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Abstract. We show that nonlinear wave trapping plays a sig-
nificant role in both the generation of whistler-mode chorus
emissions and the acceleration of radiation belt electrons to
relativistic energies. We have performed particle simulations
that successfully reproduce the generation of chorus emis-
sions with rising tones. During this generation process we
find that a fraction of resonant electrons are energized very
efficiently by special forms of nonlinear wave trapping called
relativistic turning acceleration (RTA) and ultra-relativistic
acceleration (URA). Particle energization by nonlinear wave
trapping is a universal acceleration mechanism that can be ef-
fective in space and cosmic plasmas that contain a magnetic
mirror geometry.

Keywords. Magnetospheric physics (Energetic particles,
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1 Introduction

Whistler-mode chorus waves are electromagnetic emissions
that have been observed by spacecraft in the magnetospheres
of Earth (Tsurutani and Smith, 1974; Meredith et al., 2001;
Santolik et al., 2004), Jupiter (Scarf et al., 1979; Coroniti
et al., 1980), Saturn (Gurnett et al., 1981; Hospodarsky et
al., 2008), and Uranus (Gurnett et al., 1986), with frequen-
cies in the range 0.05–0.8�e, where�e is the local electron
gyrofrequency. At Earth chorus emissions have also been
recorded on the ground (Smith et al., 2004). Chorus waves
comprise discrete emissions of short duration (<10−1 s),
with frequency typically increasing in time (“rising tones”),
and, when connected to an audio amplifier, sound like bird-
song at dawn. Theoretical and modeling studies (Summers
et al., 1998, 2002; Roth et al., 1999; Summers and Ma,
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2000; Albert, 2002; Miyoshi et al., 2003; Varotsou et al.,
2005; Omura and Summers, 2006) and observational evi-
dence (Meredith et al., 2001, 2003) have established elec-
tron acceleration by gyroresonant wave-particle interaction
with chorus waves as a key mechanism for generating rela-
tivistic electrons in the Earth’s outer radiation belt during ge-
omagnetically disturbed periods. After nearly four decades
of chorus wave observations and numerical studies, only re-
cently have computer simulations been performed that suc-
cessfully model the generation of chorus emissions with a
rising tone (Katoh and Omura, 2007a; Omura et al., 2008).
Here we show that in the simulation of chorus generation,
some resonant electrons are rapidly energized by the pro-
cesses of relativistic turning acceleration (RTA) (Omura et
al., 2007; Katoh and Omura, 2007b) and ultra-relativistic ac-
celeration (URA) (Summers and Omura, 2007). RTA and
URA are particular forms of nonlinear wave trapping of res-
onant electrons by coherent whistler-mode waves and consti-
tute viable mechanisms for the generation of relativistic elec-
trons in the radiation belts of magnetized planets (Furuya et
al., 2008). The computer simulations reveal that nonlinear
wave growth due to the rising tone is the key ingredient in
the generation of chorus waves.

2 Generation mechanism of chorus emissions

Necessary conditions for chorus generation in the equato-
rial region of the Earth’s outer radiation belt include the in-
jection of energetic seed electrons from the outer magneto-
sphere during magnetospheric disturbances known as sub-
storms; see Fig. 1a. Recent theory and simulations (Omura
et al., 2008) show that chorus emissions can be gener-
ated in a dipole magnetic field by seed electrons with a
large temperature anisotropy in the energy range∼10s of
keV. Whistler-mode waves propagating parallel to the mag-
netic field grow from electromagnetic thermal noise near the
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Fig. 1. (a)Earth’s radiation belts;(b) Chorus wave generation near the equator;(c) Vector geometry of a whistler-mode wave in a dipole mag-
netic field, and velocity components of a resonant electron;(d) The relativistic turning acceleration (RTA) and ultra-relativistic acceleration
(URA) mechanisms operating near the equator.

equator, receiving energy from energetic electrons that sat-
isfy the cyclotron resonance condition,

ω − kv|| =
�e (h)

γ
, (1)

whereω and k are the wave frequency and wavenumber,
respectively. The left-hand side of Eq. (1) is the Doppler-
shifted frequency of the wave, and the right-hand side is the
relativistic cyclotron frequency given by the cyclotron fre-
quency�e(h) of non-relativistic electrons divided by the

Lorenz factorγ=

[
1−

(
v2
||
+v2

⊥

)/
c2
]−1/2

; v|| and v⊥ are

the components of electron velocity parallel and perpendic-

ular to the background magnetic field, respectively, andc is
the speed of light. The variableh is the distance along the
magnetic field measured from the equator. A band of in-
coherent whistler-mode waves in the frequency range 0.1–
0.5�e(0) forms near the equator, as predicted by linear the-
ory (Kennel and Petschek, 1966). Nonlinear wave growth
(Omura et al., 2008) takes place for a coherent wave com-
ponent with a phase variation corresponding to an increasing
frequency or rising tone. That is, from the enhanced incoher-
ent wave spectrum, a coherent wave packet with increasing
frequency (∂ω

/
∂t>0) corresponding to maximum nonlinear

wave growth emerges as a seed of a chorus element, as illus-
trated in Fig. 1b. We have reproduced the gradual formation
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Fig. 2. Spectrograms generated in the Northern Hemisphere (top)
and the Southern Hemisphere (bottom). The vertical axis represents
wave frequencyω; �e0 is the electron gyrofrequency at the equa-
tor. Several chorus emissions are generated in both hemispheres in
the simulation. These waves propagate in the poleward directions
and interact nonlinearly with counter-streaming energetic electrons.
The majority of the resonant electrons are untrapped and lose en-
ergy slightly, thereby contributing to chorus wave generation. Se-
lected electrons are trapped by the generated chorus and undergo
dramatic acceleration by the RTA/URA processes.

of coherent whistler-mode waves by means of a large-scale
computer simulation. The dynamical frequency spectra of
the simulated chorus emissions are shown in Fig. 2.

Once the seed of a chorus element is formed near the equa-
tor, it propagates away from the equator and undergoes fur-
ther nonlinear growth due to both the rising tone and the in-
creasing gradient of the magnetic field; this is illustrated in
the wave amplitude profile generated in the simulation and
plotted in Fig. 3a. The nonlinear growth is sustained so long
as sufficient energetic electrons exist with velocities close to
the resonance velocityv||=VR specified by the cyclotron res-
onance condition (1). The dynamics of the resonant electrons
are described by a modified pendulum equation derived from
the second-order resonance condition for stable trapping of
resonant electrons and given by

104 (          )B0log10 B  /w
(a)

(b)

Fig. 3. The top panel shows the spatial profile of the ampli-
tude of the transverse wave magnetic field and its time evolution.
Modes with longer wavelengths than chorus emissions are elimi-
nated. Wave packets of whistler-mode waves are successively gen-
erated near the magnetic equator, their amplitudes increasing as they
propagate into both hemispheres. The bottom panel shows the spa-
tial distribution of the energy increase of accelerated electrons, as a
function of kinetic energy and position att=10 000�−1

e0 . The ef-
ficiency of the acceleration depends on both the wave amplitude of
the chorus emissions and the variation of the resonant velocityVR .
The variation ofVR is due to both the spatial inhomogeneity of the
background magnetic field and the wave frequency of the chorus
emissions.

d2ζ

dt2
=

ω2
t δ

2

γ
(sinζ + S) , (2)

where ωt=
√

kv⊥�W is the trapping frequency and
δ2

=1−ω2
/
c2k2. The parameter�W is defined by

�W=eBW

/
m0 whereBW , e and m0 are the amplitude of

the wave magnetic field, the unit charge and the rest mass
of an electron. The variableζ is the phase angle between
the perpendicular velocityv⊥ of a resonant electron and the
wave magnetic fieldBW in the plane transverse to the dipole
magnetic field; see Fig. 1c. The variation of the phase, and
likewise of the center of the trapping potential, is controlled
by the inhomogeneity ratio (Omura et al., 2008),
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. (3)

The first and second terms in the curly brackets represent
the effects of the rising tone and the spatial inhomegeneity,
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Fig. 4. Examples of trajectories of accelerated electrons during
the time interval,t=10 000�−1

e0 –15 000�−1
e0 . Blue, green and red

curves show trajectories of electrons accelerated through the normal
trapping, RTA and URA processes, respectively. Open and filled
circles respectively indicate trapping and detrapping points on each
trajectory. In the energy range corresponding toγ<�e

/
ω, trapped

electrons move toward the magnetic equator during their accelera-
tion. For a trapped electron satisfying the RTA turning condition
γ=�e

/
ω, the resonance velocity becomes zero due to the relativis-

tic effect and eventually changes sign, thereby resulting in the turn-
ing motion. Since the gyro-frequency of highly relativistic electrons
is smaller than the frequency of chorus waves, trapped electrons
then move in the direction of the chorus emissions that are mov-
ing away from the equator. Highly relativistic electrons trapped by
multiple chorus elements can undergo multiple URA interactions.

respectively. WhenS∼−0.4, an electron hole is produced in
the velocity phase space giving rise to a maximum resonant
current that induces the nonlinear wave growth. Sinceω2

t is
proportional to the wave amplitudeBW , the contribution of
∂ω
/
∂t to the quantity|S| decreases as the wave amplitude

increases. On the other hand, the increasing inhomogeneity
of the magnetic field (∂�e

/
∂h) starts to contribute to|S| as

the wave packet propagates away from the equator. The in-
crease in wave amplitude with distanceh along the magnetic
field line is illustrated schematically in Fig. 1b. As shown in
Fig. 3a, the nonlinear growth of the chorus elements gradu-
ally subsides as the flux of resonant electrons decreases along
the field line. This is because the magnitude of the resonance
velocity given by Eq. (1) increases with increasingh.

3 Acceleration of relativistic electrons

In the process of chorus wave generation, untrapped reso-
nant electrons lose energy to the wave, while trapped reso-
nant electrons gain energy. The number of trapped resonant
electrons is generally much smaller than that of the untrapped
electrons. This causes nonlinear growth of the whistler-mode

wave packet as it propagates away from the equator. When
S=−0.4 the nonlinear growth maximizes due to the effect of
the untrapped resonant electrons (Omura et al., 2008), while
the trapped resonant electrons undergo an increase in per-
pendicular velocity and are effectively accelerated. Special
trajectories exist for which electrons of several-hundred-keV
energy, moving toward the equator, change their direction of
motion along the magnetic field and, during their turning mo-
tion, are accelerated to MeV energies in a single interaction.
The interaction requires a sufficiently long whistler-mode
wave packet and wave amplitudes of the order∼100 pT
(Omura et al., 2007; Katoh and Omura, 2007b). The ac-
celeration can take place during the turning motion within a
second. This very efficient acceleration mechanism is called
relativistic turning acceleration (RTA); see the illustration in
Fig. 1d (left). The resonance velocityVR calculated from
the cyclotron resonance condition (1) isVR=(ω−�e

/
γ )/k.

For an electron of a few hundred keV such thatγ<�e

/
ω, the

resonance velocityVR is negative. As the electrons are accel-
erated by the wave trapping,γ increases. Whenγ = �e

/
ω,

VR vanishes. For a larger energyγ>�e

/
ω, VR becomes pos-

itive. The high efficiency of the acceleration process is due
to the extended interaction time over the course of the turn-
ing motion during whichVR∼0. RTA is very efficient for a
long wave packet with a constant amplitude and frequency.
For chorus, however, the frequency is time dependent, and
the duration of each chorus element is short, of the order of
100 ms. In the simulation of chorus generation, the RTA pro-
cess takes place in a piecewise manner by different chorus
elements, as shown in Fig. 4. The piecewise nature of the in-
teractions with successive chorus elements works favorably
for the trapping of the resonant electrons. The wave front of
each chorus element can channel a substantial number of res-
onant electrons into the wave potential well due to the sudden
change in the wave amplitude.

After a trapped electron is accelerated by the RTA process
and then becomes detrapped, it undergoes adiabatic motion
at a constant energy. The resonant electron velocity is posi-
tive since the Lorentz factor satisfies the conditionγ>�e

/
ω.

If the electron now encounters a whistler-mode wave packet
near the equator, it can again become trapped and undergo
further acceleration, as illustrated in Fig. 1d (right). Accel-
eration by nonlinear wave trapping is therefore possible even
in a very high energy range. The acceleration process cor-
responding toγ>�e

/
ω (or to electrons with kinetic energy

E
/
(m0c

2)>�e

/
ω−1) has been analyzed theoretically, and

has been termed ultra-relativistic acceleration (URA) (Sum-
mers and Omura, 2007). URA has the important character-
istic that its interaction time can be much longer than for the
RTA process, even with a short-lived wave packet like a cho-
rus element. If the resonance velocity approaches the group
velocity of the whistler-mode wave packet, URA becomes
extremely efficient. Figure 4 shows that URA takes place
effectively for electrons with energies greater than 2 MeV.
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In Fig. 3b, we plot the distribution of energized elec-
trons produced in the chorus generation simulation as a func-
tion of energy and position att=10 000�−1

e . The colors
indicate increments in kinetic energy over the time inter-
val, 10 000�−1

e –15 000�−1
e . Electron acceleration in the

energy range 0.5–2.0 MeV is due to RTA, while that be-
yond 2.0 MeV is due to URA. Many particles are energized
by 10–40 keV within the time period 5000�−1

e , i.e. 60 ms.
Both RTA and URA are especially effective in slightly off-
equatorial regions. Here, the chorus wave elements grow to
a relatively large amplitude as a result of the nonlinear trap-
ping mechanism.

Energization of radiation belt electrons by gyroresonant
interaction with chorus waves has hitherto mainly been
treated by quasi-linear diffusion theory. Quasi-linear the-
ory assumes incoherent wideband whistler-mode waves and
hence cannot treat nonlinear trapping of resonant electrons
by coherent waves. Timescales for electron acceleration due
to nonlinear trapping by chorus waves can be much shorter
than the corresponding timescales predicted by quasi-linear
diffusion theory. Recently it has been demonstrated that both
RTA and URA contribute to the formation of a high-energy
tail in the electron distribution function in a time-scale of
about one hour in the outer radiation belt (Furuya et al.,
2008). Nonlinear trapping of radiation belt electrons by co-
herent whistler-mode waves is emerging as a new paradigm
in radiation belt physics.
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