999; Arnoldy et al., 1999; Lynch et al., 2007).
A commonly observed feature of these polar cap bound-
ary and Alfv́enic regions is broad-band extremely low fre-
quency (BBELF) wave activity as described with case and

statistical studies by Lynch et al. (2002), and summarized in
Sect. 4.3.1.3 of Paschmann et al. (2003). BBELF waves have
been found to be associated with perpendicular ion heating,
ion upflow and outflow near the polar cap boundary (Bonnell
et al., 1996; Kintner et al., 1996; Lynch et al., 1996, 2002;
Knudsen and Wahlund, 1998; Wahlund et al., 1998), as well
as with the upgoing soft electron beams of downward current
regions (DCRs) (Paschmann et al., 2003). DCRs are also as-
sociated with ion upflow (Lynch et al., 2002).

Figure 1 illustrates typical examples of these in situ ob-
servations as seen by the Fast Auroral SnapshoT (FAST)
spacecraft (Carlson et al., 1998; Paschmann et al., 2003),
for nightside (left) and dayside (right) cases. The panels
show, (a) the east-west magnetometer deflection, (b) and (c)
the upgoing and downgoing electron energy spectrograms,
(d) the electron pitch angle spectrograms, (e) and (f) the ion
energy and pitch angle spectrograms, (g) and (h) the ELF
wave power plotted on linear and logarithmic frequency axes.
Downward-current regions are characterized by a positive
slope on the east-west magnetometer deflection, and upward-
current regions (UCR) by a negative slope. It can be seen
from the nightside example (Orbit 1626) that there is one
large well-defined DCR in the center, which contains intense
fluxes of up-going electrons (19:07–19:09 UT). The dayside
example (Orbit 1752) shows DCRs which are more struc-
tured and contain several DCRs occurring alongside UCRs;
these regions are smaller and interspersed with one another.
DCRs are associated with large fluxes of up-going soft elec-
trons, perpendicularly heated ions, and BBELF wave activity
in the few kHz range. The polar cap boundary and Alfvénic
regions, not shown here, contain a mixture of upward and
downward current, varying in space and or in time. An ex-
ample may be seen in Fig. 4.2 of Paschmann et al. (2003).

BBELF in PCB and Alfv́enic regions is associated with
soft electron precipitation (low energy downgoing electrons).
The BBELF is seen to occur in the frequency range of 0.1 to
10 kHz, encompassing the band (4 to 8 kHz) where the ion-
acoustic peaks occur in the radar data. Previous studies of
BBELF have invoked the current-driven instability (Kindel
and Kennel, 1971) as its generation mechanism (Kintner
et al., 1996; Bonnell et al., 1996). The current-driven insta-
bility however requires large current densities, which have
not been accurately measured. However, magnetic measure-
ments from the Ørsted satellite have indicated the presence of
finely structured field-aligned currents (Neubert and Chris-
tiansen, 2003), which implies the presence of very large lo-
cal current densities even when the large-scale average cur-
rent density is low. Other theories for BBELF invoke the
tearing mode instability to generate the electric field activ-
ity (Seyler and Wu, 2001). More recent studies have shown
that Alfvén waves can become turbulent in ionospheric den-
sity cavities, producing a broad-band electric field signature
very similar to that of BBELF (Chaston et al., 2006). The
Alfv én resonator model of Streltsov and Lotko (2005), shows
promise for producing Doppler broadened spatial structures
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consistent with BBELF signatures measured in situ. Any re-
alistic model of BBELF needs to involve both wave activity
at ion frequencies and Doppler broadening, both from the
motion of the observational platform and from plasma flows.

2.2 Ground based observations

Incoherent scatter radar (ISR) can provide altitude profiles of
ionospheric electron density (Ne), electron temperature (Te),
ion temperature (Ti), and line-of sight ion flow velocity (Vi).
The procedure for obtaining these quantities involves fitting
theoretical spectra to the radar spectra. The main assump-
tion of this fitting is that the plasma is nearly Maxwellian
(Rosenbluth and Rostoker, 1962). Typical ISR spectra from
a thermal plasma consist of a double humped peak centered
near the transmitted frequency, with the two humps offset by
the ion-acoustic frequency (near 5 kHz for PFISR). The two
humps are caused by thermally excited ion-acoustic waves
traveling toward and away from the radar. Significant de-
partures from the thermal background spectra were first ob-
served by Foster et al. (1988), who found the spectra to
contain significantly enhanced (several orders of magnitude
above thermal levels) ion-acoustic lines that were extended
in altitude and lasted for short (tens of seconds) time inter-
vals. Enhanced returns that come from a very limited altitude
range are assumed to be scattering from a hard target, such
as a satellite, but when these large returns are extended in al-
titude along the geomagnetic field, they are assumed to be of
geophysical origin. The frequency offset (Doppler shift) of
the enhanced returns can also indicate whether they are from
NEIALs or satellites. NEIALs are of great interest as they
are an indication of processes that are not fully understood,
but empirically appear to be related to ion outflow (Ogawa
et al., 2000; Forme and Fontaine, 1999).

Previous studies of NEIALs have found that certain as-
pects of auroral context are shared by the different NEIAL
events. One of the first links to auroral context was the ob-
servation that NEIALs occurred during red aurora (Collis
et al., 1991; Rietveld et al., 1991), indicative of soft electron
precipitation. The large statistical study of NEIALs by Ri-
etveld et al. (1996) does not significantly discuss the auroral
structures associated with them, and therefore invites further
investigation of NEIALs and associated auroral structure.
Sedgemore-Schulthess et al. (1999), using the first high-
resolution narrow-angle (∼20×∼30 km FOV at 105 km al-
titude) auroral television images with common-volume radar
observations of NEIALs reported their occurrence near the
cusp on the equatorward edge of a red auroral arc. They also
found them to be associated with “coronal forms”, which
refers to tall auroral rays near the magnetic zenith, and small
patches of luminosity in the magnetic zenith. Rietveld et al.
(1996) first noted that ISR data are usually integrated in 10-
s intervals, and that auroral forms can vary on much faster
timescales (second to sub-second), therefore the radar could
be averaging in space, time or both. Sedgemore-Schulthess

et al. (1999) also concluded that the simultaneously observed
up- and down-shifted enhancements of the NEIALs could
be the result of averaging by the radar and that they may
not actually occur at the exact same time. Using interfer-
ometric methods and high time resolution, Grydeland et al.
(2003, 2004) showed that the size of the structures produc-
ing the NEIALs were on the order of a few hundred me-
ters in the direction perpendicular to the geomagnetic field
at 500 km altitude, indicating that the actual enhancement
within these structures when not averaged over the entire
radar beam must be 4 to 5 orders of magnitude larger than the
thermal level. Grydeland et al. (2003, 2004) also analyzed
the raw radar data with 0.2-s integration intervals, which re-
vealed that on that timescale both the up and down shifted
NEIALs sometimes occurred at the same time in the same
location. Thus concluding that the simultaneously up- and
down-shifted NEIALs are not a result of spatial or temporal
averaging by the radar, down to the 200 ms integration times
used.

Blixt et al. (2005) collected all the data sets that included
both NEIALs and common-volume high-resolution narrow
angle optical images of the aurora. There were only 4 such
cases found, and all 4 of these were from dayside auroral fea-
tures. Using these data, they were able to conclude that very
dynamic rayed aurora were present for all the observations of
NEIALs. This type of aurora can be associated with Alfvénic
acceleration of electrons, which produces large numbers of
low energy (sub-keV) precipitating electrons (Hallinan et al.,
2001; Ivchenko et al., 2005). This is also indicated in the
camera data by the large altitude extent of the auroral rays
(Blixt et al., 2005). The auroral signatures they observed
associated with the NEIALs also contained “flaming” and
“pumping” aurora.

Three main theories for NEIAL generation have been de-
veloped. Two are based on streaming instabilities, with
strong relative drifts between species, either ion-ion or ion-
electron. One is based on the decay of Langmuir waves into
ion-acoustic waves and secondary Langmuir waves (Groves,
1991; Forme, 1993). Only the ion-electron streaming (cur-
rent driven) instability requires that the up- and down-shifted
shoulders become enhanced individually. Recent observa-
tions support the Langmuir wave decay theory, as Gryde-
land et al. (2003, 2004) showed that both the up and down-
shifted NEIALs were enhanced simultaneously (within the
200 ms integration time used), and within a small region of
space (few hundred meters perpendicular to B). Strømme
et al. (2005) reported observing NEIALs in conjunction with
enhanced plasma lines. The simultaneous observations of
NEIALs with enhanced plasma lines provide strong evidence
for the Langmuir decay theory. All these published theories
assume that particle dynamics are the energy source for the
enhanced wave activity. It is certainly possible that the al-
ternative is true, that the wave enhancements are caused by
turbulent evolution and dynamics of externally driven Alfvén
wave activity (Chaston et al., 2003, 2006; Streltsov and
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Fig. 1. Two excerpts from FAST auroral zone crossings. The left column spans 4 min and is from a nightside crossing, while the right
column spans 2 min and is from a dayside crossing. From top to bottom, the panels show:(a) the east-west magnetic deflections,(b) and
(c) the upgoing and downgoing electron spectrograms,(d) the electron pitch angle spectrograms,(e) and(f) the ion energy and pitch angle
specrograms,(g) and(h) the ELF wave power plotted on linear and logarithmic frequecy axes. Figures provided by K.-J. Hwang.

Lotko, 2005; Wygant et al., 2000) combined with Doppler
broadening, and that this is the source of the energy driving
the soft electron precipitation. This picture is worth inves-
tigating for explaining the generation of both NEIALs and
BBELF.

The connection between increased ion outflows and
NEIALs has been established experimentally by Ogawa et al.
(2000) and by Forme and Fontaine (1999). They find that the
occurrence of NEIALs is associated with enhancements of
electron temperature and electron density, indicating that soft
precipitation processes are important. Forme (1999) devel-
oped a method to estimate the plasma parameters inside the
turbulent regions associated with the NEIALs where the stan-
dard analysis procedure fails. They find using their method
that the electron temperature in NEIAL regions with soft
electron precipitation can be heated up to 11 000 K, and that
ion outflow velocities can be as high as 1300 m/s at 800 km
altitude (assuming O+ ions). Previous studies (St.-Maurice
et al., 1996, 1999) and more recent modeling work (Lynch

et al., 2007) show that soft electron precipitation causes an
increase inTe and can lead to significant ion upflow.

3 Method

The PFISR engineering test phase in the winter of 2006 pro-
duced the opportunity to compare some of the first observa-
tions from PFISR with high resolution imaging of the com-
mon volume aurora. PFISR was operating with 32 panels
during this time, one fourth of its final capacity of 128 panels.
Based on AMISR technology, PFISR is composed of individ-
ual panels, each panel containing 32 crossed dipole Antenna
Element Units (AEU). High-resolution television observa-
tions of the aurora were made during the two moon-down
periods of February and March of 2006. Three separate cam-
eras were used: an all-sky, a narrow field (FOV∼12◦

×16◦),
and a medium field (Xybion 750 with FOV∼40◦

×40◦). All
three cameras are image intensified CCD cameras with the
capability of imaging the aurora at 30 frames per second.
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Fig. 2. The range-corrected SNR for 31 March 2006, showing the enhanced backscattered power from the F-region at the 7 times of the
NEIAL, and the enhanced E-region from the auroral electron precipitation. The line plot shows the intensity of light from the MSP as a
function of time averaged over the region of the radar beam. The intensity varies from 0.9 to 13 kR.

The narrow field and medium field cameras were positioned
looking up the geomagnetic field, and the images from all 3
cameras were recorded at 30 frames per second. The nar-
row field and medium field cameras were filtered to cut the
557.7 nm emissions. The all-sky camera was unfiltered. The
all-sky and narrow field are both owned by the Geophysi-
cal Institute at the University of Alaska, Fairbanks. In addi-
tion to the cameras, a meridian scanning photometer (MSP)
was operating at Poker Flat. The MSP scans along the mag-
netic meridian and takes intensity readings at 4 wavelengths
(557.7 nm, 630.0 nm, 427.8 nm, and 486.1 nm) in one degree
elevation steps. The time resolution of the MSP is one com-
plete scan approximately every 17 s.

The auroral activity, typical of solar minimum conditions,
was generally very quiet, with a few nights of moderate au-
roral activity. On 31 March 2006, there was a moderately
intense auroral arc, (∼10 kR at 557.7 nm), located in the lo-

cal magnetic zenith. During this night PFISR observed 7
distinct times of abnormally large backscattered power from
the F-region in the field-aligned radar beam (−155.5◦ Az.,
77.8◦ El.), (shown in the next section). There was not yet
any calibration for PFISR, so it is not possible to compute
the absolute electron density.

4 Observations

Figures 2 and 3 show overviews of the radar data and the
auroral intensity for this event. The radar SNR for 31 March
2006 is plotted in Fig. 2 as a function of altitude and time and
is integrated in 10 s windows. This power is corrected for the
inverse square decrease in power as a function of range, and
background-subtracted so that it will be proportional to the
electron density. There are 7 times when the F-region can
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Fig. 3. The MSP data, summed over three wavelengths (557.7 nm, 630.0 nm, 427.8 nm) and plotted as an image of intensity versus elevation
angle versus time. North is at an elevation of 0◦, and the magnetic zenith is at 103◦, indicated by the horizontal line. The seven vertical
lines indicate the times of the seven NEIALs from Fig. 2. NEIALs are seen when the poleward edge of the auroral activity intersects the
zenith-looking radar beam.

be seen to contain enhancements well above the background
levels. These enhancements are indicative of NEIALs be-
cause they are extended in altitude and the spectra at those
times show significant enhancements above thermal levels at
the ion-acoustic shoulders. These enhancements however,
appear to differ from many of the previous NEIAL observa-
tions. Here the level of enhancement is approximately be-
tween a factor of 3 and 5, as opposed to orders of magni-
tude. The spectra also show a lot of power spread between
the peaks, see Fig. 4, and in some cases there is even a dis-
cernible central peak (not shown here). These observations
are consistent with NEIALs, but they appear to differ from
previous observations, perhaps indicating a different genera-
tion mechanism.

These data were taken with PFISR running at 449.3 MHz,
using 500µs long, uncoded pulses, which leads to∼75 km

of range smearing. This altitude range is comparable to the
altitude extent over which these enhancements appear. The
spectra shown in Fig. 4, mentioned above, show that the re-
turned power is spread throughout and between both ion-
acoustic shoulders, indicating that these enhancements are
not from hard target scattering. Further evidence that these
enhancements are of geophysical origin is that they only ap-
pear in the field-aligned radar beam (204.5◦ Az., 77.8◦ El.),
and no similar enhancements were observed in any of the
other 3 beams that were looking oblique to the magnetic field
[(−35.0◦ Az., 68.9◦ El.); (82.9◦ Az., 70.5◦ El.); (0.0◦ Az.,
90.0◦ El.)], despite very similar looking E-region enhance-
ments from auroral particle precipitation.

Figure 3 shows a survey of the optical aurora using
the MSP data, summed over the three channels (557.7 nm,
630.0 nm, and 427.8 nm). There were no significant
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emissions in the 486.1 nm channel. This figure shows the
intensity of the aurora along the magnetic meridian as a func-
tion of time. North is at 0◦ elevation and the magnetic zenith
is at 103◦, which is indicated by the horizontal line. The time
resolution of the MSP data is about 17 s, which is compara-
ble to the 10-s resolution of the radar data (all the NEIALs
occur over 2 or more of the radar integrations). The 7 vertical
lines on Fig. 3 represent the times of the 7 NEIALs visible in
Fig. 2. The NEIALs are present when the poleward edge of
the aurora crosses the radar beam at the magnetic zenith.

The spectrum of the second NEIAL is shown in Fig. 4.
The power is averaged over the altitude range that the NEIAL
occurs in, and is plotted both as (a) power-frequency-time,
and (b) as a line plot which is averaged over the time interval
that the NEIAL occurs. The dotted line on the line plot shows
the background power level taken from a similar time and
altitude range within a minute of the time when the NEIAL
occurred. These data were also integrated into 10-s windows.

Figure 5 shows the narrow field camera images during the
7 NEIAL events, showing the small-scale (∼1 km or less)
structure visible in the magnetic zenith. NEIAL #1 is asso-
ciated with a small, rayed, fast-moving dynamic auroral arc
with a velocity of a few km/s perpendicular to B, and mo-
tions of structures along the arc with speeds of∼10 km/s.
The velocities were derived assuming an altitude of 100 km.
The strong returns associated with NEIAL #1 were found to
occur in the dark region adjacent to the small, rayed auroral
arc. NEIALs #2 through #7 are all associated with thin, fil-
amentary dark auroral structures on the order of 1 km thick.
The narrow field camera images in Fig. 5 are from represen-
tative times during the NEIAL events. There were filamen-
tary dark structures present during all 7 NEIALs.

NEIALs #2, #3, and #5 are associated with both light and
dark filamentary structures, with scale sizes smaller than the
radar beam. Therefore from these alone, it cannot be deter-
mined if the NEIALs are associated with the light or dark
filamentary structures. Examining the remaining NEIALs,
there are 3 which are associated with only dark filamentary
structures, NEIAL #4, #6, and #7. This is possible because
there was an unstructured background of luminous aurora,
and these filamentary black features moved through this un-
structured background, very similar to black aurora (as is
often seen in diffuse aurora) (Trondsen and Cogger, 1997).
The remaining NEIAL, NEIAL #1, appears to be associated
with only a luminous auroral structure, when examined us-
ing the integrated radar data. This NEIAL, however, had the
strongest signal, which allowed for some analysis of the raw
data to be done. By examining the raw data (not shown here),
the exact time of the NEIAL returns could be localized with
less than 1 s time resolution. This high resolution raw data re-
vealed that these NEIAL returns were coming from the dark
region next to the arc, similar to the NEIAL event reported
in Michell et al. (2008). The raw data were examined for
the other 6 NEIAL events, but the unintegrated signal was
not strong enough to be able to make a meaningful compari-

Fig. 4. The spectra of NEIAL #2.(a) Power versus frequency and
time, averaged over the altitude range in which the NEIAL occurs.
(b) Line plot showing the power versus frequency averaged over
the altitude and time of the NEIAL. The dotted line on (b) is the
background level taken from a similar time interval within a minute
of the NEIAL event.

son to the high resolution optical data. The common auroral
feature between all 7 of the NEIALs is the presence of fil-
amentary dark auroral structures, even though most are also
associated with filamentary luminous auroral features.

The dark structures all showed apparent motions, relative
to the bright auroral features present. All of the auroral struc-
tures associated with the NEIALs, with the exception of #1,
are embedded within the poleward edge of a large-scale au-
roral arc structure as can be seen in Fig. 7.

Figure 2 showed that the E-region enhancement some-
times tends to extend up to higher altitudes near the times
when the NEIALs are observed. This indicates that the en-
ergy spectrum of the precipitating electrons at those times
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Fig. 5. The narrow field camera images from the 7 NEIALs, showing the small-scale structure visible in and around the magnetic zenith.
The white box shows the size and location of the PFISR beam mapped to 100 km altitude.
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Fig. 6. The mean of three consecutive scans of the 630.0 nm channel
of the Poker Flat MSP along the magnetic north-south direction at
around 12:23 UT, which corresponds to the time of NEIAL #2. The
magnetic zenith is at 103◦ and north is at 0◦.

contains a larger soft (sub keV) electron component. These
soft electrons deposit their energy and cause ionization over
a larger altitude range, extending to higher altitudes. Fur-
ther evidence of this soft electron precipitation comes from
the MSP data. Soft electron precipitation produces more
630.0 nm emissions than the harder (>1 keV) “inverted-V”
electrons. The harder electrons deposit their energy at
lower altitudes where the 630.0 nm emissions are collision-
ally quenched and therefore 557.7 nm and 427.8 nm are the
dominant emissions there.

The enhanced E-region near the times of the NEIALs
could be associated with increased electron density or in-
creased ion temperatures, or both. The MSP observes en-
hanced 630.0 nm emissions in the vicinity of the magnetic
zenith at the times when the NEIALs occur. This can be
seen in Fig. 6, which shows an example of the MSP data
for the time of the second NEIAL (at about 12:23 UT). The
MSP data plotted in Fig. 6 is an average of three consecu-
tive scans along the magnetic north-south direction for the
630.0 nm channel. This is a time average of the MSP data
over the length of time for which NEIAL #2 existed. North
is at 0◦, and the magnetic zenith is at 103◦. The magnetic
zenith is just poleward of the most intense 630.0 nm peak.
The times of the other six NEIALs (not shown here) show
similar structure in the 630.0 nm channel, where the most in-
tense emissions are in or just equatorward of the magnetic
zenith. The enhanced 630.0 nm emissions near the zenith in-
dicate that the aurora in that region was associated with the
largest flux of soft electron precipitation.

Fig. 7. An all-sky camera image showing the auroral arc location
relative to the field-aligned radar beam location at 100 km altitude.
North is on the bottom and east is to the right. This image corre-
sponds to the time of NEIAL #2.

Figure 3 shows that the NEIAL events are occurring at
or very near the poleward edge of the aurora. The MSP
data from the magnetic zenith in the 557.7 nm and 427.8 nm
channels of the MSP were compared to the E-region relative
electron density from Fig. 2. The intensity of the aurora in
both channels was found to match the relative electron den-
sity very closely (i.e., the brighter the aurora, the higher the
electron density). The line plot on Fig. 2 is the 557.7 nm
MSP data from the magnetic zenith, integrated over the size
of the radar beam at 100 km altitude. This indicates that the
enhanced E-region electron density is caused by auroral elec-
tron precipitation, as the intensity of the aurora closely fol-
lows the electron density. The all-sky camera images also
confirm that the times when the NEIALs occur are when the
poleward edge of the auroral arc passes through the mag-
netic zenith. Figure 7 shows an all sky camera image from
the time of NEIAL #2, where the small black box in the cen-
ter marks the location of the PFISR beam at 100 km altitude.
In this figure north is at the bottom and east is to the right.
The all-sky camera movie showed that the auroral arc moved
slowly north and south several times throughout these two
hours, and each time the poleward edge crossed the radar
beam, NEIALs were observed with PFISR. It did not appear
to matter whether the aurora was moving north or south when
it crossed the radar beam.

There are two important points to note about the auroral
context in which these NEIAL events occurred. The occur-
rence is in association with the poleward edge of the auro-
ral arc, consistent with regions of soft electron precipitation.
Dynamic and filamentary dark auroral structures are present
in the magnetic zenith when the NEIALs appear.
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Fig. 8. The electron density (in m−3) versus altitude for the 150
second period before the NEIAL event reported in Michell et al.
(2008), showing that the winter, nightside ionosphere typically con-
tains an enhanced E-region, but no significant F-region.

5 Discussion

In this section, the nightside NEIAL observations are first
compared to previous dayside NEIAL observations. The au-
roral morphology and context of these nightside observations
is then examined. A summary of the know characteristics of
BBELF is presented in the next sub-section, and finally the
implications for the theories of NEIAL generation are exam-
ined.

5.1 Comparison to previous NEIAL observations

The nightside NEIALs presented here are observed at a lower
altitude (from 200 to 325 km) than the altitudes of 500 to
800 km for dayside NEIAL observations (Grydeland et al.,
2003, 2004; Strømme et al., 2005; Ogawa et al., 2000; Forme
and Fontaine, 1999). It is reasonable that the processes pro-
ducing the NEIALs contain plasma density dependences, re-
sulting in a higher altitude of occurrence on the dayside.
Rietveld et al. (1991) reporting on morning-side NEIALs,
find them occurring at lower altitudes, down to 140 km. Ri-
etveld et al. (1996) reviewed a large number of NEIAL ob-
servations, with both dayside and nightside coverage, and
found that NEIALs occurred between the altitudes of 150
and 600 km, with the majority above 250 km. The densities
and altitudes associated with the previous NEIAL studies are
summarized in Table 1. The data from Michell et al. (2008)
are also included. The Sondrestrom radar at 1290 MHz is
not listed, as NEIALs have never been observed with this
radar. The electron densities associated with these previ-
ous NEIAL occurrences are all near 10×1010 m−3. The total
range of electron densities measured is typically between 1
and 100×1010 m−3. This suggests that the altitude differ-

Fig. 9. The uncalibrated, relative electron density versus altitude
for the 2 h period during the NEIAL events of 31 March 2006. This
is an average over the period from 11:24 UT to 13:24 UT with the
NEIALs excluded.

ences associated with the different studies are caused by a
density dependence. More case studies are needed, to exam-
ine both the auroral context and the other parameters deriv-
able from the radar data, to give more insight into NEIAL
generation mechanisms.

This density dependence could be used to constrain the
theories of NEIAL generation. Given the available data,
however, it is difficult to tell whether NEIALs are associ-
ated with localized density depletions or enhancements, as
they often are associated with structures that are smaller than
the radar beam size. For example, Fig. 8 shows the electron
density versus altitude for the nightside, winter NEIAL event
of Michell et al. (2008). The profile plotted here is an aver-
age over 150 s taken immediately before that NEIAL event (8
February 2007), as this is the only PFISR event available so
far where absolute electron density can be obtained. Figure 8
shows the enhanced E-region due to diffuse auroral precipi-
tation, and that there is no F-region peak. The density con-
tinuously decreases with altitude above the E-region peak.
The NEIAL event reported here was seen with a similarly
shaped electron density profile, shown in Fig. 9. For this
event, only the relative electron density is known. A density
estimate was made by comparing to recent PFISR data of
very similar auroral activity with calibrated electron density,
and it was found that the proportionality constant is approxi-
mately 1.6×1011 m−3. This results in a density range of 5 to
9×1010 m−3 for the altitude range of 200 to 300 km, which
is consistent with the densities associated with the previous
NEIAL observations.

The dayside studies find NEIALs to occur at higher alti-
tudes and in those cases, the NEIALs only occur on the top-
side of the F-region, where the density is within this same
range.
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Table 1. Summary of the altitudes and densities associated with NEIAL studies. The overall range of densities typically measured is 1 to
100×104 cm−3.

Paper Freq. (MHz) MLT Alt. (km) Log (Ne) (m−3) Ne (104 cm−3)

Rietveld et al. (1991) 933 07:15–07:45 150–500 11.0–11.3 10–20
Forme and Fontaine (1999) 224 15:30–16:00 500–1000 10.9–11.5 8–31
Sedgemore-Schulthess et al. (1999) 500 09:45–10:00 300–450 10.8–11.1 6–12
Ogawa et al. (2000) 500 10:15, 13:15 600–700 11.0–11.3 10–20
Grydeland et al. (2004) 500 08:30 400–700 not listed NA
Michell et al. (2008) 449 22:10 200–350 10.7–11.0 5–10

Fig. 10. An example narrow field camera image from 31 March
2006, showing the lack of filamentary dark auroral structures
present in the magnetic zenith during a time when the poleward
edge of the aurora crossed the magnetic zenith (near 12:14 UT) and
no NEIALs were observed. North is up and east is to the left. The
PFISR field of view is marked by the white box near the center of
the image.

5.2 Auroral morphology context

This case study using the limited aperture PFISR data pro-
vides evidence that these NEIALs occur with the same au-
roral morphology that is known to contain BBELF wave ac-
tivity as measured in situ by satellites and sounding rockets
(Bonnell et al., 1996; Kintner et al., 1996; Lynch et al., 1996,
2002; Knudsen and Wahlund, 1998; Wahlund et al., 1998)
(as discussed in Sect. 2).

The NEIAL observations reported here occurred near
magnetic midnight, and only one of the seven NEIALs was
associated with rapid dynamic auroral rays. The other six
were associated with structures that were part of a large-
scale arc stucture, and none of them were associated with
“flaming” or “pumping” aurora, which is different than the
observations reported by Blixt et al. (2005). All 7 of the
NEIALs presented here are associated with thin filamentary
dark auroral structures, (also different from previous obser-

Fig. 11. An example all-sky camera image from 31 March 2006,
showing the auroral context, and the poleward edge of the aurora
near the magnetic zenith at the time of the image shown in Fig. 10.
The black spot near the center marks the location of the radar beam.
North is down and east is to the right.

vations) and these dark features could be associated with
DCRs (Michell et al., 2008). The widths of these small dark
features (few km) are consistent with the widths of the small-
est DCRs observed in situ (Hwang et al., 2006a,b). The
counter-streaming dark and light auroral structures associ-
ated with these NEIAL observations are consistent with the
diverging and converging electric field structures associated
with auroral curls and with the small-scale upward and down-
ward current sheets that are often observed in situ at the po-
lar cap boundary. However, in Alfvénic aurora there may not
be any clear distinction between the FAC direction and the
electron precipitation (Goertz, 1984). Therefore the hypoth-
esis that NEIALs occur in DCRs cannot be fully investigated
with the current data set, and will be the focus of a future
study, with the collection of more observations.

The structures visible in the magnetic zenith at the
times of the enhancements, namely, fast auroral ray mo-
tion (∼10 km/s perpendicular to B) and thin dark auroral
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Fig. 12. The medium field camera image, from 18 January 2007,
showing the black aurora patches in the magnetic zenith, which is
indicated by the black box near the center of the image. North is up
and east is to the left.

structures (≤1 km thickness perpendicular to B), indicate
that these regions may contain localized large electric fields
and/or density gradients. These observations also corre-
sponded to times when the polarcap boundary of the aurora
was near magnetic zenith.

In order to test the hypothesis that the NEIAL occurrence
required both conditions (poleward edge and thin dark auro-
ral structures), times with only one condition must be inves-
tigated. Figure 3 shows that the poleward edge of the aurora
comes close to the magnetic zenith at times other than the
times when the NEIALs occurred. However, at these times,
the narrow field camera did not show either fast auroral rays
or thin dark structures. Figure 10 shows a narrow field image
from the same night, near 12:14 UT (12.3 h on Fig. 3) , when
the poleward edge of the aurora passed through the magnetic
zenith, but there were no small-scale dark auroral structures
visible, and during this time no NEIALs were observed. The
PFISR field of view is marked by the white box in Fig. 10.
Figure 11 shows the all-sky image corresponding to the time
of the narrow field image in Fig. 10, with the PFISR field
of view marked by the black spot near the center of the im-
age. This shows the large-scale auroral context, illustrating
the poleward edge of the aurora near the magnetic zenith.

Next is the examination of times with dark auroral struc-
tures in the radar field of view that are not associated with
the polar cap boundary. Dark auroral structures were present
when all 7 of these NEIALs were observed but their pres-
ence is not sufficient for NEIAL observation. On 18 January
2007, there was a good example of black aurora within dif-
fuse aurora in the magnetic zenith, which lasted for several
minutes. The radar data showed no signs of NEIAL activity
throughout this whole period. Figure 12 is an example image
from the medium field camera, illustrating these black aurora

Fig. 13. The all-sky camera image, from 18 January 2007, show-
ing the auroral context of the black aurora patches in the magnetic
zenith (near the center of the image, marked by small black box).
North is down and east is to the right.

patches. These structures were moving (from west to east)
through the magnetic zenith for several minutes (the PFISR
FOV in the magnetic zenith is indicated by the black box near
the center of the image). Figure 13 shows the large-scale au-
roral context from the all-sky camera during this time. It can
be seen that these black aurora patches were located inside a
region of diffuse aurora, and were not at either the poleward
or equatorward edge of the aurora. The PFISR field of view
is marked by the black spot near the center of Fig. 13.

The data from this study show that NEIALs can occur in
association with filamentary dark auroral structures. Further,
our observations suggest that the thin dark structures could be
auroral DCRs and the presence of NEIALs associated with
these dark auroral features could be evidence of downward
current or upgoing electron beams. The in situ studies of
DCRs focused on quasi-static DCRs and they found scale-
sizes down to a few km (Hwang et al., 2006a).

The upward and downward currents associated with
Alfv én waves, however, occur on even smaller scales and
therefore cannot be approximated by sheet-like structures for
the purpose of determining currents from magnetometer de-
flections. Therefore no good measure of their current den-
sities can be made using the standard magnetometer analy-
ses. With a more complete theoretical understanding of all
the NEIAL generation mechanisms, and their relative im-
portance under different auroral conditions, the presence and
characteristics of NEIALs could provide a tool for estimating
these very localized, large-amplitude current densities.
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Table 2. Summary of the observations of BBELF and their occurrence with transversely accelerated ions, downward current regions, polar
cap boundary regions, and the cusp region.

Study Alt. (km) Log (Ne) (m−3) Ne (cm−3) Frequencies TAI DCR PCB cusp

AMICIST 850 9.0 1000 10 Hz–5 kHz yes yes
SCIFER 1400 8.7 500 20 Hz–5 kHz yes yes
SIERRA 735 10.3 22 000 10–60 Hz yes
SERSIO 782 10.7 60 000 10 Hz–5 kHz ∼ yes
FAST ∼4000 8.0 ∼100 0.1–10 kHz yes yes yes yes
Cluster II ∼28 000 6.0 ∼1 0.1–10 Hz

5.3 Summary of BBELF

The FAST satellite and numerous sounding rockets have al-
lowed for a statistical picture of the morphological organi-
zation of the current structures within the auroral oval to be
constructed. In particular, it was found that BBELF activity
occurs in conjunction with DCRs containing up-going elec-
tron beams, density depletions, perpendicularly heated ions,
and large fluxes of low energy (≤1 keV) electrons.

The main characteristics of the auroral morphology asso-
ciated with BBELF observations are summarized in Table 2.
BBELF is found to contain at least a small magnetic com-
ponent (Wahlund et al., 1998; Paschmann et al., 2003), indi-
cating the presence of propagating, electromagnetic waves.
This is consistent with the presence of Alfvén waves in the
regions of BBELF activity. It has also been shown theoret-
ically that breaking Alfv́en waves could produce signatures
consistent with BBELF observations (Seyler et al., 1998).

As described in Sect. 2, there have been many theoretical
investigations done to understand BBELF (Kindel and Ken-
nel, 1971; Seyler and Wu, 2001; Chaston et al., 2006; Kintner
et al., 1996; Bonnell et al., 1996). Some BBELF observa-
tions can be explained by Doppler-shifted spatial irregulari-
ties, which refers to density or electric field structures with
perpendicular phase velocities much less than the spacecraft
velocity (usually a few km/s) and wavelengths on the order
of tens of meters. These can account for BBELF up to a few
hundred Hz (Paschmann et al., 2003). It is still unclear which
features of BBELF are spatial and which are temporal. Most
likely, BBELF is made up of a combination of ion-frequency
wave phenomena together with Doppler broadening of spa-
tial structures from irregular localized flows. The quantifi-
able experimental data for BBELF is limited, focusing on the
(broad) frequency spectrum, with little available information
on the k-vectors. This makes it unclear as to which theories
best describe the observed phenomena.

5.4 Implications for theories of NEIALs

In ordinary incoherent scatter theory, the macroscopic
plasma parameters define the dispersion relationω

k
=Via , the

ion-acoustic (sound) speed. A given radar operates at a par-

ticular k-vector, therefore selecting a frequency offset. In
the PFISR data, the ion-acoustic shoulders occur at a fre-
quency offset of∼6 kHz. PFISR, operating at a frequency
of 449.3 MHz, has a wavelength ofλ=0.66 m. Pointed up
the magnetic field, PFISR selects waves along B with the
single k-vector of the radar half-wavelength,λ

2=0.33 m. Us-
ing this k-vector, the ion-acoustic speed is estimated to be
Via≈2 km/s. The electron temperature can be estimated

from the definition of the ion-acoustic speed,Via=
√

γZkTe

mi
,

whereγ is the adiabatic index,Z is the charge state, andk
is Boltzmann’s constant. With the assumption that the main
ion species is O+, the electron temperature (Te) was found to
be approximately 0.25 eV for this event.

NEIAL returns are not the same as incoherent scatter, how-
ever their occurrence at the ion-acoustic frequency in the
radar data indicates that the scattering is from ion-acoustic
wave activity. Assuming that the NEIAL returns are originat-
ing within a region of enhanced wave activity, it is believed
that they are coming from only a small fraction of the wave
activity present in the plasma, since the radar selects only one
wave number (0.33 m) and one direction (field-aligned).

The wave properties of NEIALs can be summarized with
the statement that the strongest returns occur at a frequency
offset corresponding to the local ion-acoustic speed given the
radar k-vector. Therefore different radars operating at differ-
ent frequencies will observe different frequency offsets for
the NEIALs, but they all are interpreted as the ion-acoustic
speed.

Next we compare the few reported measurements of phase
velocities (ω

k
) for BBELF from sounding rockets within the

same altitude range observed by the radars (500–1000 km).
Bonnell et al. (1996) (AMICIST) measured the phase veloc-
ity of BBELF both parallel and perpendicular to the magnetic
field, and found thatV⊥≈10 km/s, andV‖≈30–50 km/s, im-
plying ak⊥∼2 m−1 andk‖∼6–10 m−1 at 5 kHz. Klatt et al.
(2005) (SIERRA) reported another measurement of the per-
pendicular phase velocity and foundV⊥≈1.8 km/s. Another
measurement of BBELF where a perpendicular phase veloc-
ity can be estimated was reported in Frederick-Frost et al.
(2007) (SERSIO), and in this caseV⊥≈1 km/s, again im-
plying k⊥∼1 m−1 at 5 kHz. The values for these phase

www.ann-geophys.net/26/3623/2008/ Ann. Geophys., 26, 3623–3639, 2008



3636 R. G. Michell et al.: Nightside PFISR NEIALs

Table 3. Summary of the phase velocity measurements of BBELF.

Rocket ω
k⊥

ω
k‖

AMICIST ∼10 km/s ∼30–50 km/s
SIERRA ∼1.8 km/s NA
SERSIO ∼1.0 km/s NA

velocities are summarized in Table 3. There is an order of
magnitude difference among these perpendicular velocities,
which indicates that BBELF measurements are not fully un-
derstood and that there may be many different wave modes
involved. Recent observations by Chaston et al. (2006) re-
port a mechanism for a feedback model of Alfvén wave fo-
cusing on density gradients. This mechanism leads to ion
heating, and the generation of waves with k-spectra consis-
tent with the available BBELF measurements. For exam-
ple, a k-vector of 3.0 m−1 (consistent with the PFISR half-
wavelength) produces a signal at 3000 Hz. This is within
a factor of 2 from the actual measurements, indicating that
such processes could be responsible for generating BBELF
wave activity that would lead to NEIALs.

The phase velocities associated with the NEIALs (∼few
km/s) are assumed to be associated with that of the ion-
acoustic dispersion surface. This is comparable to the
measured values for the phase velocities of BBELF (1 to
1.8 km/s) (Klatt et al., 2005; Frederick-Frost et al., 2007).
However these BBELF measurements were both perpendic-
ular to the magnetic field, while NEIALs are predominately
observed parallel to the magnetic field. The ion-acoustic
surface however, contains allowed modes at oblique angles
to the magnetic field, but radars typically observe NEIALs
within ∼15◦ of the parallel direction (Rietveld et al., 1991),
and they have been observed up to about 30◦ away (Foster
et al., 1988; Rietveld et al., 1996). One example might be
that shown by Stringer (1963), with the two-fluid dispersion
relation for ion acoustic waves in a low-beta plasma (simi-
lar to the ionosphere). Stringer (1963) showed that the waves
tend to have nearly field aligned group velocities, corroborat-
ing the field-aligned nature of NEIAL observations. The one
parallel measurement of phase velocity for BBELF (Bon-
nell et al., 1996) is considerably higher (30–50 km/s) than
the few km/s associated with the NEIALs. Bonnell et al.
(1996) also measured a higher value for the perpendicular
phase velocity (∼10 km/s) than the values reported in Klatt
et al. (2005) and Frederick-Frost et al. (2007). The rocket
measurements of BBELF are at different wave numbers than
those associated with the radar observations of NEIALs.
However, it is possible that the parallel phase velocities as-
sociated with BBELF wave activity do contain values in the
same range as those associated with the NEIALs. Another in-
terpretation of NEIALs is that they are coherent backscatter
from density irregularities traveling along the field-aligned

direction, which would explain why they are preferentially
observed along that direction. These would have to travel at
the ion-acoustic speed for the Doppler shift of the returns to
be consistent with NEIAL observations. This interpretation
cannot be negated for these NEIAL observations. It is pos-
sible to have irregularities traveling both directions along the
magnetic field during the NEIAL events, given the 10 s in-
tegrations. Therefore scattering from traveling density irreg-
ularities still remains one of the possible generation mecha-
nisms to explain these data. This picture would be consistent
with BBELF as Doppler shifted spatial structures.

These observations support the hypothesis that NEIALs
are occurring in auroral morphology associated with DCRs,
either Alfvénic or quasi-static. One possible explanation for
this association is that the decreased density, and therefore
conductivity, inside DCRs causes the creation of the iono-
spheric Alfv́en resonator (Streltsov and Lotko, 2005, 2004;
Streltsov and Mishin, 2003; Streltsov and Lotko, 2003). This
allows for the creation of intense Alfvén waves, and the rela-
tively high frequency (0.1 to 1 Hz) ones can then cause local-
ized density cavities through the action of the ponderomotive
force (Chaston et al., 2003, 2006), which has been shown to
initiate ion upflows (Li and Temerin, 1993). This is consis-
tent with observations, as NEIAL activity has been found to
be associated with enhanced ion upflow (Ogawa et al., 2000).
The individual regions of NEIAL activity have been shown to
be small (few hundred meters) in the direction perpendicular
to the magnetic field (Grydeland et al., 2003, 2004), therefore
the theories only need to show that ion-acoustic waves can
be driven unstable in very localized regions. This makes it
difficult to associate NEIAL occurrence with intense ion up-
flows, as the upflows would be taking place in only a small
percentage of the radar beam volume and for only a short
time, therefore becoming averaged out. However, regions
with significant NEIAL activity would show some increase
in the bulk upflow velocity of the plasma, as was observed
by Ogawa et al. (2000).

The three prevalent theories of NEIAL generation in the
literature presume differing auroral morphology, and all three
assume that energy flows from the particles to the waves. An
alternate interpretation is that the energy is going from the
waves to the particles, for example, the driving energy com-
ing from Alfvén waves through the Alfv́en resonator modes
(Streltsov and Lotko, 2005, 2004; Streltsov and Mishin,
2003; Streltsov and Lotko, 2003).

For PFISR to observe NEIALs, the Bragg condition for the
field-aligned PFISR beam would consist of having BBELF
waves withk‖=0.33 m. Using only these ground-based mor-
phological arguments, it cannot be ruled out that NEIALs
could be a different phenomenon that happen to occur on the
same flux tubes as BBELF, with the same types of auroral
morphology and many overlapping parameters. The present
measurements of both BBELF and NEIALs are fairly lim-
ited and a better understanding of the processes causing both
NEIALs and BBELF is needed to address this question.
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A truly common-volume in situ and radar study is needed
to prove that NEIALs and BBELF occur together. However
the complement of ground-based and in situ data available to
date do show that NEIALs and BBELF occur with the same
types of auroral morphology. Radar observations of NEIALs
can provide wavenumber information about the waves in the
scattering region, while in situ measurements typically can
only measure frequencies. A combination of the two meth-
ods, therefore, will provide much more information about the
wave activity than either method alone.

6 Conclusions

The data presented here are the first PFISR observations of
naturally enhanced ion lines, and these data are comple-
mented by common-volume high-resolution television im-
ages of the aurora. These NEIALs occur on or very near
the poleward edge of the aurora, and inside or just pole-
ward of the most intense 630.0 nm auroral emissions. It
is seen that during the times of the NEIALs there is soft
electron precipitation, as evidenced by the extended altitude
range of the auroral E-region enhancement, as well as the en-
hanced 630.0 nm emissions during those times. During the
NEIAL events the narrow field camera data show dynamic
small-scale dark auroral structures, which provides evidence
for the NEIALs occurring in small-scale DCRs associated
with these dark auroral structures. The occurrence of these
NEIALs is associated with the existence of soft electron pre-
cipitation and dark auroral structures, consistent with the in
situ signatures of polar cap boundary aurora. The review of
previous observations indicate that there may be a density de-
pendence for NEIAL occurrence. NEIALs have been found
to occur within a range of densities (5 to 30×1010 m−3).

These observations, together with recent in situ observa-
tions of DCRs, Alfv́enic, and polar cap boundary aurora from
Cluster, FAST, and sounding rockets indicate a connection,
through morphology, between NEIALs and BBELF. PFISR
observed these NEIALs associated with the poleward bound-
ary of the auroral arc, dynamic auroral rays, small-scale dark
auroral structures, and enhanced 630.0 nm auroral emissions.

The data presented here motivate the need for more obser-
vations, because establishing definitive links between what
is seen in ground-based instrumentation such as cameras,
MSPs, and radars, and specific in situ processes, specifically
downward current regions and ion outflows, allows for the
use of ground-based data as a large-scale proxy for important
in situ processes that cannot be measured directly over large
areas and times. This could be a valuable use of large-scale
ground-based arrays of instruments, such as the THEMIS ar-
ray of all-sky cameras recently constructed in Canada and
Alaska.
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cesses in the topside auroral ionosphere, J. Geophys. Res., 110,
A10512, doi:10.1029/2004JA010883, 2005.

Knudsen, D. J. and Wahlund, J.-E.: Core ion flux bursts within soli-
tary kinetic Alfvén waves, J. Geophys. Res., 103, 4157–4170,
1998.

Li, X. and Temerin, M.: Ponderomotive effects on ion acceleration
in the auroral zone, Geophys. Res. Lett., 20, 13–16, 1993.

Louarn, P., Wahlund, J. E., Chust, T., de Feraudy, H., Roux, A., Hol-
back, B., Dovner, P. O., Eriksson, A. I., and Holmgren, G.: Ob-
servation of kinetic Alfven waves by the Freja spacecraft, Geo-
phys. Res. Lett., 21, 1847–1850, 1994.

Lunde, J., Gustavsson, B., Løvhaug, U. P., Lorentzen, D. A., and
Ogawa, Y.: Particle precipitations during NEIAL events: simul-
taneous ground based observations at Svalbard, Ann. Geophys.,
25, 1323–1336, 2007,
http://www.ann-geophys.net/25/1323/2007/.

Lynch, K. A., Arnoldy, R. L., Kintner, P. M., and Bonnell, J.: The
AMICIST auroral sounding rocket: A comparison of transverse
ion acceleration mechanisms, Geophys. Res. Lett., 23, 3293–
3296, 1996.

Lynch, K. A., Bonnell, J. W., Carlson, C. W., and Peria, W. J.: Re-
turn current region aurora:Eparallel,jz, particle energization, and
broadband ELF wave activity, J. Geophys. Res., 107(A7), 1115,
doi:10.1029/2001JA900134, 2002.

Lynch, K. A., Semeter, J. L., Zettergren, M., Kintner, P., Arnoldy,
R., Klatt, E., LaBelle, J., MacDonald, E. A., Michell, R. G., and
Samara, M.: Auroral ion outflow: low altitude energization, Ann.
Geophys., 25, 1967–1977, 2007,
http://www.ann-geophys.net/25/1967/2007/.

McFadden, J. P., Carlson, C. W., Ergun, R. E., Mozer, F. S.,
Temerin, M., Peria, W., Klumpar, D. M., Shelley, E. G., Peter-
son, W. K., Moebius, E., Kistler, L., Elphic, R., Strangeway, R.,
Cattell, C., and Pfaff, R.: Spatial structure and gradients of ion
beams observed by FAST, Geophys. Res. Lett., 25, 2021–2024,
1998.

Michell, R. G., Lynch, K. A., Heinselsan, C. J., and Stenbaek-
Nielsen, H. C.: High time-resolution AMISR and optical obser-
vations of naturally enhanced ion-acoustic lines, Ann. Geophys.,
in review, 2008.

Michell, R. G., Lynch, K. A., and Stenbaek-Nielsen, H. C.: Ground-
based observational signature of a downward current channel
in an active auroral arc, Geophys. Res. Lett., 35, L08101,
doi:10.1029/2008GL033569, 2008.

Neubert, T. and Christiansen, F.: Small-scale, field-aligned currents
at the top-side ionosphere, Geophys. Res. Lett., 30(19), 2010,
doi:10.1029/2003GL017808, 2003.
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