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Abstract. The effect of viscosity and of converging flows
on the formation of blobs in the slow solar wind is analysed
by means of resistive MHD simulations. The regions above
coronal streamers where blobs are formed (Sheeley et al.,
1997) are simulated using a model previously proposed by
Einaudi et al.(1999). The result of our investigation is two-
fold. First, we demonstrate a new mechanism for enhanced
momentum transfer between a forming blob and the fast so-
lar wind surrounding it. The effect is caused by the longer
range of the electric field caused by the tearing instability
forming the blob. The electric field reaches into the fast so-
lar wind and interacts with it, causing a viscous drag that is
global in nature rather than local across fluid layers as it is
the case in normal uncharged fluids (like water). Second, the
presence of a magnetic cusp at the tip of a coronal helmet
streamer causes a converging of the flows on the two sides
of the streamer and a direct push of the forming island by
the fast solar wind, resulting in a more efficient momentum
exchange.

Keywords. Solar physics, astrophysics, and astronomy
(Corona and transition region; Magnetic fields) – Space
plasma physics (Magnetic reconnection; Numerical simula-
tion studies)

1 Introduction

The understanding of slow solar wind genesis has progressed
considerably in the last few years following the observational
discovery of plasma inhomogeneities (calledblobs) formed
and expelled from regions above coronal streamers (Shee-
ley et al., 1997; Wang et al., 1998). The observational evi-
dence has been provided by the Large Angle and Spectromet-
ric Coronagraph (LASCO) instrument on the Solar and He-
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liospheric Observatory (SOHO). LASCO comprises of three
telescopes (C1, C2 and C3), each of which looks at an in-
creasingly large area surrounding the Sun (Brueckner et al.,
1995).

Approximately 4 blobs per day were observed in a rela-
tively quiet period for the solar corona (year 1997, near solar
minimum). After formation, the blobs are carried away with
the ambient slow solar wind. Generally, the plasma blobs
move radially outward with their speed increasing from 0–
250 km s−1 in the region 2–6 R� (C2 field of view) to 200–
450 km s−1 in the region 3.7-30 R� (outer portion of the C3
field of view). A possible interpretation is that the blobs form
the slow solar wind as a superposition of many plasmoids of
different sizes (Mullan, 1990).

Models of the formation of blobs have focused on mech-
anisms involving reconnection between open field lines and
closed field lines (Einaudi et al., 1999; Einaudi et al., 2001;
Endeve et al., 2003; Fisk and Schwadron, 2001; van Aalst
et al., 1999; Wang et al., 1998; Wu et al., 2000). Through
field line reconnection, plasma from the denser regions
within the helmet streamer is liberated and becomes tied to
open field lines and forms the slow solar wind (Einaudi et al.,
2001).

The present work is particularly centred around the model
proposed byEinaudi et al.(1999). In the region downstream
of the cusp in the streamer belt,Einaudi et al.(1999) ap-
proximate the system as a 1-D reversed field configuration
with a 1-D wake velocity profile. Under these assumptions,
they can reproduce both the acceleration of the slow solar
wind and the formation of blobs, formulating a complete
picture of the genesis of the slow solar wind, in accordance
with the observations (Einaudi et al., 1999). The scenario
has recently been further extended (Rappazzo et al., 2005)
to include the so calledmelon seed effectdue to the dia-
magnetic force caused by the overall magnetic field radial
gradients in the spherical geometry of the Sun (Schmidt and
Cargill, 2000) and to include the effects of the cusp magnetic
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configurations atop the closed field lines in coronal stream-
ers (Lapenta and Knoll, 2005).

The fundamental conclusion of the model byEinaudi et al.
(1999) and in successive refinements is that a blob is formed
by the tearing instability and that by virtue of the interaction
with the fast solar wind the blob is accelerated and ejected,
carrying with it the plasma that forms the slow solar wind.

The fundamental question posed by the present work is:
“what is the basic physical process for the plasma accelera-
tion”? We consider specifically two possibilities. First, that
the momentum transfer causing the blob acceleration is due
to viscous drag. Second, that the acceleration is due to the
insurgence of the tearing instability and its non-linear ef-
fects. The acute reader will not find the suspense spoiled
by learning that, as usual, Nature turns out not to be black
or white. We discover that both mechanisms are present in
an interplay mediated by the electric field. Furthermore, the
presence of the converging flows at the cusp of the coronal
streamer causes a direct momentum transfer by the action of
the plasma flowing against the forming island and pushing it
upward from the solar surface.

The paper is organised as follows. Section 2 summarises
the two initial configurations considered: the 1-D initial con-
figuration proposed byEinaudi et al.(1999) and its 2-D ex-
tension to include the presence of a magnetic cusp (Lapenta
and Knoll, 2005). Section 3 very briefly provides the
methodology for our investigation: the resistive MHD model
as implemented in the FLIP3D-MHD code (Brackbill, 1991).
Sections 4 and 5 present the non-linear evolution, respec-
tively, of the case of the initial 1-D reversed field and of
the 2-D configuration with a magnetic cusp. Conclusions are
reached in Sect. 6.

2 Initial configuration

The region where the blobs are formed and presumably re-
connection happens has been localised thanks to the LASCO
observations. The blobs are formed between 2–3 R� (the
cusp region) and are accelerated afterwards, reaching termi-
nal speed 250–450 km s−1 at 20–30 R�. The sonic point
where the fast solar wind reaches sonic speeds is estimated
at 5–6 R�, the Alfvén point is further outwards (at around 10
R�). In the region of blob formation, the fast wind is slightly
subsonic and definitely subAlfvénic. In the present paper we
consider the region where the plasma blobs and the slow so-
lar wind originate. We consider the region below the Alfvén
critical point, near the cusp where we assume the plasma to
be near sonic but subAlfvénic.

We consider two types of configurations previously pro-
posed for the region where blobs are observed to form. The
first is 1-D and is a simple force-free extension of the Har-
ris equilibrium (Einaudi et al., 2001). The second, is a
more complex 2-D equilibrium representative of a Helmet
streamer (Lapenta and Knoll, 2005). In both cases, the cen-

tral current sheet represents the area above the tip of a helmet
streamer where the blobs have been observed to form in the
LASCO images. To model the presence of the fast solar wind
emanating from the coronal holes, the initial equilibrium in-
cludes the presence of a flow along the field lines. The flow
is chosen to be zero along the field lines directly above the
streamer tip and to increase rapidly away from it, to reach an
asymptotic value corresponding to the fast solar wind. The
details of the initial configurations have been presented in
previous publications and are summarised below for each of
the two cases.

We use Cartesian coordinates wherey andz are parallel to
the Sun’s surface (withz along the meridians andy along the
equator) andx is orthogonal to and pointed away from the
Sun’s surface.

2.1 1-D force-free equilibrium

We use the 1-D model proposed byEinaudi et al.(2001). The
magnetic field is force-free (i.e. the pressure, temperature and
density are uniform) and is given by

B0x = B0 tanh((z − z0)/L)

B0y = B0sech((z − z0)/L)
(1)

whereL is the length scale of the variation ofB. A plasma
flow with a wake profile is chosen:

u0x(z) = u0sech((z − z0)/L); (2)

The flow profile is chosen according to the model ofEinaudi
et al.(2001). The flow is idealized as it does not include the
spherical geometry of the Sun and the progressive acceler-
ation away from the Sun. However it includes the aspects
of relevance here: it represents the shear betwen the fast so-
lar wind propagating along the open field lines and the static
plasma above the helmet streamer. As noted inEinaudi et al.
(2001), the scale-length of variation of the flow shear might
differ significantly from the length scale of variation of the
magnetic field. However, for simplicity we assume them to
be the same. In the present paper we follow the analysis of
Einaudi et al.(1999); Einaudi et al.(2001) which estimated
the particular caseu0/vA=2/3 (with the Alfvén speedvA is
defined withB0 and with the uniform densityn0) to be rep-
resentative of the realisitc conditions. The flow is compress-
ible, with an ideal equation of state withγ=5/3.

Periodic boundary conditions are applied in thex direc-
tion and free-slip boundary conditions are applied inz. The
boundaries inz allow no outflow of plasma and form ef-
fectively a closed plasma channel. A small perturbation is
added to the system to stimulate the growth of any instability
present. The perturbation is added to they component of the
vector potential as:

δAy = ε sin(kxx) sin(kzz) (3)

with kx=2π/Lx , kz=π/Lz andε=B0/15.
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2.2 2-D Helmet-streamer

The second initial configuration is based on the work by
Wiegelmann et al.(1998) where a magnetic field configu-
ration with a current sheet typical of a helmet streamer is
computed analytically. The equilibrium is rigourously exact
only for infinitely stretched helmet streamers, but it can be
used even for realistic aspect ratios as a good approximation.

In the coordinate system used here, the current is initially
directed alongy and the initial magnetic field is in the(x, z)

plane (see Fig.1), with x being the direction away from the
Sun’s surface.

The initial equilibrium is 2-D and is independent of they

coordinate. The initial configuration is characterised by the
y component of the vector potential:

Ay(x, z) = −
2

c
log

{
cosh

[
c

√
p0

2
(z − z0)

]}
+

1

c
log

p0

k

(4)

wherec, z0 andk are constants andp0(x)=s1e
−s2x+s3 The

initial magnetic configuration has a current:

j =
p0c

cosh2
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p0
2 c(z − z0)

) (5)

and is held in pressure equilibrium by a pressure profile:

p =
p0

cosh2
(√

p0
2 c(z − z0)

) + pB (6)

The separatrices between open and closed field lines are po-
sitioned symmetrically at equal distances from the centrez0:

zsep =
1

c

√
2

p0
arctanh

(√
p0 − ς

p0

)
(7)

whereς=ke−cAs . In the simulations shown below we choose
the parameters as inWiegelmann et al.(2000, 1998); Lapenta
and Knoll(2003): s1=.8, s2=4, s3=.2, c=15,As=.1073 and
k=1, z0=1. Following Wiegelmann et al.(2000), a small
(20%) background plasma pressurepB is added to simplify
the numerical treatment. The initial configuration is assumed
to have uniform plasma density and the specific internal en-
ergy profile can be derived from Eq. (6):

I =
p

ρ(γ − 1)
(8)

Additionally, we add an initial wake velocity field:

u(z) =

[
1 − sech

(
|z − z0| − zsep

Lv

)]
e
−

|z−z0|−zsep
2Lv b̂ (9)

whereb̂ is the unit vector in the direction of the magnetic
field and Lv is the scale-size of variation of the velocity
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Fig. 1. Initial Helmet Streamer equilibrium. Note that the vertical
and horizontal axis are not on the same scale, the vertical axis is
compressed.

plane (see Fig. 1), with x being the direction away from the
Sun’s surface.
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As = .1073 and k = 1, z0 = 1. Following Wiegelmann
et al. (2000), a small (20%) background plasma pressure pB

is added to simplify the numerical treatment. The initial con-
figuration is assumed to have uniform plasma density and the
specific internal energy profile can be derived from eq.(6):

I =
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Additionally, we add an initial wake velocity field:
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where b̂ is the unit vector in the direction of the magnetic
field and Lv is the scale-size of variation of the velocity
field. The flow is present only outside of the two separatri-
ces, where the field lines are open and is zero inside, where
the field lines are closed.

At the bottom boundary (x = 0), the field lines are tied and
the flow and the plasma are continuously resupplied with the
same value used for the initial condition to simulate the fast
wind ejected from the coronal holes. At all other boundaries,
open conditions are applied to allow the outflow of plasma.

Unlike the previous case, no initial perturbation is applied
since the error in the approximation of infinite stretching typ-
ical of the derivations leading to eq. (4) is in itself a sufficient
initial perturbation.

In the present 2D equilibrium the equilibrium vary along z
and the typical thickness of the layer downstream of the cusp
is L = Lz/20. As in the 1D case, the velocity is assumed to
have the same length scale as the magnetic field: Lv = L.

3 Simulation approach

The simulations for the present work are conducted with the
FLIP3D-MHD code (Brackbill, 1991) based on the classic
textbook viscous-resistive MHD model (see e.g. Goossens
(2003)), comprising a mass continuity equation,

dρ

dt
+ ρ∇ · u = 0 (10)

Faraday’s and Ampere’s laws,

d

dt

[
B
ρ

]
=

B
ρ
· ∇u− 1

ρ
[∇× ηJ ] (11)

µ0J = ∇×B

Ohm’s law,
E = ηJ− u×B (12)

a momentum equation,

ρ
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[
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2µ0

]
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[
∇ · BB

µ0

]
−∇ · νρΠ (13)

and an energy equation,

ρ
dI

dt
= −p∇ · u + νρ(Π ·Π) + η(J · J) (14)

where ρ is the mass density, B is the magnetic field intensity,
J is the current density, µ0 is the magnetic permeability of
vacuum, u is the fluid velocity, I is the specific internal en-
ergy, and p is the fluid pressure. The symmetric rate-of-strain
tensor, Π, is defined in the usual way (Braginskii, 1965),

Π =
1
2
[∇u +∇uT ] (15)

The pressure is given by the equation of state, p = (γ−1)ρI
with γ = 5/3. The transport coefficients are the kinematic

Fig. 1. Initial Helmet Streamer equilibrium. Note that the vertical
and horizontal axis are not on the same scale, the vertical axis is
compressed.

field. The flow is present only outside of the two separatri-
ces, where the field lines are open and is zero inside, where
the field lines are closed.

At the bottom boundary (x=0), the field lines are tied and
the flow and the plasma are continuously resupplied with the
same value used for the initial condition to simulate the fast
wind ejected from the coronal holes. At all other boundaries,
open conditions are applied to allow the outflow of plasma.

Unlike the previous case, no initial perturbation is applied
since the error in the approximation of infinite stretching typ-
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initial perturbation.
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z and the typical thickness of the layer downstream of the
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Ohm’s law,

E = ηJ − u × B (12)

a momentum equation,

ρ
du
dt

= −∇

[
p +

B2

2µ0

]
+

[
∇ ·

BB
µ0

]
− ∇ · νρ5 (13)

and an energy equation,

ρ
dI

dt
= −p∇ · u + νρ(5 · 5) + η(J · J) (14)

whereρ is the mass density,B is the magnetic field intensity,
J is the current density,µ0 is the magnetic permeability of
vacuum,u is the fluid velocity,I is the specific internal en-
ergy, andp is the fluid pressure. The symmetric rate-of-strain
tensor,5, is defined in the usual way (Braginskii, 1965),

5 =
1

2
[∇u + ∇uT

] (15)

The pressure is given by the equation of state,p=(γ−1)ρI

with γ=5/3. The transport coefficients are the kinematic
shear viscosityν and the resistivityη. The solenoidal con-
dition onB,

∇ · B = 0 (16)

is imposed throughout the evolution. As noted in the litera-
ture, the effect of gravity can be neglected within the scope of
the present paper aimed at understanding the magnetic pro-
cesses responsible for the origin of blobs in the slow solar
wind (Einaudi et al., 2001; Lapenta and Knoll, 2005).

The system under investigation is studied in a two-
dimensional plane (x, z) using FLIP-MHD, a resistive MHD
code described inBrackbill (1991). The system size in each
direction is labelledLx , Lz and a grid made of 300×600
Lagrangian markers is used in each direction arrayed ini-
tially in a 3×3 uniform formation in each cell of a 100×200
grid. The units of the simulations are normalised to the mag-
netic (and velocity) scale lengthL and to the Alfv́en time
τA = L/vA. The Lundquist number (Goedbloed and Poedts,
2004) is computed asS=µ0vAL/η and the Reynolds number
as:Rv = u0ρL/ν (using the initial uniform density and the
fast solar wind speed). The adimensional numbers are de-
fined using average quantities. Viscosity and resistivity are
uniform and constant in time in all simulations reported be-
low.

4 Non-linear evolution of the 1-D initial equilibrium

The initial state is characterised by both a flow shear and a
magnetic shear. In principle, a number of instabilities could
be present (Biskamp, 1997; Bettarini et al., 2006). However,

for the choice of parameters considered only two types of
instabilities are present.

As shown in previously published results (Einaudi et al.,
2001; Lapenta and Knoll, 2005), the resistive tearing insta-
bility is present and grows at a rate determined by the re-
sistivity of the system. The resistive tearing mode leads to
the formation of a magnetic island that mixes outer and inner
field lines. In the process, the outer solar wind can transfer
its momentum to the inner plasma and produce a net motion
of the tearing island. This process is clearly reminiscent of
the observed formation of blobs and their subsequent accel-
eration away from the Sun.

However, a second instability is present. Even in absence
of resistive MHD modes, the viscosity is itself capable of al-
tering the initial profile. Indeed, a viscous flow would tend to
flatten any flow profile in time by virtue of direct viscous drag
alone. The inner layer that is initially motionless would pro-
gressively acquire speed (Landau and Lifshitz, 1959). In the
corona, the viscosity is very low unless anomalous effects be-
come important. However, in any realistically feasible sim-
ulation, numerical viscosity has to be present to avoid the
formation of small scale structures that cannot be resolved
and would lead to numerical instabilities.

One aim of the present work is to elucidate the relative role
of this second process relative to the first. The question is: is
the slow solar wind acceleration observed in the simulations
due to the tearing instability or to the viscous drag? And how
does it scale with viscosity and resistivity?

4.1 Formation of the slow solar wind and of plasma blobs

To exemplify the typical evolution observed in the simula-
tions of the 1-D initial state, we report the results of a simu-
lation for the particular case with Lundquist numberS=104

and viscous Reynolds numberRv=104.
The initial phase of the evolution sees the formation of a

magnetic island that perturbs the initial topology of the sys-
tem and the initial flow profile. Figure2 shows the velocity
away from the Sun in false colour, superimposed on the mag-
netic field lines, at four times showing different phases of is-
land formation. The island grows and moves away from its
original formation site. Comparing the different times shown
in Fig. 2 demonstrates that the island moves along with the
flow. Note that in Fig.2, the frame of reference is chosen
stationary with the stagnant plasma, so the motion of the is-
land seen in the figure is with respect to the solar frame of
reference.

The flow profile at different times is shown in Fig.3.
The momentum transfer between the flanks and the centre
is made evident by the progressive flattening of the profile.
The central plasma is progressively accelerated and the speed
differential between the centre and the flanks diminishes with
time. The temporal evolution of the speed of the central re-
gion of the plasma is shown in Fig.4a. Two cases are shown,
besides the simulation considered above, another with higher

Ann. Geophys., 26, 3049–3060, 2008 www.ann-geophys.net/26/3049/2008/



G. Lapenta and A. L. Restante: Blob formation in the solar wind 3053
G. Lapenta and A.L. Restante: Blob formation in the solar wind 5

A) B)

C) D)

Fig. 2. Non-linear evolution of the initial force-free reversed field equilibrium. Velocity component (false colour) away from the Sun (in
the frame of reference of the Sun) and magnetic field lines (white) are shown at four different times (A: t/τA = 143, B: t/τA = 215, C:
t/τA = 229, D: t/τA = 251) in a run with S = 104 and Rv = 104.

reader with a summary of the typical evolution. Below we
investigate the main point of the present effort, namely the
causes of the observed behaviour displayed in Fig. 3. Both
the tearing instability and viscous stresses can be the cause:
to determine which dominates, we change independently vis-
cosity and resistivity. The tearing instability is proportional
to resistivity, viscous drag is proportional to viscosity. We
need to determine whether the momentum transfer is propor-
tional to viscosity or resistivity.

Figure 5 shows the summary of the different runs con-
ducted varying resistivity and viscosity. Each panel corre-
sponds to a different resistivity and reports the time evo-
lution of the maximum difference in the averaged profile
< ux(z) >x, corresponding to the differential between the
flank velocity (fast solar wind) and the central plasma (slow
solar wind). In each panel several runs are displayed, corre-
sponding to different viscosities in each run.

Two trends are clear. First, for some runs, the same pro-
gressive acceleration seen in Fig. 4 above is followed by a
disruptive phase when the boundary conditions affirm their

presence. In some cases at low Rv , the system never reaches
this state, at least before the completion of the run. While
a quantitative investigation of this boundary effect might
be of interest from the general perspective of reconnection
physics, it will not be pursued here as boundary conditions
are clearly not directly relevant to the real solar case. When
the boundary conditions affect the evolution, it simply sig-
nals the end of the relevance of the simulation to the practical
case of the Sun. Second, observing the progressive accelera-
tion phase, one unmistakable conclusion emerges: the speed
of acceleration (i.e. the slope of the curve in the figures)
is hardly affected by the resistivity but scales monotonically
and markedly with the viscosity. The conclusion regard-
ing the comparatively lower sensitivity of the acceleration
mechanism to resistivity was already discussed in a previous
work (Lapenta and Knoll, 2005). Here the focus is on the
much more apparent sensitivity to viscosity. As viscosity is
increased by two orders of magnitude from a Reynolds num-
ber of Rv = 104 to Rv = 102, the slope increases markedly:
for example, the speed at time of t/τA = 200 for the runs

Fig. 2. Non-linear evolution of the initial force-free reversed field equilibrium. Velocity component (false colour) away from the Sun (in the
frame of reference of the Sun) and magnetic field lines (white) are shown at four different times (A: t/τA=143,B: t/τA=215,C: t/τA=229,
D: t/τA=251) in a run withS=104 andRv=104.

viscosity (Rv=103) but equal resistivity is also reported. The
process of acceleration progresses in two steps. After a pro-
gressive and continuous phase of acceleration of the initially
stagnant plasma, a sudden acceleration develops when the
island becomes so big as to feel the effect of the boundary
conditions. As shown below, this last phase is only present in
the low resistivity cases and it is due to a transition from a X-
point reconnection process to a Y-point reconnection process
with a progressively more elongated leg (Biskamp, 2000)
becoming progressively more turbulent and undergoing sec-
ondary island formation. These features of the reconnection
mechanism are well known and will not be addressed here
again, the interested reader is referred to the excellent text-
book byBiskamp(2000).

The process of island formation is further shown in Fig.4b
where for the same two simulations, the reconnected flux is
shown. The onset of the faster reconnection phase also is
similarly due to the boundary conditions.

Figure4 shows a comparison of two cases with different
viscosity and demonstrates that indeed viscosity has a strong
impact on both island formation and slow solar wind accel-
eration. In the next paragraph this effect is further analysed.

4.2 Role of viscosity and resistivity

The behaviour displayed above is in agreement with previ-
ously published results (Einaudi et al., 2001; Lapenta and
Knoll, 2005) and it is reproduced primarily to provide the
reader with a summary of the typical evolution. Below we
investigate the main point of the present effort, namely the
causes of the observed behaviour displayed in Fig.3. Both
the tearing instability and viscous stresses can be the cause:
to determine which dominates, we change independently vis-
cosity and resistivity. The tearing instability is proportional
to resistivity, viscous drag is proportional to viscosity. We
need to determine whether the momentum transfer is propor-
tional to viscosity or resistivity.

Figure 5 shows the summary of the different runs con-
ducted varying resistivity and viscosity. Each panel corre-
sponds to a different resistivity and reports the time evo-
lution of the maximum difference in the averaged profile
<ux(z)>x , corresponding to the differential between the
flank velocity (fast solar wind) and the central plasma (slow
solar wind). In each panel several runs are displayed, corre-
sponding to different viscosities in each run.

Two trends are clear. First, for some runs, the same pro-
gressive acceleration seen in Fig.4 above is followed by a
disruptive phase when the boundary conditions affirm their
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A)

B)

Fig. 3. Evolution of the average velocity profile < vx(z) >x (nor-
malised to the asymptotic speed u0) for two runs starting from the
initial force-free reversed field equilibrium with the same resistivity
(S = 104) but different viscosity (panel A with Rv = 104, panel B
Rv = 103).

with S = 104 drops by 10% in the Rv = 104 case and 55%
in the Rv = 102 case. Clearly the mechanism for slow wind
acceleration appears to be more linked to the process of vis-
cous drag than to the processes related to resistivity and is-
land formation.

The either/or test just conducted seemingly appears to con-
clude that the main mechanism in action in the simulations
is just simple viscous drag. However, a closer scrutiny re-
veals that this conclusion based on the overall evolution of
the systems still misses one important contribution that the
island formation provides. The next subsection reveals this
more subtle effect.

4.3 Role of the Electric Field

A key aspect of the evolution of the system considered above
rests in the role of the electric field. The initial equilibrium
is already characterised by an electrostatic field needed to

A)

B)

Fig. 4. Evolution of the peak of the average velocity (normalized
to the asymptotic speed u0) maxz(< ux(z) >x) (A) and of the
reconnected flux (B) for two runs starting from the initial force-free
reversed field equilibrium with the same resistivity (S = 104) but
different viscosity (panel A with Rv = 104, panel B Rv = 103).

produce the velocity shear imposed initially. The subsequent
evolution of the tearing mode leads to the growth also of an
electromagnetic field.

In the present MHD treatment, the plasma flow is primar-
ily due to the drift motion caused by the presence of electric
fields:

vE×B =
E×B

B2
(17)

Once the electric field is written in terms of the vector po-
tential A and the scalar potential ϕ, the drift clearly shows
the presence of a dual nature:

vE×B = − 1
B2

(∇ϕ×B +
∂A
∂t

×B) (18)

The flow can be of two natures: electrostatic and electromag-
netic. The initial configuration has only a vx(z) component
of the flow that is caused by a Ez component of the electric
field: therefore the electric field has zero curl and it is purely
electrostatic.

Fig. 3. Evolution of the average velocity profile<vx(z)>x (nor-
malised to the asymptotic speedu0) for two runs starting from the
initial force-free reversed field equilibrium with the same resistiv-
ity (S=104) but different viscosity (panelA with Rv=104, panelB
Rv=103).

presence. In some cases at lowRv, the system never reaches
this state, at least before the completion of the run. While
a quantitative investigation of this boundary effect might
be of interest from the general perspective of reconnection
physics, it will not be pursued here as boundary conditions
are clearly not directly relevant to the real solar case. When
the boundary conditions affect the evolution, it simply sig-
nals the end of the relevance of the simulation to the practi-
cal case of the Sun. Second, observing the progressive ac-
celeration phase, one unmistakable conclusion emerges: the
speed of acceleration (i.e. the slope of the curve in the fig-
ures) is hardly affected by the resistivity but scales mono-
tonically and markedly with the viscosity. The conclusion
regarding the comparatively lower sensitivity of the accel-
eration mechanism to resistivity was already discussed in a
previous work (Lapenta and Knoll, 2005). Here the focus
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with S = 104 drops by 10% in the Rv = 104 case and 55%
in the Rv = 102 case. Clearly the mechanism for slow wind
acceleration appears to be more linked to the process of vis-
cous drag than to the processes related to resistivity and is-
land formation.

The either/or test just conducted seemingly appears to con-
clude that the main mechanism in action in the simulations
is just simple viscous drag. However, a closer scrutiny re-
veals that this conclusion based on the overall evolution of
the systems still misses one important contribution that the
island formation provides. The next subsection reveals this
more subtle effect.

4.3 Role of the Electric Field

A key aspect of the evolution of the system considered above
rests in the role of the electric field. The initial equilibrium
is already characterised by an electrostatic field needed to
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Fig. 4. Evolution of the peak of the average velocity (normalized
to the asymptotic speed u0) maxz(< ux(z) >x) (A) and of the
reconnected flux (B) for two runs starting from the initial force-free
reversed field equilibrium with the same resistivity (S = 104) but
different viscosity (panel A with Rv = 104, panel B Rv = 103).

produce the velocity shear imposed initially. The subsequent
evolution of the tearing mode leads to the growth also of an
electromagnetic field.

In the present MHD treatment, the plasma flow is primar-
ily due to the drift motion caused by the presence of electric
fields:

vE×B =
E×B

B2
(17)

Once the electric field is written in terms of the vector po-
tential A and the scalar potential ϕ, the drift clearly shows
the presence of a dual nature:

vE×B = − 1
B2

(∇ϕ×B +
∂A
∂t

×B) (18)

The flow can be of two natures: electrostatic and electromag-
netic. The initial configuration has only a vx(z) component
of the flow that is caused by a Ez component of the electric
field: therefore the electric field has zero curl and it is purely
electrostatic.

Fig. 4. Evolution of the minimum of the average velocity (normal-
ized to the asymptotic speedu0) minz(<ux(z)>x) (A) and of the
reconnected flux(B) for two runs starting from the initial force-free
reversed field equilibrium with the same resistivity (S=104) but dif-
ferent viscosity (panel A withRv=104, panel BRv=103).

is on the much more apparent sensitivity to viscosity. As
viscosity is increased by two orders of magnitude from a
Reynolds number ofRv=104 to Rv=102, the slope increases
markedly: for example, the speed at time oft/τA=200 for
the runs withS=104 drops by 10% in theRv=104 case and
55% in theRv=102 case. Clearly the mechanism for slow
wind acceleration appears to be more linked to the process of
viscous drag than to the processes related to resistivity and
island formation.

The either/or test just conducted seemingly appears to con-
clude that the main mechanism in action in the simulations
is just simple viscous drag. However, a closer scrutiny re-
veals that this conclusion based on the overall evolution of
the systems still misses one important contribution that the
island formation provides. The next subsection reveals this
more subtle effect.
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A) S = 104 B) S = 2 · 103

C) S = 103 D) S = 2 · 102

Fig. 5. Evolution of the difference ∆Vx between the maximum (fast solar wind) and minimum (slow solar wind) in the profile of the average
vertical velocity (normalized to the asymptotic speed u0) maxz(< ux(z) >x). Several runs are shown starting from the same initial force-
free reversed field equilibrium, each panel corresponds to a different resistivity: A) S = 104, B) S = 2 ·103, C) S = 103 and D) S = 2 ·102.
In each panel 5 viscosities are shown, corresponding in order from the top curve to the bottom curve to Rv = 104, Rv = 2 · 103, Rv = 103,
Rv = 2 · 102, Rv = 102. Note that in the legends, the viscosity is reported directly rather than the Reynolds number: in our normalized
units they are simply one the reciprocal of the other.

The tearing mode is a mode primarily involving the evolu-
tion of the out of plane component of the vector potential
A and it is inductive in nature since it produces an elec-
tromagnetic field thanks to the topological variations of B.
However, in presence of out of plane components of the
field, there is also an electrostatic potential associate with
it (Daughton and Karimabadi, 2005).

The viscous effect alone, instead, does not directly affect
the magnetic field and causes electrostatic fields. If we con-
sider the evolution of the initial state under the action of vis-
cosity alone, the full set of equations reduces to just:

∂ux

∂t
= − 1

Rv

∂2ux

∂z
(19)

governing the only remaining variable ux(z). Using Ohm’s
law, it follows:

∇× E = −V∇ ·B + B∇ ·V −B · ∇v + v · ∇B (20)

where all terms on the right-hand side are zero: the first be-
cause of the absence of magnetic mono-poles, the second be-
cause the only non-zero component is ux which is only a
function of z (and therefore the divergence of u is zero), the
third because ux is constant along field lines, and the last
because, similarly, B does not change along the flow lines.
The variation of the velocity field generated by viscous drag
causes an electric field with zero curl, i.e. it generates an
electrostatic field.

The effect of viscosity alone can be computed easily by
solving directly eq. (19). As it is well known (Barenblatt,
1996), a linear diffusion equation like eq. (19) admits a self-
similar analytical solution of the form:

ux = u0
1

t1/2
e−Rvz2/4t (21)

that provides a simple scaling law for the time-variation of
the differential in the speed of the central initially stagnant

Fig. 5. Evolution of the difference1Vx between the maximum (fast solar wind) and minimum (slow solar wind) in the profile of the average
vertical velocity (normalized to the asymptotic speedu0). Several runs are shown starting from the same initial force-free reversed field
equilibrium, each panel corresponds to a different resistivity:(A) S=104, (B) S=2 · 103, (C) S=103 and(D) S=2 · 102. In each panel 5
viscosities are shown, corresponding in order from the top curve to the bottom curve toRv=104, Rv=2·103, Rv=103, Rv=2·102, Rv=102.

4.3 Role of the electric field

A key aspect of the evolution of the system considered above
rests in the role of the electric field. The initial equilibrium
is already characterised by an electrostatic field needed to
produce the velocity shear imposed initially. The subsequent
evolution of the tearing mode leads to the growth also of an
electromagnetic field.

In the present MHD treatment, the plasma flow is primar-
ily due to the drift motion caused by the presence of electric
fields:

vE×B =
E × B

B2
(17)

Once the electric field is written in terms of the vector po-
tential A and the scalar potentialϕ, the drift clearly shows
the presence of a dual nature:

vE×B = −
1

B2
(∇ϕ × B +

∂A
∂t

× B) (18)

The flow can be of two natures: electrostatic and electromag-
netic. The initial configuration has only avx(z) component
of the flow that is caused by aEz component of the electric
field: therefore the electric field has zero curl and it is purely
electrostatic.

The tearing mode is a mode primarily involving the evolu-
tion of the out of plane component of the vector potentialA
and it is inductive in nature since it produces an electromag-
netic field thanks to the topological variations ofB. However,
in presence of out of plane components of the field, there is
also an electrostatic potential associated with it (Daughton
and Karimabadi, 2005).

The viscous effect alone, instead, does not directly affect
the magnetic field and causes electrostatic fields. If we con-
sider the evolution of the initial state under the action of vis-
cosity alone, the full set of equations reduces to just:

∂ux

∂t
= −

1

Rv

∂2ux

∂z
(19)

governing the only remaining variableux(z). Using Ohm’s
law, it follows:

∇ × E = −V∇ · B + B∇ · V − B · ∇v + v · ∇B (20)

where all terms on the right-hand side are zero: the first be-
cause of the absence of magnetic mono-poles, the second be-
cause the only non-zero component isux which is only a
function ofz (and therefore the divergence ofu is zero), the
third becauseux is constant along field lines, and the last
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because, similarly,B does not change along the flow lines.
The variation of the velocity field generated by viscous drag
causes an electric field with zero curl, i.e. it generates an elec-
trostatic field.

The effect of viscosity alone can be computed easily by
solving directly Eq. (19). As it is well known (Barenblatt,
1996), a linear diffusion equation like Eq. (19) admits a self-
similar analytical solution of the form:

ux = u0
1

t1/2
e−Rvz

2/4t (21)

that provides a simple scaling law for the time-variation of
the differential in the speed of the central initially stagnant
plasma and the outer fast solar wind:1Vx∝1/

√
t .

To illustrate the effect of viscosity alone, we have solved
the equation for viscous drag (i.e. Eq.19) numerically start-
ing with the same initial profile considered in the full MHD
simulations and for the same ranges of viscosity. Figure6
shows the evolution in time of the jump in speed between the
central plasma and the outer fast solar wind. The results can
be compared directly with Fig.5 for the full MHD simula-
tions. As can be observed the additional effect of the pres-
ence of the magnetic field evolution is very significant. The
general shape of the time evolution is the same in the purely
viscous case as in the full MHD case, and in both cases re-
sembles the inverse-square-root power law predicted by the
self-similar solution. A quantitative comparison reveals that
the evolution with full MHD has a very much increased rate
of decay. For example, considering the caseRv=103, at time
t/τA=200, the full MHD simulation shows a difference in
speed of 0.65, while in the purely viscous case this differ-
ence is still 0.87. Clearly, the full MHD evolution provides
additional drag forces that transcend the direct viscous drag.

The additional force is coming from the electric field.
Figure 7 shows the vector and scalar potential at time

t/τA=76, for the same simulation shown in Fig.2 above.
A significant electrostatic field is present form the beginning
and it is caused, as noted above, by the need to support the
initial sheared velocity field. The history of the electric field
energy is shown in Fig.8. The partial contribution of the
electrostatic field is shown as a dashed line. Except for thez

component that includes the initial strong electrostatic field
supporting the sheared flow, the electromagnetic component
proper of the tearing mode dominates all components. The
electric field perturbation is therefore primarily caused by the
tearing growth and not by viscous drag.

The tearing instability developing in the centre of the sys-
tem moves with respect to the plasma in the flanks as shown
in Fig. 2. The island remain localised in the centre of the
plasma and it comoves with the local plasma speed. The di-
rect viscous drag is small. However the island’s electric field
structure extends far beyond it and well into the flanks, as
shown in Fig.7. These fields move with the island speed and
have a relative speed with respect to the fast solar wind in the
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Fig. 6. Evolution of the difference in velocity ∆Vx between the
central plasma (initially at rest) and the outer fast solar wind. The
results are from a simple purely viscous simulation that neglects any
magnetic field and resistive effect. Five viscosities are shown, from
top to bottom: Rv = 104, Rv = 2 · 103, Rv = 103, Rv = 2 · 102

and Rv = 102.

plasma and the outer fast solar wind: ∆Vx ∝ 1/
√

t.
To illustrate the effect of viscosity alone, we have solved

the equation for viscous drag (i.e. eq. (19)) numerically start-
ing with the same initial profile considered in the full MHD
simulations and for the same ranges of viscosity. Figure 6
shows the evolution in time of the jump in speed between the
central plasma and the outer fast solar wind. The results can
be compared directly with Fig. 5 for the full MHD simula-
tions. As can be observed the additional effect of the pres-
ence of the magnetic field evolution is very significant. The
general shape of the time evolution is the same in the purely
viscous case as in the full MHD case, and in both cases re-
sembles the inverse-square-root power law predicted by the
self-similar solution. A quantitative comparison reveals that
the evolution with full MHD has a very much increased rate
of decay. For example, considering the case Rv = 103, at
time t/τA = 200, the full MHD simulation shows a differ-
ence in speed of 0.65, while in the purely viscous case this
difference is still 0.87. Clearly, the full MHD evolution pro-
vides additional drag forces that transcend the direct viscous
drag.

The additional force is coming from the electric field.
Figure 7 shows the vector and scalar potential at time

t/τA = 76, for the same simulation shown in Figs. 2 above.
A significant electrostatic field is present form the beginning
and it is caused, as noted above, by the need to support the
initial sheared velocity field. The history of the electric field
energy is shown in Fig. 8. The partial contribution of the
electrostatic field is shown as a dashed line. Except for the z
component that includes the initial strong electrostatic field
supporting the sheared flow, the electromagnetic component
proper of the tearing mode dominates all components. The
electric field perturbation is therefore primarily caused by the

Fig. 7. Scalar potential and the three components of the time deriva-
tive of the vector potential are shown in the four panels at time
t = 76 for a run starting from the initial force-free reversed field
equilibrium with S = 104 and Rv = 104 (same run considered in
Fig. 2). The different components are listed above each label.

Fig. 8. History of the electric field energy for a run with the ini-
tial force-free reversed field equilibrium and with S = 104 and
Rv = 104. The electrostatic component is shown as a dashed line,
the total as a solid line. Note that in a 2D simulation in the (x, z)
plane only the two in-plane components can be present for the elec-
trostatic field.

tearing growth and not by viscous drag.
The tearing instability developing in the centre of the sys-

tem moves with respect to the plasma in the flanks as shown
in Fig. 2. The island remain localised in the centre of the
plasma and it comoves with the local plasma speed. The di-
rect viscous drag is small. However the island’s electric field
structure extends far beyond it and well into the flanks, as
shown in Fig. 7. These fields move with the island speed and
have a relative speed with respect to the fast solar wind in the

Fig. 6. Evolution of the difference in velocity1Vx between the
central plasma (initially at rest) and the outer fast solar wind. The
results are from a simple purely viscous simulation that neglects
any magnetic field and resistive effect. Five viscosities are shown,
from top to bottom:Rv=104, Rv=2 · 103, Rv=103, Rv=2 · 102

andRv=102.

flanks. The expanded range of influence of the island deter-
mined by the electric fields allows for an enhanced drag that
no longer happens only across layers touching each other but
extends globally as the electric field of the island feels the
drag force over the whole domain.

5 Non-linear evolution of the initial 2-D helmet
streamer equilibrium

The 2-D helmet streamer configuration considered is char-
acterised by the presence of a cusp region above the helmet
streamer where the field lines from converging towards the
cusp at lower altitudes become essentially parallel. In this
region the field-aligned speed also changes direction from
a converging motion at lower altitudes to a parallel motion
above. In the 1-D equilibrium considered above, the focus
was entirely on the region above the cusp where the flow and
filed lines are initially straight and parallel. The 2-D equilib-
rium with cusp, instead, allows us to consider also the motion
in the lower part where the flow and the field lines are con-
verging.

Converging motions are particularly relevant to the forma-
tion of blobs observed in the LASCO images (Wang et al.,
1998): converging motions cause magnetic fluxes to pile up
towards the converging point and can drive magnetic recon-
nection. Magnetic reconnection driven by macroscopic flows
becomes enslaved to the flows and its rate no longer depends
on the details of the microscopic physics allowing recon-
nection (Biskamp, 2000; Dorelli and Birn, 2003; Knoll and
Chaćon, 2002). In a previous study of the 2-D configuration
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Fig. 6. Evolution of the difference in velocity ∆Vx between the
central plasma (initially at rest) and the outer fast solar wind. The
results are from a simple purely viscous simulation that neglects any
magnetic field and resistive effect. Five viscosities are shown, from
top to bottom: Rv = 104, Rv = 2 · 103, Rv = 103, Rv = 2 · 102

and Rv = 102.

plasma and the outer fast solar wind: ∆Vx ∝ 1/
√

t.
To illustrate the effect of viscosity alone, we have solved

the equation for viscous drag (i.e. eq. (19)) numerically start-
ing with the same initial profile considered in the full MHD
simulations and for the same ranges of viscosity. Figure 6
shows the evolution in time of the jump in speed between the
central plasma and the outer fast solar wind. The results can
be compared directly with Fig. 5 for the full MHD simula-
tions. As can be observed the additional effect of the pres-
ence of the magnetic field evolution is very significant. The
general shape of the time evolution is the same in the purely
viscous case as in the full MHD case, and in both cases re-
sembles the inverse-square-root power law predicted by the
self-similar solution. A quantitative comparison reveals that
the evolution with full MHD has a very much increased rate
of decay. For example, considering the case Rv = 103, at
time t/τA = 200, the full MHD simulation shows a differ-
ence in speed of 0.65, while in the purely viscous case this
difference is still 0.87. Clearly, the full MHD evolution pro-
vides additional drag forces that transcend the direct viscous
drag.

The additional force is coming from the electric field.
Figure 7 shows the vector and scalar potential at time

t/τA = 76, for the same simulation shown in Figs. 2 above.
A significant electrostatic field is present form the beginning
and it is caused, as noted above, by the need to support the
initial sheared velocity field. The history of the electric field
energy is shown in Fig. 8. The partial contribution of the
electrostatic field is shown as a dashed line. Except for the z
component that includes the initial strong electrostatic field
supporting the sheared flow, the electromagnetic component
proper of the tearing mode dominates all components. The
electric field perturbation is therefore primarily caused by the

Fig. 7. Scalar potential and the three components of the time deriva-
tive of the vector potential are shown in the four panels at time
t = 76 for a run starting from the initial force-free reversed field
equilibrium with S = 104 and Rv = 104 (same run considered in
Fig. 2). The different components are listed above each label.

Fig. 8. History of the electric field energy for a run with the ini-
tial force-free reversed field equilibrium and with S = 104 and
Rv = 104. The electrostatic component is shown as a dashed line,
the total as a solid line. Note that in a 2D simulation in the (x, z)
plane only the two in-plane components can be present for the elec-
trostatic field.

tearing growth and not by viscous drag.
The tearing instability developing in the centre of the sys-

tem moves with respect to the plasma in the flanks as shown
in Fig. 2. The island remain localised in the centre of the
plasma and it comoves with the local plasma speed. The di-
rect viscous drag is small. However the island’s electric field
structure extends far beyond it and well into the flanks, as
shown in Fig. 7. These fields move with the island speed and
have a relative speed with respect to the fast solar wind in the

Fig. 7. Scalar potential and the three components of the time derivative of the vector potential are shown in the four panels at timet=76 for
a run starting from the initial force-free reversed field equilibrium withS=104 andRv=104 (same run considered in Fig.2). The different
components are listed above each panel.

studied here, the flow toward the cusp produced a specific
reconnection process. The speed of this reconnection pro-
cess is proportional to the incoming flux. It is insensitive to
the resistive processes that can break up the frozen-in con-
dition (Lapenta and Knoll, 2005). As illustrated byLapenta
and Knoll (2005), the mechanism allowing the decoupling
of resistivity and reconnection rate is the flux pile up. Flux
piles up in front of the diffusion region to bring the speed of
reconnection up to the needed rate (Dorelli and Birn, 2003).
Indeed, increasing the magnetic field strength at the inflow
side of the diffusion region increases the Alfvén speed and
speeds up the whole process of reconnection.

In the present study, we consider, instead, the role of vis-
cosity. As the brief summary of the previous understand-
ing implies, the expected outcome is that in driven reconnec-
tion viscosity should be a diminishing factor: as viscosity
increases, the flows that drive reconnection become impeded
by the viscous drag and see their ability to drive reconnection
diminished. Therefore, the expectation is that viscosity is not
a needed ingredient in the physics leading to blob formation
in the region around the cusp.

To investigate this point, Fig.9 shows the magnetic sur-
faces after the formation of a magnetic island above the cusp
of the helmet streamer. As can be observed, indeed the
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Fig. 6. Evolution of the difference in velocity ∆Vx between the
central plasma (initially at rest) and the outer fast solar wind. The
results are from a simple purely viscous simulation that neglects any
magnetic field and resistive effect. Five viscosities are shown, from
top to bottom: Rv = 104, Rv = 2 · 103, Rv = 103, Rv = 2 · 102

and Rv = 102.

plasma and the outer fast solar wind: ∆Vx ∝ 1/
√

t.
To illustrate the effect of viscosity alone, we have solved

the equation for viscous drag (i.e. eq. (19)) numerically start-
ing with the same initial profile considered in the full MHD
simulations and for the same ranges of viscosity. Figure 6
shows the evolution in time of the jump in speed between the
central plasma and the outer fast solar wind. The results can
be compared directly with Fig. 5 for the full MHD simula-
tions. As can be observed the additional effect of the pres-
ence of the magnetic field evolution is very significant. The
general shape of the time evolution is the same in the purely
viscous case as in the full MHD case, and in both cases re-
sembles the inverse-square-root power law predicted by the
self-similar solution. A quantitative comparison reveals that
the evolution with full MHD has a very much increased rate
of decay. For example, considering the case Rv = 103, at
time t/τA = 200, the full MHD simulation shows a differ-
ence in speed of 0.65, while in the purely viscous case this
difference is still 0.87. Clearly, the full MHD evolution pro-
vides additional drag forces that transcend the direct viscous
drag.

The additional force is coming from the electric field.
Figure 7 shows the vector and scalar potential at time

t/τA = 76, for the same simulation shown in Figs. 2 above.
A significant electrostatic field is present form the beginning
and it is caused, as noted above, by the need to support the
initial sheared velocity field. The history of the electric field
energy is shown in Fig. 8. The partial contribution of the
electrostatic field is shown as a dashed line. Except for the z
component that includes the initial strong electrostatic field
supporting the sheared flow, the electromagnetic component
proper of the tearing mode dominates all components. The
electric field perturbation is therefore primarily caused by the

Fig. 7. Scalar potential and the three components of the time deriva-
tive of the vector potential are shown in the four panels at time
t = 76 for a run starting from the initial force-free reversed field
equilibrium with S = 104 and Rv = 104 (same run considered in
Fig. 2). The different components are listed above each label.

Fig. 8. History of the electric field energy for a run with the ini-
tial force-free reversed field equilibrium and with S = 104 and
Rv = 104. The electrostatic component is shown as a dashed line,
the total as a solid line. Note that in a 2D simulation in the (x, z)
plane only the two in-plane components can be present for the elec-
trostatic field.

tearing growth and not by viscous drag.
The tearing instability developing in the centre of the sys-

tem moves with respect to the plasma in the flanks as shown
in Fig. 2. The island remain localised in the centre of the
plasma and it comoves with the local plasma speed. The di-
rect viscous drag is small. However the island’s electric field
structure extends far beyond it and well into the flanks, as
shown in Fig. 7. These fields move with the island speed and
have a relative speed with respect to the fast solar wind in the

Fig. 8. History of the electric field energy for a run with the initial
force-free reversed field equilibrium and withS=104 andRv=104.
The electrostatic component is shown as a dashed line, the total as a
solid line. Note that in a 2-D simulation in the(x, z) plane only the
two in-plane components can be present for the electrostatic field.
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flanks. The expanded range of influence of the island deter-
mined by the electric fields allows for an enhanced drag that
no longer happens only across layers touching each other but
extends globally as the electric field of the island feels the
drag force over the whole domain.

5 Non-linear evolution of the initial 2D helmet streamer
equilibrium

The 2D helmet streamer configuration considered is charac-
terised by the presence of a cusp region above the helmet
streamer where the field lines from converging towards the
cusp at lower altitudes become essentially parallel. In this
region the field-aligned speed also changes direction from
a converging motion at lower altitudes to a parallel motion
above. In the 1D equilibrium considered above, the focus
was entirely on the region above the cusp where the flow and
filed lines are initially straight and parallel. The 2D equilib-
rium with cusp, instead, allows us to consider also the motion
in the lower part where the flow and the field lines are con-
verging.

Converging motions are particularly relevant to the forma-
tion of blobs observed in the LASCO images (Wang et al.,
1998): converging motions cause magnetic fluxes to pile up
towards the converging point and can drive magnetic recon-
nection. Magnetic reconnection driven by macroscopic flows
becomes enslaved to the flows and its rate no longer depends
on the details of the microscopic physics allowing recon-
nection (Biskamp, 2000; Dorelli and Birn, 2003; Knoll and
Chacón, 2002). In a previous study of the 2D configuration
studied here, the flow toward the cusp produces a specific
reconnection process. The speed of this reconnection pro-
cess is proportional to the incoming flux. It is insensitive to
the resistive processes that can break up the frozen-in con-
dition (Lapenta and Knoll, 2005). As illustrated by Lapenta
and Knoll (2005), the mechanism allowing the decoupling
of resistivity and reconnection rate is the flux pile up. Flux
piles up in front of the diffusion region to bring the speed of
reconnection up to the needed rate (Dorelli and Birn, 2003).
Indeed, increasing the magnetic field strength at the inflow
side of the diffusion region increases the Alfvén speed and
speeds up the whole process of reconnection.

In the present study, we consider, instead, the role of vis-
cosity. As the brief summary of the previous understand-
ing implies, the expected outcome is that in driven reconnec-
tion viscosity should be a diminishing factor: as viscosity
increases, the flows that drive reconnection become impeded
by the viscous drag and see their ability to drive reconnection
diminished. Therefore, the expectation is that viscosity is not
a needed ingredient in the physics leading to blob formation
in the region around the cusp.

To investigate this point, Fig. 9 shows the magnetic sur-
faces after the formation of a magnetic island above the cusp
of the helmet streamer. As can be observed, indeed the pro-
cess happens regardless of viscosity, and, as expected, the
more viscous run shows a diminished speed of formation of

A) Rv = 103

B) Rv = 104

Fig. 9. Non-linear evolution of the initial 2D helmet streamer equi-
librium. Contours of the vector potential Ay , representing magnetic
surfaces, at time t/τA = 200

the island. At a given same time in the two runs, the island is
less developed in the higher viscosity case.

This conclusion is further confirmed by Fig. 10 that shows
the evolution of the reconnected flux for the two runs with
different viscosity (but equal resistivity). The reconnection
process is similar but slightly faster for the lower viscosity
run.

However, the fundamental difference of the 2D equilib-
rium when compared with the 1D equilibrium of the previous
section is that also the acceleration of the blob is independent
of viscosity. The mechanism allowing the acceleration is no
longer the viscous drag exerted by the outer plasma on the
forming island (and mediated by the electric field) but rather
is directly the converging flow at the cusp.

Figure 11 shows the vertical speed in the same two runs
with different viscosity considered above. The flow velocity
originating from the open field lines converges and focuses
at the cusp in the region right below the forming island. The
island finds itself in the same situation of a ball sitting atop

Fig. 9. Non-linear evolution of the initial 2-D helmet streamer equi-
librium. Contours of the vector potentialAy , representing magnetic
surfaces, at timet/τA=200

process happens regardless of viscosity, and, as expected, the
more viscous run shows a diminished speed of formation of
the island. At a given same time in the two runs, the island is
less developed in the higher viscosity case.

This conclusion is further confirmed by Fig.10that shows
the evolution of the reconnected flux for the two runs with
different viscosity (but equal resistivity). The reconnection
process is similar but slightly faster for the lower viscosity
run.

However, the fundamental difference of the 2-D equilib-
rium when compared with the 1-D equilibrium of the previ-
ous section is that also the acceleration of the blob is indepen-
dent of viscosity. The mechanism allowing the acceleration
is no longer the viscous drag exerted by the outer plasma on
the forming island (augmented by the electric field) but rather
is directly the converging flow at the cusp.

Fig. 10. Non-linear evolution of the initial 2-D helmet streamer
equilibrium. Comparison of the time evolution for the reconnected
flux in two runs with different viscosities (Rv=103 andRv=104)
but equal resistivityS=104.

Figure11 shows the vertical speed in the same two runs
with different viscosity considered above. The flow velocity
originating from the open field lines converges and focuses
at the cusp in the region right below the forming island. The
island finds itself in the same situation of a ball sitting atop
a jet in a fountain: it is pushed by the jetting plasma. The
converging flow focuses at the cusp and pushes the island
upward by direct momentum transfer from the plasma to the
island field lines. Viscous drag is no longer needed.

This last conclusion is demonstrated by Fig.12that shows
the acceleration of the initially stagnant plasma above the
cusp as a function of time. Clearly, viscosity is not the cause
of the acceleration but rather just as it slows down by a small
but perceptible amount the process of reconnection, it also
slows down the ability of the converging flow to focus at the
cusp and push the forming island upward.

6 Conclusions

We have investigated the role of viscosity in the physical
mechanisms responsible for the formation of blobs in the
slow solar wind. We started from two types of models. The
first is a initial 1-D equilibrium proposed byEinaudi et al.
(2001) and designed to capture the field reversal and the flow
shear present in the plasma above the helmet streamers in
the regions where blobs have been observed to form in the
LASCO images (Wang et al., 1998). The second model is
based on a 2-D equilibrium that extends the previous case by
including the effect of converging flows at the cusp imme-
diately above a helmet streamer (Lapenta and Knoll, 2005).
The role of viscosity is different in the two cases.
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Fig. 10. Non-linear evolution of the initial 2D helmet streamer equi-
librium. Comparison of the time evolution for the reconnected flux
in two runs with different viscosities (Rv = 103 and Rv = 104)
but equal resistivity S = 104.

a jet in a fountain: it is pushed by the jetting plasma. The
converging flow focuses at the cusp and pushes the island
upward by direct momentum transfer from the plasma to the
island field lines. Viscous drag is no longer needed.

This last conclusion is demonstrated by Fig. 12 that shows
the acceleration of the initially stagnant plasma above the
cusp as a function of time. Clearly, viscosity is not the cause
of the acceleration but rather just as it slows down by a small
but perceptible amount the process of reconnection, it also
slows down the ability of the converging flow to focus at the
cusp and push the forming island upward.

6 Conclusions

We have investigated the role of viscosity in the physical
mechanisms responsible for the formation of blobs in the
slow solar wind. We started from two types of models. The
first is a initial 1D equilibrium proposed by Einaudi et al.
(2001) and designed to capture the field reversal and the flow
shear present in the plasma above the helmet streamers in
the regions where blobs have been observed to form in the
LASCO images (Wang et al., 1998). The second model is
based on a 2D equilibrium that extends the previous case by
including the effect of converging flows at the cusp imme-
diately above a helmet streamer (Lapenta and Knoll, 2005).
The role of viscosity is different in the two cases.

In the 1D initial equilibrium, viscosity is shown to provide
the basic mechanism for momentum transfer from the slow
solar wind to the forming blob. The viscous drag produces a
progressive acceleration of the plasma blob. The rate of in-
crease of the slow solar wind speed (acceleration) is propor-
tional to the viscosity in the simulation. However, an unex-
pected finding is that viscosity is not acting alone in its usual

A) Rv = 103

B) Rv = 104

Fig. 11. Non-linear evolution of the initial 2D helmet streamer
equilibrium. False colour representation of the vertical speed away
from the Sun ux (in the frame of reference of the Sun), at time
t/τA = 200. Two runs are shown with different viscosities (panel
A:Rv = 103 and panel B: Rv = 104) but equal resistivity S = 104.

local drag action across layers of flowing plasma. Rather, the
coupling between the accelerating island and the fast solar
wind in the flanks is mediated by the global electric fields
caused by the tearing instability forming the island. A direct
numerical comparison of the evolution under pure viscous
action and the full MHD evolution including the generation
of electromagnetic fields due to the tearing instability proves
that the drag action is much increased from simple viscous
drag.

In the 2D initial configuration, the momentum transfer ac-
tion is completely different. The viscous drag is not a de-
termining factor in that it does not provide the mechanism
for momentum transfer from the fast wind to the forming is-
land. In the 2D case, the flow merges at the cusp and simply
pushes the island by direct momentum transfer acting in the
same way a ball is pushed up by jetting water in a fountain.
The momentum transfer in this case is coming directly by

Fig. 11. Non-linear evolution of the initial 2-D helmet streamer
equilibrium. False colour representation of the vertical speed away
from the Sunux (in the frame of reference of the Sun), at time
t/τA=200. Two runs are shown with different viscosities (panelA:
Rv=103 and panelB: Rv=104) but equal resistivityS=104.

In the 1-D initial equilibrium, viscosity is shown to pro-
vide the basic mechanism for momentum transfer from the
slow solar wind to the forming blob. The viscous drag pro-
duces a progressive acceleration of the plasma blob. The
rate of increase of the slow solar wind speed (acceleration)
is proportional to the viscosity in the simulation. However,
an unexpected finding is that viscosity is not acting alone in
its usual local drag action across layers of flowing plasma.
Rather, the coupling between the accelerating island and the
fast solar wind in the flanks is mediated by the global electric
fields caused by the tearing instability forming the island. A

Fig. 12. Comparison of the time evolution of the vertical veloc-
ity in the central axis in two runs starting from the initial 2-D hel-
met streamer equilibrium with different viscosities (Rv=103 and
Rv=104) but equal resistivityS=104.

direct numerical comparison of the evolution under pure vis-
cous action and the full MHD evolution including the gener-
ation of electromagnetic fields due to the tearing instability
proves that the drag action is much increased from simple
viscous drag.

In the 2-D initial configuration, the momentum transfer
action is completely different. The viscous drag is not a de-
termining factor in that it does not provide the mechanism
for momentum transfer from the fast wind to the forming is-
land. In the 2-D case, the flow merges at the cusp and simply
pushes the island by direct momentum transfer acting in the
same way a ball is pushed up by jetting water in a fountain.
The momentum transfer in this case is coming directly by
the action of plasma particles directed toward the magnetic
filed lines of the island and being deflected by them. The
change in momentum of deflected particles provides a direct
accelerating force. Viscosity has no role to play and its effect
is just to diminish the flows and to reduce the rate of island
formation and its subsequent acceleration.

The results presented are relevant to the Sun where vis-
cosity and resistivity due to direct collisional transport are
extremely low. The ability to explain both in the 1-D and in
the 2-D case how momentum transfer is provided by extra
effects not directly due to viscosity is crucial. The results ob-
tained here, as all other results obtainable within the range of
currently achievable simulation cannot properly use the vis-
cosity and resistivity of the real corona and cannot account
self-consistently for anomalous processes. It is therefore cru-
cial to show that the accelerating mechanisms presented here
are indeed stronger than purely viscous processes would pro-
duce and can sustain the scaling to realistic coronal parame-
ters.

We remind the reader that we conducted the research here
on a 2-D Cartesian geometry where a number of processes
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are not considered: the expanding geometry around the
Sun (Rappazzo et al., 2005), the possible presence of Kelvin-
Helmoltz instabilities driven in 3-D systems by differential
foot-point motion (Lapenta and Knoll, 2003) and the expan-
sion and acceleration of the solar wind away from the Sun.
The role of gravity is also an important element in comput-
ing correctly the blob acceleration. Future work will consider
how the conclusions reached here are modified by these ad-
ditional effects.
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Streamer Blobs Prevent the Buildup of the Interplanetary Mag-
netic Field?, Astrophys. J. Lett., 511, L125–L128, 1999.

Wang, Y.-M., Sheeley, Jr., N. R., Walters, J. H., Brueckner, G. E.,
Howard, R. A., Michels, D. J., Lamy, P. L., Schwenn, R., and
Simnett, G. M.: Origin of Streamer Material in the Outer Corona,
Astrophys. J. Lett., 498, L165, 1998.

Wiegelmann, T., Schindler, K., and Neukirch, T.: Helmet Stream-
ers with Triple Structures: Weakly Two-Dimensional Stationary
States, Solar Phys., 180, 439–460, 1998.

Wiegelmann, T., Schindler, K., and Neukirch, T.: Helmet Streamers
with Triple Structures: Simulations of resistive dynamics, Solar
Phys., 191, 391–407, 2000.

Wu, S. T., Wang, A. H., Plunkett, S. P., and Michels, D. J.: Evo-
lution of Global-Scale Coronal Magnetic Field due to Magnetic
Reconnection: The Formation of the Observed Blob Motion in
the Coronal Streamer Belt, Astrophys. J., 545, 1101–1115, 2000.

Ann. Geophys., 26, 3049–3060, 2008 www.ann-geophys.net/26/3049/2008/


