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Abstract. The most important observational characteristics
of coronal mass ejections (CMEs) are summarized, empha-
sizing those aspects which are relevant for testing physical
concepts employed to explain the CME take-off and propa-
gation. In particular, the kinematics, scalings, and the CME-
flare relationship are stressed. Special attention is paid to 3-
dimensional (3-D) topology of the magnetic field structures,
particularly to aspects related to the concept of semi-toroidal
flux-rope anchored at both ends in the dense photosphere and
embedded in the coronal magnetic arcade. Observations are
compared with physical principles and concepts employed in
explaining the CME phenomenon, and implications are dis-
cussed. A simple flux-rope model is used to explain various
stages of the eruption. The model is able to reproduce all ba-
sic observational requirements: stable equilibrium and possi-
ble oscillations around equilibrium, metastable state and pos-
sible destabilization by an external disturbance, pre-eruptive
gradual-rise until loss of equilibrium, possibility of fallback
events and failed eruptions, relationship between impulsive-
ness of the CME acceleration and the source-region size,
etc. However, it is shown that the purely ideal MHD pro-
cess cannot account for highest observed accelerations which
can attain values up to 10 km s−2. Such accelerations can be
achieved if the process of reconnection beneath the erupting
flux-rope is included into the model. Essentially, the role of
reconnection is in changing the magnetic flux associated with
the flux-rope current and supplying “fresh” poloidal mag-
netic flux to the rope. These effects help sustain the electric
current flowing along the flux-rope, and consequently, rein-
force and prolong the CME acceleration. The model straight-
forwardly explains the observed synchronization of the flare
impulsive phase and the CME main-acceleration stage, as
well as the correlations between various CME and flare pa-
rameters.
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1 Introduction

Coupling of the solar differential rotation, convective mo-
tions, and magnetic field results in magnetohydrodynamic
(MHD) dynamo processes at different scales. Shearing and
twisting motions induce electric currents, storing free en-
ergy into current-carrying magnetic field structures. A part
of this energy is transferred through the solar surface into
the corona, where it is partly spent for the coronal heating
and partly released in eruptive processes, taking the form of
coronal mass ejections (CMEs) and/or solar flares (cf.,Priest,
1982).

Although CMEs show a broad variety of morphological,
evolutionary, and kinematical characteristics, there are cer-
tain “typical” properties common to most of events. Gener-
ally, eruptions start with a phase of a slow rise, most often
seen in measurements of the associated prominence erup-
tion. In this gradual pre-eruption stage, typical velocity of
the eruptive prominence is in the order of 10 km s−1 (e.g.,
Rompolt, 1990). At the same time, the overlying coro-
nal arches have several times larger velocities (e.g.,Maričić
et al., 2004).

At a certain height, the slowly-rising structure suddenly
starts to accelerate. Most often the leading edge of the erup-
tion shows an acceleration in the range of several hundreds of
m s−2 (Vršnak, 2001; Zhang, 2005; Vršnak et al., 2007), but
in most impulsive events the acceleration can attain values in
the order of 10 km s−2 (Vršnak et al., 2007, and references
therein). Maximum velocities achieved range from several
tens km s−1, up to more than 2000 km s−1 (e.g., Yashiro
et al., 2004, and references therein).

After the main acceleration stage, which can last from sev-
eral minutes to several hours (Zhang et al., 2004; Zhang,
2005; Zhang and Dere, 2006; Vršnak et al., 2007), fast CMEs
start to decelerate under the influence of the “aerodynamic”
drag (Vršnak et al., 2004b). On the other hand, CMEs slower
than the solar wind continue to accelerate until attaining the
solar wind speed (e.g.,Gopalswamy et al., 2000).

Analyzing carefully the properties of the relationship
between the acceleration and velocity,a(v), of several
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thousands CMEs observed in the radial distance rangeR=3–
30 solar radii, (Vršnak et al., 2004b) revealed that the Lorentz
force still acts at these heights. At the heliocentric distance
of 10 solar radii it is in the order of 10 N kg−1, decreasing
with the heliocentric distance roughly asR−1. In extreme
cases it can be an order of magnitude larger.

The aim of this paper is to confront basic concepts used to
explain the CME/flare eruptions with empirical constraints
put forward by observations. In Sect. 2, observational char-
acteristics that are most relevant for the comprehension of
processes and mechanisms causing the CME acceleration are
summarized. In Sect. 3 basic physical principles and con-
cepts employed in explaining the CME take-off are presented
and observational implications are discussed. Following the
described principles, a simple 3-dimensional (3-D) model of
the semi-toroidal flux-rope is presented in Sect. 4. The re-
sults are discussed and conclusions drawn in Sect. 5.

2 Summary of CME characteristics

2.1 The CME structure and scalings

CMEs frequently show a three-part structure, traditionally
called the frontal rim, the dark cavity, and the bright core
(cf., Crifo et al., 1983; Sime et al., 1984; Hundhausen, 1987).
In this respect, it is worth noting that solar eclipse observa-
tions have revealed an analogous prominence/corona struc-
ture: the prominence is usually found in a coronal “void” en-
closed by the coronal arch that is surmounted by the coronal
streamer (Engvold, 1987; Koutchmy et al., 2004, and refer-
ences therein). Such a prominence-corona structure, some-
times observed prior to the CME take-off also by soft X-ray
imaging instruments (e.g.,Hudson et al., 1999, and refer-
ences therein) and white-light coronagraphs, (Gibson, 2008;
Burkepile, 2008), indicates that the basic CME morphology
has its roots in the pre-eruption magnetic field configuration
(Low, 1996, and references therein). Usually, it is supposed
that the frontal rim outlines the leading edge of the erupt-
ing arcade, whereas the cavity reveals the flux-rope within
which the prominence is nested (e.g. Low, 1996; Krall et al.,
2001; Filippov and Koutchmy, 2008, and references therein).
Indeed, white light coronagraphic observations frequently
show patterns consistent with the interpretation of CMEs in
terms of flux-rope eruption (e.g.,Krall, 2007, and references
therein). Another line of evidence can be found in the in situ
measurements, showing that interplanetary CMEs (ICMEs)
frequently have flux-rope characteristics (so called magnetic
clouds; for details seeBurlaga, 1988; Lepping et al., 1990).
For example, according to (Richardson and Cane, 2004), in
solar minimum all ICMEs could be classified as magnetic
clouds. As the solar activity enhances and the frequency
of ICMEs increases, the percentage of magnetic clouds de-
creases. There are several effects which could explain such
a behavior, e.g., ICME-ICME interactions in the interplane-

tary space which makes the internal structure too complex to
be identified as a set of flux-ropes (for a discussion we refer
to Richardson and Cane, 2004; Gopalswamy, 2006).

Studies addressing the relative kinematics of the three-part
structure in the acceleration onset stage are relatively rare,
since most often it is difficult to identify and measure the
frontal rim during the initiation of a CME. On the other hand,
such analyzes (Schmahl and Hildner, 1977; Fisher et al.,
1981; Illing and Hundhausen, 1985; Low and Hundhausen,
1987; Plunkett et al., 1997; Dere et al., 1999; Wood et al.,
1999; Plunkett et al., 2000; Srivastava et al., 2000; Maričić
et al., 2004; Vršnak et al., 2004a), offer an exceptionally im-
portant input for the modeling of CME dynamics (cf.Forbes,
2000, and references therein).

The basic outcome of measurements is that the 3-part
structure generally expands in a self-similar manner (e.g.,
Maričić et al., 2004; Vršnak et al., 2004a, and references
therein). In the majority of events the acceleration of the
leading edge and the prominence are synchronized (Maričić
et al., in preparation). However, there are indications that
prominence might act as a driver, pushing the cavity and the
overlying arch (Burkepille, 2008). Another important aspect
is that, on average, sizes of CMEs are roughly proportional to
the heliocentric distance at which they are measured (Both-
mer and Schwenn, 1998).

(Vršnak et al., 2007) analyzed in detail characteristics of
the acceleration stage of the eruption employing a coherent
sample of CMEs whose structure was resolved already in the
low corona in the EUV and soft X-ray (SXR) images, and
whose motion could be traced in the Mauna Loa Mark-IV
coronagraph field of view, to join the low-coronal measure-
ments with the observations in the LASCO/SoHO field of
view. They found that the acceleration phase duration is in-
versely proportional to the peak (and average) acceleration
(see alsoZhang, 2005; Zhang and Dere, 2006), and that the
acceleration is stronger if achieved at lower heights (see also
Vršnak, 2001). Furthermore, the peak (and average) acceler-
ation is generally larger in eruptions which are initially com-
pact (e.g. fast CMEs launched from active regions) than in
eruptions characterized by large initial size (e.g. quiescent
prominence eruptions).

(Chen et al., 2006) have inferred that the acceleration peak
occurs soon after the height of the erupting structure (semi-
toroidal flux-rope) exceeds the value of the footpoint half-
separation. That is consistent with observations of a set of
eruptive prominences with helical morphology, presented by
(Vršnak et al., 1991), who demonstrated that the flux-rope
starts to accelerate (if sufficiently twisted) when the height
becomes comparable with the footpoint half-separation. The
results presented by (Vršnak et al., 1991) also indicate that
the acceleration starts at lower heights for more twisted
prominences.
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2.2 CME-flare relationship

An intriguing aspect of CMEs is their relation to solar flares
(e.g., Low, 1996; Forbes, 2000; Švestka, 2001, and refer-
ences therein). Although in general the association rate is
not high (e.g.,Kahler, 1992; Gosling, 1993; Harrison, 1995,
and references therein), there is obviously a physical connec-
tion between these two phenomena, especially between fast
CMEs and major flares. In particular, the dynamical flares
(traditionally called two-ribbon flares) are by definition re-
lated to disruptions of coronal magnetic field structures.

A two-ribbon flare occurs as a consequence of the mag-
netic field reconnection that takes place in the wake of CME,
where the vertically stretched field lines form a vertical cur-
rent sheet (cf.,Priest, 1982). The acceleration phase of the
ejection in majority of events starts earlier than the rise of
the flare-associated SXR emission. According to (Maričić
et al., 2007) the SXR emission can be delayed up to one
hour, whereas the average lag equals to≈ 20 min. Further-
more, signatures of non-thermal electrons (radio and hard
X-ray emission) are usually very weak (or even absent) dur-
ing the gradual pre-eruption phase and at the beginning of
the acceleration stage (see, e.g.,Kahler et al., 1988; Sterling
and Moore, 2004; Vršnak et al., 2003). This shows that dy-
namical flares occur as a consequence of the eruption, and
indicates that the eruption is initially driven by ideal MHD
processes.

Various observations indicate that the CME dynamics is
closely related to the energy release in the associated flare,
or vice versa, the energy release in flare is tightly associ-
ated with the CME kinematics. For example, statistical stud-
ies show that CME parameters, like the velocity or kinetic
energy, are correlated with characteristics of the associated
flare, e.g. the SXR peak flux or integrated flux (Moon et al.,
2002, 2003; Burkepile et al., 2004; Vršnak et al., 2005). Fur-
thermore, case studies reveal the synchronization of the flare
impulsive phase and the CME acceleration stage (e.g.,Kahler
et al., 1988; Neupert et al., 2001; Zhang et al., 2001; Shanmu-
garaju et al., 2003; Maričić et al., 2004; Vršnak et al., 2004a;
Zhang et al., 2004; Zhang and Dere, 2006; Maričić et al.,
2007; Temmer et al., 2007b).

(Maričić et al., 2007) have analyzed in detail the relation-
ship between the acceleration of the eruption and the time-
line of energy release in the associated flare employing a co-
herent sample of well observed CMEs. The main outcome
of this study was that in most of events the CME accelera-
tion phase is synchronized with the impulsive phase of the
associated flare. In this way the results reported by (Zhang
et al., 2001), (Vršnak et al., 2004a), and (Zhang and Dere,
2006) were confirmed from statistical point of view, indicat-
ing that reconnection plays a very important role in the CME
acceleration. Yet, it should be emphasized that in almost one
quarter of events there was practically no synchronization. A
similar conclusion was drawn by (Vršnak et al., 2004a) after
revisiting a number of previous studies.

In this respect, it is important to note that a certain frac-
tion of ejections is not accompanied by any significant flare
energy release. Nevertheless, in such events a growing sys-
tem of post-eruption loops, similar to that in two-ribbon
flares (post-flare loops), is often observed (e.g.,Vršnak et al.,
2005). This implies that the magnetic field reconnection it-
self, rather than the flare energy release, affects the dynam-
ics of the eruption. Indeed, measurements of the product of
the flare-ribbon expansion velocity and the underlying pho-
tospheric magnetic field, representing a proxy for the coro-
nal reconnection rate (Poletto and Kopp, 1986), show a close
synchronization of the reconnection rate and the CME accel-
eration (Wang et al., 2003; Qiu et al., 2004; Jing et al., 2005).
Furthermore, the active role of reconnection is documented
also by morphological changes within the erupting structure
(e.g.,Maričić et al., 2004; Vršnak et al., 2004a).

Indirect information on the reconnection below the erupt-
ing flux-rope may also be found in the so-called disconnect-
ing events (e.g.,Webb and Cliver, 1995; Simnett et al., 1997;
Wang et al., 1999; Webb et al., 2003), thin streamer-like
coronal features (e.g.,Ko et al., 2003; Webb et al., 2003; Lin
et al., 2005; Bemporad et al., 2006, and references therein),
the horizontal converging coronal flows above the X-ray
loops (Yokoyama et al., 2001), etc.

3 General principles and basic concepts

3.1 Energy and forces

The only resource that can provide a sufficient amount of en-
ergy for the CME/flare eruption is the coronal magnetic field
(e.g.,Forbes, 2000). However, it should be kept in mind that
the energy of the potential magnetic field cannot be converted
to other forms of energy, i.e. only the non-potential field con-
tains the free-energy (e.g.,Régnier and Priest, 2007). This
means that the mechanical energy of the eruption can be pro-
vided only if the pre-eruption coronal structure carries elec-
tric currents.

The magnetic field and current system of the pre-eruptive
coronal structure is probably very complex. However, bear-
ing in mind that the magnetic structure is rooted in the pho-
tosphere, it is instructive to consider the simplest possible
approximation, representing the coronal current system by
a simple line-current loop, connected to the solar surface at
two footpoints (Fig.1).

Due to the high conductivity of coronal plasma, the mag-
netic flux through the area encompassed by the current loop
and the solar surface,8, can be changed only by the flux
emergence or submergence, or by reconnection of coronal
fields. This has very important implications for the behav-
ior of the system sketched in Fig.1b. For example, if the
current-carrying loop is pushed downwards, the condition
8=const. implies that the magnetic fieldB between the loop
and the surface has to increase. Consequently, the magnetic
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Fig. 1. Sketch of a complex coronal electric current system(a),
and its approximation by the line current(b). The magnetic fieldB
encompassed by the line current and the solar surface is indicated.

pressure increases, giving rise to the restoring force that tends
to move the loop back toward its initial (equilibrium) posi-
tion. Analogously, the restoring force acts downward if the
loop is displaced upward. Thus, if the loop would be dis-
placed, it would oscillate around the equilibrium position (for
details see, e.g.,Vršnak, 1984, 1990). To a certain degree,
the effect is analogous to the magnet levitating in a highly-
conductive bowl.

This effect was first recognized by (Kuperus and Raadu,
1974), who represented solar prominences by the horizontal
line-currentI located at the heighth above the surface. They
expressed the restoring-force effect by employing the mirror
current−I located at the depthh below the surface. Here-
inafter, we call this force, which is presumably caused by the
induced eddy surface currents that prevent the exchange of
the magnetic flux through the surface, “the mirror-current ef-
fect”. The force exerted per unit length of an infinite straight

line-current readsFmc=
µ0I

2

4πh
(Kuperus and Raadu, 1974).

Let us first consider the eruption of the current-carrying
structure, which is fast enough, so that the flux8 remains
approximately constant. Furthermore, let us assume that the
current circuit is closed by eddy currents at the solar surface.

In that case, the flux8 is related to the currentI by
the expression8=LI , where L is the inductivity of the
current circuit. Since the inductivity of the current sys-
tem is proportional to its size (Jackson, 1998),1 the condi-
tion 8=const. implies that the current has to decrease in the
course of the eruption. The inductive decay of the current
implies that the Lorentz force decreases, as well as the free
energy contained in the system (W=LI2/2). The energy is
converted into the kinetic and potential energy and to the
work done against the “aerodynamic” drag, i.e., the energy
carried away by MHD waves (Cargill et al., 1996; Cargill,
2004; Vršnak et al., 2004b).

In the next, somewhat better approximation, we can repre-
sent the erupting structure by the flux-rope. The previously
described effects would have pretty much the same charac-
teristics, however, now two additional effects appear, due to

1Generally, the inductivity of a thin circular loop adds up to
L=

µ0C
4π

[ln ξA

r2 +
1
2], whereC, A, and 2r are the circumference,

area, and the diameter of the loop, respectively, whereasξ is a con-
stant in the order of unity (Jackson, 1998, p. 218).

B

B�

B�

B
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Fig. 2. A curved flux-rope carrying currentI . At the bottom panel
the poloidal (Bφ) and axial (B‖) magnetic field components are
sketched: the gradient of the poloidal field pressure is directed up-
ward, and the tension of the axial component acts downward.

the curvature of the flux-rope (Fig.2). First, tension of the
axial field B‖ gives rise to the downward force which can

be approximately expressed asFt=
µ0I

2

4πRX2 [N m−1], where
X=Bφ/B‖ is the poloidal-to-axial field ratio at the flux-rope
surface, andR is the radius of curvature of the flux-rope axis
(Vršnak, 1984, 1990). The other effect is the gradient of the
poloidal-field pressure (“kink-effect”). In the simplest form

it readsFk=
µ0I

2

8πR
[N m−1] (Vršnak, 1984), which is a good

approximation for the hoop force derived by applying the
principle of virtual work (for details seěZic et al., 2007, and
references therein).

Finally, the flux rope is embedded in the background coro-
nal field (sometimes denoted as external poloidal field, strap-
ping field, or overlying field), which has a stabilizing effect
to the structure. In the simplest form, it was introduced by
(van Tend and Kuperus, 1978), who extended the aforemen-
tioned Kuperus-Raadu model by adding the unit-length force
IBc due to the background fieldBc.

3.2 Basic scalings

Since the eruption is provided by the free energy contained
in the magnetic field, the kinetic energy density cannot ex-
ceed the magnetic energy density, i.e.,ρv2/2≤B2/2µ0, or
rewritten, v2

≤B2/ρµ0. In other words, the CME veloc-
ity cannot be larger than the Alfvén velocitywithin the pre-
eruptive structure,v≤vA . The majority of CMEs shows the
velocity in the range 100–1000 km s−1, indicating that the
Alfv én speed in the pre-eruptive coronal structures generally
ranges within, more or less, an order of magnitude. That is
consistent with some other measurements in the height range
of one solar radius above the solar surface (seeVršnak et al.,
2002, and references therein). At these heights, the inferred
values of the Alfv́en velocity are found in the range 300–
1500 km s−1, corresponding to the ratio 1:5.

An order of magnitude estimate of the CME acceleration
can be written asa=v/t≤vA/tA=vA/(λ/vA)=v2

A/λ, where
tA=λ/vA represents the Alfv́en travel-time across the erupt-
ing structure whose size is denoted byλ. Another way to
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get this expression is to consider the overall magnetic stress,
which can be expressed approximately asa≤B2/2µ0λ, again
giving a ≤ v2

A/λ. Thus, on average, initially-compact CMEs
launched from active regions should have larger accelera-
tions than initially-extended CMEs originating from quies-
cent regions.

TakingvA=1000 km s−1 and an initially compact ejection
characterized byλ≈100 Mm, one findsa≤104 m s−2. This
illustrates that accelerations exceeding 1000 m s−2 should
not be surprising in compact eruptions launched from active
regions. However, the accelerations like those measured in
the event of 6 November 1997 (Zhang et al., 2001; Cliver
et al., 2004), 10 November 2004 (Williams et al., 2005), or
17 January 2005 (Vršnak et al., 2007) are probably close to
the upper limit. On the other hand, considering large quies-
cent filaments outside active regions wherevA is lower and
typical dimensions are larger, one can take, e.g.vA=400–
1000 km s−1 and λ≈1000 Mm, which adds up toa=100–
1000 m s−2.

The relationshipa∝λ−1 is consistent with measurements
presented by (Vršnak et al., 2007), revealing the inverse pro-
portionality of the peak acceleration and the source-region
size. Furthermore, bearing in minda=v/t , one finds that the
acceleration phase durationTacc has to satisfyTacc≥λ/vA ,
i.e. compact CMEs should be accelerated more impulsively,
again consistent with the results presented by (Vršnak et al.,
2007). The co-existence of the relationshipsa∝λ−1 and
Tacc≈tA∝λ, explains straightforwardly the inverse propor-
tionality of a and Tacc demonstrated by (Zhang, 2005),
(Zhang and Dere, 2006), and (Vršnak et al., 2007).

In this respect, it is worth noting that the analytical mod-
els by (Vršnak, 1990), (Chen and Krall, 2003), and (Kliem
and T̈orök, 2006) which treat CMEs as toroidal-field struc-
tures, predict that accelerations should be larger in the case
of smaller footpoint separation. Moreover, these models pre-
dict that the peak acceleration should be attained soon af-
ter the height becomes comparable with the footpoint half-
separation. Indeed, an evidence for such a scaling was found
by (Vršnak et al., 1991) and (Chen et al., 2006).

3.3 The role of reconnection

As stated in Sect. 2.2, the CME take-off is often accompanied
by the so-called two-ribbon flare (sometimes also denoted
as dynamical flare or eruptive flare). After the arcade takes
off, a current sheet is formed below the flux-rope (Fig.3a),
between the field lines anchored at the opposite sides of
the photospheric magnetic inversion line (e.g.,Forbes, 2000;
Cheng et al., 2003; Lin et al., 2004). The two-ribbon flare
appears as a consequence of fast magnetic field reconnection
that takes place in the current sheet (Vršnak and Skender,
2005). The energy released by the reconnection is trans-
ported to the chromosphere by electron beams and thermal
conduction, forming there two bright ribbons aligned with
the magnetic inversion line (see, e.g. Fig. 1 in Lin et al.,2004

(a)

(b)

Fig. 3. Schematic drawing of the eruption where reconnection (gray
explosion-symbol) takes place:(a) below the flux-rope;(b) above
the flux-rope.

or Vršnak and Skender,2005). As the reconnection proceeds,
the ribbons expand away from the inversion line, whereas the
reconnected field lines form a growing system of hot X-ray
loops (e.g.,Vršnak et al., 2004a; Veronig et al., 2006, and
references therein).

The described reconnection process has two important ef-
fects on the CME. Firstly, the reconnection reduces the net
tension of the overlying arcade field and increases the mag-
netic pressure below the flux-rope, which certainly plays a
significant role in the CME dynamics (e.g.,van Tend and
Kuperus, 1978; Anzer and Pneuman, 1982; Lin, 2002). Sec-
ondly, the upward-directed reconnection jet carries the re-
connected field lines to the erupting flux-rope, supplying it
with a “fresh” poloidal flux. This effect enhances the hoop
force, thus reinforcing and prolonging the flux-rope acceler-
ation (Vršnak, 1990). On the other hand, the CME expansion
determines the overall geometry of the system and the flows
behind the flux-rope, both of which affect the reconnection
process (Vršnak and Skender, 2005). In this way, a feedback
relationship between the CME motion and the flare energy
release is established. The synchronization of the CME ac-
celeration and the energy release in the flare is most likely
a consequence of such a feed-back, since the reconnection
rate determines also the energy release in the flare (e.g.,Asai
et al., 2004; Miklenic et al., 2007; Temmer et al., 2007a).

Recently, (Qiu et al., 2007) and Möstl et al. (2008) per-
formed an interesting comparison of the total flux recon-
nected in the CME-related flares with the magnetic flux of
the associated magnetic clouds measured at 1 AU. Although
based on some ad hoc assumptions, these studies showed that
the poloidal magnetic flux of magnetic clouds is compara-
ble with the total magnetic flux reconnected in the parent
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Fig. 4. (a) Schematic drawing of the eruption of a curved flux-
rope (light blue) anchored at both ends in the photosphere. The
overlying magnetic field is drawn in gray, internal helical field in
black, electric current in red. The motion of the flux-rope (deep-
blue arrow) pushes aside the overlying field (green arrows). The
red explosion symbol indicates reconnection below the flux-rope
axis. (b) Reconnection of strongly sheared overlying field lines.
The magnetic inversion line is indicated by the dashed line oriented
in thex-direction.

flare/CME process, both being significantly larger than the
axial flux of the magnetic cloud. This indicates that a signif-
icant part of the magnetic flux of the interplanetary flux-rope
is created by reconnection during the ICME take-off.

4 CME modeling

4.1 2-D and 2.5-D models

There are various forms of 2-D and 2.5-D CME models (cf.,
Wu et al., 2001; Zhang and Low, 2005; Forbes et al., 2006;
Miki ć and Lee, 2006, and references therein), and all of
them include magnetic reconnection to overcome the prob-
lem of the tension of the overlying coronal magnetic field
which suppresses the upward acceleration. In the cartesian
coordinates the horizontal flux-rope levitates in the core of a
horizontal arcade, whose field-lines are anchored at the so-
lar surface. In the spherical geometry the flux-rope encir-
cles the sun, embedded in the magnetic arcade which forms
a global helmet streamer. Thus, 2-D and 2.5-D models might
be appropriate only to describe the eruption of very long
flux-rope/arcade structures, especially in the phase when the

height and width of the structure are much smaller than its
length.

Depending on the magnetic topology and the location of
the reconnection site (Fig.3), the models could be divided
to “tether-cutting” (TC;Moore et al., 1995) and “break-out”
(BO; Antiochos, 1998) models. There are various modalities
of TC models, but in all of them reconnection takes place
below the flux-rope, so the initially overlying magnetic flux
is split into the part that wraps around the flux-rope, and a
part that forms post-eruption loops. In this respect the stan-
dard two-ribbon flare/CME model belongs to the TC class
(Fig. 3a). On the other hand, in BO models reconnection
takes place above the flux-rope, so the overlying flux is trans-
ferred to aside/below the rope (Fig.3b).

Since in TC models the poloidal flux of the rope increases
during the eruption (Fig.3a), they are consistent with the re-
sults reported by (Qiu et al., 2007) and Möstl et al. (2008),
who concluded that the poloidal flux of ICMEs is compara-
ble to the flux reconnected in the associated flares (Sect. 3.3).
On the other hand, in BO models the poloidal flux decreases
during the eruption (Fig.3b), which seems to contradict the
mentioned in situ measurements (however, see alsoLynch
et al., 2004; Van der Holst et al., 2007). Furthermore, in the
case of BO models two sets of growing post-eruption loop
systems should be formed on both sides of the main mag-
netic neutral line located below the flux-rope, and that is not
observed. The “main” loop system formed by reconnection
below the flux-rope axis (and possibly the two ribbon flare)
should appear relatively late, and the footpoints of this loop
system (and flare ribbons) should be widely separated. Thus,
such model characteristics are not really consistent with ob-
servations. Of course, the reconnection above or aside the
erupting flux-rope/arcade can take place during the take-off
(e.g.,Vršnak et al., 1987, 2003) or during propagation in the
interplanetary space e.g., Möstl et al. (2008), but it should
be considered a consequence of the eruption and not as its
primary ingredient.

4.2 3-D flux-rope model without reconnection

Unlike in 2-D approach, in 3-D flux-rope models the rope it-
self is anchored in the photosphere (e.g.,Mouschovias and
Poland, 1978; Vršnak, 1984; Chen, 1989; Vršnak, 1990;
Titov and D́emoulin, 1999). Furthermore, since the flux-rope
has finite size, the overlying field can be pushed aside by the
eruption (Fig.4a). Thus, reconnection is not necessarily the
main mechanism which reduces the tension of the overlying
field. In this type of models the effect of moving through the
overlying field can be reproduced fairly well by employing
the concept of the “aerodynamic” drag (e.g.Cargill et al.,
1996; Vršnak et al., 2004b; Cargill, 2004, and references
therein). The fast development of numerical MHD tech-
niques in last decade for the first time enabled also the numer-
ical studies of the line-tied flux-rope embedded in the coronal
magnetic fields (e.g.,Amari et al., 2000, 2003; Roussev et al.,
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2003; Kliem et al., 2004; Török and Kliem, 2005; Birn et al.,
2006; Gibson et al., 2006, and references therein).

For the matter of simplicity, let us consider the semi-
toroidal flux-rope whose axis is a circular arc anchored at
fixed points in the photosphere, separated by 2d (see Fig. 1
of Vršnak, 1990). In that case the axis length3 and radius of
curvatureR are simple parametric functions of the height of
the axis summith and the footpoint half-separationd. Fur-
thermore, we take the mass density to be uniform within the
rope, and the minor radius of the torusr to be constant along
the axis (for the effect of variabler see, e.g.,Chen and Krall,
2003, and references therein).

In the absence of reconnection or emerging flux, the
poloidal flux of the rope (“internal flux”,8i), as well as the
flux encircled by the flux-rope and the solar surface (“exter-
nal flux”, 8e), have to be preserved. For the circular flux-
rope axis the internal and external flux behave as8i∝I3

and8e∝I3[ln 8R
r

− 2], respectively (Chen and Krall, 2003;
Žic et al., 2007). Thus, in the absence of reconnection or
emerging flux (8i=const. and8e=const.), the currentI and
the radiusr have to obey:

I∝3−1 (1)

and

r∝R. (2)

Equation (2) implies that the rope expands in a self-similar
manner, which is one of basic observational results (see
Sect. 2.1). The conservation of the poloidal flux also implies
(Vršnak, 1990) that the ratio of the poloidal-to-axial field at
the flux-rope surface,X(Z)=Bφ/B‖, has to behave as:

X∝
r

3
. (3)

Under the described approximations, the basic forces acting
at the flux-rope summit can be expressed in terms of the geo-
metrical parametersZ, R, and3, the flux-rope massM, the
axial electric currentI , and the poloidal-to-axial field ratioX
(Vršnak, 1984, 1990). We consider also the force due to the
background fieldFc=IBc [N m−1] (Vršnak, 1984). Since
the magnetic flux through the vertical cross-section of the
flux-rope has to be constant, the background field within the
rope has to behave asBc∝3−1r−1. Finally, the gravitational
force should be taken into account, whereas for the matter of
simplicity, we neglect the drag term.

Bearing in mind Eq. (1), one can write3I=30I0, where
30 andI0 are the flux-rope axis length and the electric cur-
rent atZ=1 (the situation whenR=h=d). In the follow-
ing, the geometrical parametersZ=h/d, 3, R, andr are ex-
pressed in units of the flux-rope footpoint half-separationd,
thus 30 ≡ π , Z0=1, R0=1. Superposing the mentioned
forces, the acceleration of the summit flux-rope element can
be expressed in the form:

a=
A

32

(
3

R
−

23

RX2
+

23

Z

)
+

k1

r32
−k2g(Z), (4)

whereA=
πµ0I

2
0

4M
. The three terms in brackets represent the

the magnetic pressure gradient of the poloidal field, the ten-
sion of the axial field, and the mirror-current effect, respec-
tively (Sect. 3.1). The fourth term represents theIBc force,
where the coefficientk1 is determined by the background
magnetic field strengthBc at Z=1. In the gravitational term
k2g(Z), the buoyancy is taken into account through the coef-
ficientk2.

Equations (1–4) determine the dynamics of the eruption.
Supplementing the drag term to Eq. (4), and bearing in mind
a=dv/dt , Eq. (4) can be integrated to get the velocityv(Z),
from whichZ(t) is obtained.

The parametersX0, A, k1, andk2 determine the height of
the flux-rope axis in equilibrium (marked by green dots and
denoted asZ1 in Fig. 5a). Different combinations of these
parameters result in stable, metastable or unstable equilibria.
Stable equilibria are found for low values ofX0 andA. Gen-
erally, for a given value ofX0, the increase of the parameter
A shifts the equilibrium to larger heights. IfX0 is sufficiently
large (generally,X0&2), the system evolves from the stable
to a metastable state. The rope remains metastable untilZcrit,
achieved atA=Acrit, where it eventually losses equilibrium
and erupts. Such evolution is illustrated in Fig.5a, where the
function a(Z) is shown forr0=0.1, k1=−517 m s−2 (k1<0
means that the force is directed downward) andk2=0 (grav-
itation neglected, i.e. the coronal and CME densities are
equal,ρc=ρCME). The blue curve represents a stable flux-
rope, green curves show two metastable situations, whereas
the red curve corresponds to the flux-rope that has lost equi-
librium (a>0 everywhere). The presented curves demon-
strate that with increasing value ofA the equilibrium posi-
tion (Z1 in Fig.5a) rises and in the metastable state thea<0
region gets successively shallower (green curves in Fig.5a).
Eventually, the dip in the curve becomes tangential with the
x-axis (red curve in Fig.5a), marking the state when the equi-
librium is lost.

In Fig. 5b the function a(Z) is shown for different
values of X0, r0, and k2, using d=0.1 solar radii and
k1=1300 m s−2. The values of the parameterA are adjusted
to the state at which the flux-rope losses equilibrium. The
blue and red curves are derived usingk2=0 (ρc=ρCME).
Varying the value ofX0 it is found that loss of equilib-
rium occurs at somewhat lower heights for larger values of
X0 (note that the red-dashed curve is displaced to larger
heights with respect to the red-full curve). The green curve
is obtained by usingk2=1 (negligible buoyancy,ρc�ρCME),
showing that after a certain height the acceleration becomes
negative. This means that there are situations where a stable
upper equilibrium exists (denoted asZ3 in Fig.5b).

Varying the input values over the parameter space, it is
found that for physically reasonable values ofX0 andA0, the
peak accelerations do not exceed a few hundreds of m s−2,
even assuming strong leakage of mass through the flux-rope
legs (Vršnak et al., 1993). In other words, the 3-D flux rope
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Fig. 5. Characteristics of the functiona(Z): (a) increasing value
of A leads to loss of equilibrium (blue – stable flux-rope, green –
metastable flux-ropes; red – unstable flux-rope);(b) unstable flux-
rope for various input parameters (gravity is included only in the
case shown by green bold line)(c) the effect of reconnection which
supplies the magnetic flux18e; gray line represents the case with-
out reconnection shown in (a) and (b) by the red line (18e=0).
Parameter values are written in the legend.Z is the height of the
flux-rope axis expressed in units of the footpoint half-separationd.
Stable and metastable equilibria are indicated by green dots (de-
noted asZ1), the unstable equilibria are drawn by red dots (Z2),
and the upper (stable) equilibrium is marked by blue dot (Z3).

model without reconnection cannot account for the highest
observed accelerations, i.e., the flux conservation constraint
prevents high accelerations because of the inductive decay of
the electric current.

4.3 3-D flux-rope model with reconnection

The association of CMEs and two-ribbon flares and grow-
ing post-eruption loop systems evidences that reconnection
is an essential ingredient of the eruption. The reconnection
below the flux-rope axis increases the poloidal flux of the
flux-rope and increases the magnetic flux encompassed by
the flux-rope and the solar surface – the effect of reconnec-
tion is sketched in Fig.4b, considering the case of a strongly
sheared arcade. The sheared field lines, initially connect-
ing A with B and C with D, after reconnection map from
A to D and from C to B. The field line CB represents the
postflare loop system. The AD field line is twisted around
the rope, meaning that it contributes to the flux-rope cur-
rent. It should be emphasized that only thex-component
of the magnetic field (that is the guiding field in reconnec-
tion, since it is parallel to the neutral line) contributes to the
increase of the magnetic flux8e encircled by the flux-rope
and the surface, since in they-direction the reconnection by
definition adds equal amount of positive and negative flux.
In the case of non-sheared overlying field there is no change
of the flux through the circuit, nor is there amendment of
the current to the flux-rope (there is no helical field added,
i.e. the added poloidal flux around the rope is purely poten-
tial. Thus, reconnection in a strongly sheared arcade should
support the eruption more (i.e., should provide stronger ac-
celeration) than in a weakly sheared one.

In the following we focus only on the effect of increasing
magnetic flux encircled by the flux-rope and the solar surface
8e. In Fig. 5c the effect of the magnetic field reconnection,
causing an increase of8e, is shown. Note that, since now
8e is not constant, the conditionr/R=const. is not neces-
sarily strictly satisfied anymore. Yet, we chose the option of
the self-similar expansion, which was necessary condition in
the 8e=const. case. In such a situation the current has to
behave asI∝8e3

−1 (instead ofI∝3−1 valid in the absence
of reconnection). Due to the choicer∝R, the behavior of the
parameterX remains the same as in the non-reconnection
case.

The curvesa(Z) shown in Fig.5c are derived by assum-
ing an increase of the flux8e over a certain height range
(indicated in the legend), defined by the function of the type
18e ∝ cos2 θ . In all cases, the valuesd=0.1 solar radii,
X0=5, r0=0.1 k1=1300 m s−2, andk2=0 are applied, corre-
sponding to the red curve in Figs.5a and b. The parameterA

is adjusted to the state when the flux-rope losses equilibrium
(A=Acrit=1421 m s−2).

The two red curves represent the flux increase over
the same height range (1<Z<2), but of different amount
(18e=50% and 100% of the initial flux, respectively). The
green and blue curve are both calculated for the flux in-
crease of18e=50%, but over the height range 1<Z<4 and
1<Z<12 (corresponding to 0.1<h<0.4 and 0.1<h<1.2 so-
lar radii, respectively). The gray curve represents the case
without reconnection, i.e., the one shown in Fig.5a and b by
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the red curve (18e=0). Obviously, the reconnection signif-
icantly enhances the flux-rope acceleration – now accelera-
tions in excess of 1000 m s−2 can be achieved easily. Even
the highest observed accelerations, in the order of 10 km s−2,
can be attained if the flux increases by, e.g.,≈300% over the
height range 1<Z<2. Bearing in mind the results by (Qiu
et al., 2007) and Möstl et al. (2008), such an increase does
not contradict the observations.

With reconnection taking place over an extended period,
the acceleration can be prolonged to large heights. For exam-
ple, takingd=0.2 solar radii (corresponding to the footpoint
separation of 280 Mm) and18e=50% provided by recon-
nection taking place over the height range of 1<Z<12, one
finds the acceleration of about 5 m s−2 at the radial distance
of 10 solar radii (Z=45), consistent with values obtained by
(Vršnak et al., 2004b) at this height range.

5 Discussion and conclusions

Some of general characteristics of CMEs described in
Sect. 2.1 can be explained already by employing only the
most basic physical concepts. For example, it is shown that
the peak acceleration and velocity, as well as the accelera-
tion time are determined by the initial source-region size and
the magnetic field strength involved. This explains why ini-
tially compact eruptions launched from active regions tend
to accelerate more impulsively and to attain higher veloci-
ties. Finally, the decrease of the Lorentz force with height
is straightforwardly explained by the inductive decay of the
expanding electric current system.

A more detailed consideration, employing the toroidal
flux-rope concept, explains some more detailed characteris-
tics. First of all, the interplay of the mirror-current force,
tension force, hoop force, and the Lorentz force associated
with the background coronal field can explain existence of
stable and metastable structures, as well as the gradual evolu-
tion until loss of equilibrium and eruption. Stable structures
should react to external disturbances (e.g., coronal shock
waves from distant flares or CMEs) by oscillating around
the equilibrium, observed as e.g., winking filaments (Ram-
sey and Smith, 1966). Similar oscillations should occur in
the metastable situation if the displacement is not too large.
However, if the structure is displaced up to the unstable equi-
librium position (denoted in Fig.5a asZ2), it should erupt.
This explains destabilization and eruption of filaments after
arrival of coronal shock waves (the phenomenon recognized
already byDodson, 1949).

Generally, an increase of the electric current or increase of
the magnetic flux encompassed by the current, drives the evo-
lution of the structure from stable to metastable state. At the
same time, the equilibrium height of the structure increases,
which explains the slow rising motion usually observed pre-
ceding the eruption. At a certain point, usually when the
height is comparable with the footpoint half-separation, the

system cannot find a neighboring equilibrium state, i.e., the
equilibrium is lost and the acceleration phase starts. Model
results show that the critical height is lower for more twisted
structures, which is consistent with the results presented by
(Vršnak et al., 1991).

Modeling of the flux-rope eruption in the frame of ideal
MHD (no reconnection) can explain moderate accelerations,
up to a few hundreds of m s−2. It also explains the self-
similar expansion of the CME. Furthermore, for a certain
combination of the parameters describing the initial flux-
rope, the model shows existence of an upper equilibrium (de-
noted asZ3 in Fig.5b). Bearing in mind the damping effect
of the aerodynamic drag (Vršnak et al., 1990), this can ex-
plain fallback events (Wang and Sheeley, 2002), failed erup-
tions (Török and Kliem, 2005), and damped oscillations at
the upper equilibrium (Vršnak et al., 1990).

However, to explain the highest measured accelerations,
which could be as high as≈10 km s−2, the flux-rope model
has to be extended by inclusion of reconnection, taking place
beneath the rising rope. A higher reconnection rate implies
a stronger acceleration, which explains correlations between
various flare and CME parameters. Furthermore, it is consis-
tent with the synchronization of the CME acceleration and
the flare impulsive phase. Finally, it explains in situ mea-
surements of the magnetic fluxes of ICMEs, indicating that
significant part of the flux is added to the rope in the course
of the eruption.
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Miki ć, Z. and Lee, M. A.: An Introduction to Theory and Models
of CMEs, Shocks, and Solar Energetic Particles, Space Sci. Rev.,
123, 57–80, doi:10.1007/s11214-006-9012-2, 2006.

Miklenic, C. H., Veronig, A. M., Vřsnak, B., and Hanslmeier,
A.: Reconnection and energy release rates in a two-ribbon flare,
Astron. Astrophys., 461, 697–706, doi:10.1051/0004-6361:
20065751, 2007.

Moon, Y.-J., Choe, G. S., Wang, H., Park, Y. D., Gopalswamy, N.,
Yang, G., and Yashiro, S.: A Statistical Study of Two Classes
of Coronal Mass Ejections, Astrophys. J., 581, 694–702, doi:
10.1086/344088, 2002.

Moon, Y.-J., Choe, G. S., Wang, H., Park, Y. D., and Cheng, C. Z.:
Relationship Between CME Kinematics and Flare Strength, J.
Korean Astronomical Society, 36, 61–66, 2003.

Moore, R. L., Larosa, T. N., and Orwig, L. E.: The wall of

reconnection-driven magnetohydrodynamic turbulence in a large
solar flare, Astrophys. J., 438, 985–966, doi:10.1086/175140,
1995.
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Vršnak, B., Rǔzdjak, V., Braǰsa, R., and Zloch, F.: Oscillatory mo-
tions in an active prominence, Sol. Phys., 127, 119–128, 1990.
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