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Abstract. A campaign to study turbulence in the meso-
sphere, over low latitudes in India, using rocket-borne mea-
surements and Indian MST radar, was conducted during July
2004. A rocket-borne Langmuir probe detected a spectrum
of electron density irregularities, with scale sizes in the range
of about 1 m to 1 km, in 67.5–78.0 km and 84–89 km alti-
tude regions over a low latitude station Sriharikota (13.6◦ N,
80.2◦ E). A rocket-borne chaff experiment measured zonal
and meridional winds about 30 min after the Langmuir probe
flight. The MST radar located at Gadanki (13.5◦ N, 79.2◦ E),
which is about 100 km west of Sriharikota, also detected the
presence of a strong scattering layer in 73.5–77.5 km region
from which radar echoes corresponding to 3 m irregularities
were received. Based on the region of occurrence of irregu-
larities, which was highly collisional, presence of significant
shears in zonal and meridional components of wind mea-
sured by the chaff experiment, 10 min periodicity in zonal
and meridional winds obtained by the MST radar and the
nature of wave number spectra of the irregularities, it is sug-
gested that the observed irregularities were produced through
the neutral turbulence mechanism. The percentage ampli-
tude of fluctuations across the entire scale size range showed
that the strength of turbulence was stronger in the lower al-
titude regions and decreased with increasing altitude. It was
also found that the amplitude of fluctuations was large in re-
gions of steeper electron density gradients. MST radar ob-
servations showed that at smaller scales of turbulence such
as 3 m, (a) the thickness of the turbulent layer was between
2 and 3 km and (b) and fine structures, with layer thick-
nesses of about a km or less were also embedded in these lay-
ers. Rocket also detected 3-m fluctuations, which were very
strong (a few percent) in lower altitudes (67.5 to 71.0 km)
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and small but clearly well above the noise floor at higher alti-
tudes. Rocket and radar results also point to the possibility of
existence of thin layers of turbulence (<450 m). The turbu-
lence parameters estimated from rocket-borne measurements
of electron density fluctuations are consistent with those de-
termined from MST radar observed Doppler spectra and the
earlier works.

Keywords. Ionosphere (Ionosphere-atmosphere inter-
actions; Ionospheric irregularities) – Meteorology and
atmospheric dynamics (Turbulence)

1 Introduction

It is known that dynamical and convective instabilities con-
tribute significantly to the dissipation of large-scale motions
and the generation of turbulence in the middle atmosphere.
The atmospheric gravity waves, which attain saturation am-
plitudes in the mesosphere, play a dominant role in the gen-
eration of instabilities leading to generation of turbulence.
The dissipation of gravity waves and tides occurs due to cas-
cade of wave energy to smaller scales via wave-mean flow
and non-linear wave-wave interactions. As the gravity waves
carry significant amount of momentum/heat fluxes, process
of their breaking and resulting generation of turbulence is im-
portant for understanding the energetics and dynamics of the
middle atmosphere. Larger scales of turbulent motion draw
energy from the mean flow, and then a cascade of energy
transfer to smaller scales takes place in the inertial sub-range
and dissipation of smaller scale occurs due to viscous forces.
In the mesosphere, the ion-neutral and electron-neutral colli-
sion frequencies are much higher than ion and electron gyro-
frequencies, respectively and hence any perturbations pro-
duced in neutral density as a result of turbulence will also
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be transmitted to ion and electron densities as well (Fritts,
1984). This aspect is utilized in all rocket-borne electron and
ion density measurements as well as in the MST radar tech-
nique to derive neutral turbulence parameters.

Sinha (1976) and Prakash et al. (1980) detected small-
scale electron density irregularities in 60–85 km altitude re-
gion from rocket-borne Langmuir probe (LP) measurements
over the equatorial station Thumba (8.5◦ N, 77◦ E) and sug-
gested neutral air turbulence to be the generating mecha-
nism. Thrane and Grandal (1981) and Thrane et al. (1985,
1987) derived neutral turbulence parameters from positive
ion density measured by rocket-borne ion probes flown from
a high latitude station Andoya (69.3◦ N, 16◦ E). Chakrabarty
et al. (1989) made ion density measurements from Thumba
using spherical probe to study the turbulence. Sinha (1992)
derived turbulence parameters in 60 km 82 km altitude region
from a large number of rocket-borne electron density mea-
surements conducted from Thumba. Lubken (1997) stud-
ied the seasonal variation of turbulence over high latitudes
from measurements of neutral density fluctuations and found
that the energy dissipation rates were low (10–20 mWKg−1)

during the winter and high (∼150 mWKg−1) during sum-
mer. However, over the low latitude region, comparisons
of simultaneous radar and rocket measurements are limited
(Royrvik and Smith, 1984). Using the electron density ir-
regularity data obtained from earlier sounding rocket flights
from Sriharikota, and 3 m irregularity data obtained by the
MST radar at Gadanki, which is located about 100 km west
of Sriharikota, Chakravarty et al. (2004) showed that the
fine structures in the electron density irregularities are of-
ten present in the height region of∼75 km over Sriharikota,
which match quite well with the radar observed structures of
the main scattering layer (70±5 km) over Gadanki.

Using the MST radar of the National Atmospheric Re-
search Laboratory (NARL) at Gadanki, a series of experi-
ments were conducted to study the low-latitude mesospheric
winds and turbulence. Datta et al. (2001) and Sasi et
al. (2001) reported preliminary results on the variability of
mesospheric backscattered echoes and associated features of
turbulence. The details of characteristic morphological vari-
ations of the mesospheric backscattered echoes over Indian
and other global stations (Gage and Balsley, 1980; Kubo
et al., 1997; Kamala et al., 2003; Kumar et al., 2007) may
be summarized as follows: (a) The radar backscattered sig-
nals from the mesosphere are generally intermittent with high
spatial variability barring exceptions of Polar Mesosphere
Summer Echoes (PMSEs) (b) There are at least 2 narrow
height regions in the mesosphere viz., 72–77 km and 80–
85 km, which produce relatively strong radar backscatter on
a more regular basis. The peak heights of the regions also
vary with latitude and season. Over the high latitudes, strong
PMSEs are obtained from 82–85 km height range but dur-
ing other seasons significant but weak backscatter echoes
are generated from lower height regions (<80 km) also, (c)
Over the low latitude stations e.g. Jicamarca and Gadanki,

the main scattering layer lies around∼75±5 km with an-
other weak region of radar scattering around 80±5 km; the
75±5 km scattering region showing seasonal dependence
with the strongest echo seen during June/July months and
the weakest during winter.

Royrvik and Smith (1984) investigated equatorial meso-
sphere using both the Jicamarca VHF radar and rocket-
borne LP measurements during the CONDOR campaign of
February–March 1983. The two sites were separated by
about 60 km along N-S. Narrow layer of radar echoes was
seen at 79 km (radar resolution of 3 km) 1 h before the rocket
launch but moved to range gates of 79 and 82 km at the time
of rocket launch. The Langmuir probe detected irregularities
in a narrow altitude region (85.2–86.6 km). It was inferred
that the same scattering layer was observed by the two tech-
niques. Simultaneous rocket-borne measurements of elec-
tron and ion densities and MST radar observations were also
made from Poker Flat during the Middle Atmosphere Pro-
gram (MAP) (Goldberg et al., 1988; Blood et al., 1988) to
study the neutral turbulence. Rocket-borne measurements
were also made from Alcantara (2.5◦ S, 44.4◦ W) in Brazil,
but no simultaneous radar measurements were made (Gold-
berg et al., 1997).

In this paper, the first campaign results based on coor-
dinated observations of electron density with in-situ rocket
probes and mesospheric echoes using MST radar are pre-
sented. These observations are first of its kind from low lati-
tude region in the Indian sector. Mesospheric turbulence pa-
rameters studied using the two techniques are compared and
their generation processes are discussed.

2 Experimental details

A RH-300 Mk II rocket carrying a Langmuir probe (LP) pay-
load and an RH-200 rocket carrying metallic chaff payload
were launched on 23 July 2004 at 11:42 LT and 12:15 LT, re-
spectively, from Sriharikota in coordination with the MST
radar observations made from Gadanki. Launch criterion
was decided based on the mesospheric echo strength ob-
served in the MST radar observations. The rocket nose
cone ejection was at 60 km and the rocket reached an apogee
of 109 km. Figure 1 shows the location of Gadanki (MST
radar), Sriharikota (rocket launch site) and the trajectory of
the RH-300 Mk II rocket.

A fixed bias LP, similar to the one described by Prakash
and Subbaraya (1967) was used to measure electron den-
sity fluctuations. LP sensor was mounted on the top deck
of the RH 300 MK II rocket. The LP senor was a split sphere
(50 mm diameter), whose upper hemisphere was biased at
+4 V and was used to collect the electron current, and the
lower hemisphere was used as a guard electrode. The LP
sensor was mounted with the help of a 200 mm long boom.
The electrical connection to the signal conditioning electron-
ics was provided by means of a coaxial cable. The electronics
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Figure 1: Map showing the location of Indian MST radar at Gadanki and the rocket range at 
Sriharikota. The trajectory of the rocket is also marked. 
 

 
 
Figure 2. Electron density profile during ascent of the rocket from the fixed bias Langmuir 
probe flown on RH-300 Mk II rocket launched from Sriharikota. 

 

Fig. 1. Map showing the location of Indian MST radar at Gadanki
and the rocket range at Sriharikota. The trajectory of the rocket is
also marked.

was accommodated in a package mounted on one of the in-
strument decks. To cover the large dynamical range aris-
ing from the change in current due to variation in the elec-
tron density an automatic gain amplifier was used to mea-
sure the current in the range of 1 nA to about 3µA. For
studying the electron density fluctuations in different scale
sizes the current collected by the LP sensor was processed on
board in three channels with different gains having frequency
response of 0–100 Hz, 30–150 Hz and 70–1000 Hz. These
channels are named as LP Main, LP MF and LP HF, respec-
tively and were sampled at 520 Hz, 1040 Hz and 5200 Hz, re-
spectively. The consolidated wave number power spectra of
irregularities were constructed from the electron density val-
ues obtained from these three channels. The normalization
of MF and Main and MF and HF channels was done at 50 Hz
and 100 Hz, respectively. With a typical rocket velocity of
1000 ms−1, in the region of interest, the spectrum, there-
fore, gives information about the irregularities having scale
sizes in the range of approximately 1 m to 1 km. FFT was
used to estimate the power spectra and a Hanning window
used for smoothing to avoid leakage at higher frequencies.
In addition, FFT of LP Main channel data were computed
every 1024 points (which corresponds to approximately data
of 1 km vertical extent) to construct a sonogram, which pro-
vides a bird’s eye view of significant frequencies/scale sizes
present at different altitudes. One RH-200 meteorological
rocket with chaff payload was launched at 12:15 LT, i.e., after
about half an hour of the launch of RH-300 Mk II. The metal-
lic chaffs were tracked by radars, which provided zonal and
meridional wind profiles in the height range of 20–76 km.
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Fig. 2. Electron density profile during ascent of the rocket from the
fixed bias Langmuir probe flown on RH-300 Mk II rocket launched
from Sriharikota.

The MST radar of the National Atmospheric Research
Laboratory (NARL) is located at Gadanki and operates at
53 MHz (Rao et al., 1995). For the present campaign the
month of July was chosen based on the earlier studies of
mesospheric echoes from Gadanki as the occurrence and the
strength of echoes were found to be highest during June–
July (Kamala et al., 2003). On 23 July 2004 the MST radar
was operated during 08:30–16:00 LT. Detailed experimental
parameters used for the radar operation are presented in Ta-
ble 1. Uncoded 3µs pulses were used to provide a height
resolution of 450 m during the rocket launch period. Five
radar beam directions (north-10◦, south-10◦, east-10◦, west-
10◦ and zenith) were used to get return echoes from 60 km
to 120 km. The angles refer to zenith angles used for the
experiments. As seen by the ground-based magnetometers
located at Tirunelveli (8.7◦ N, 77.8◦ E) and Alibag (18.6◦ N,
72.9◦ E), the rocket was launched during a magnetically dis-
turbed day (Ap=52).

The rocket data gives relative amplitude of electron den-
sity fluctuations for vertical scale sizes ranging from a few
km down to a few meters. But in view of steep spectra of
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Table 1. Specifications of the radar operating parameters.

Parameter Specifications

Location Gadanki (13.5◦ N, 79.2◦ E)
Frequency 53 MHz
Peak power aperture product 3×1010W m2

Peak power 2.5 MW
Maximum duty ratio 2.5%
Number of Yagi antennas 1024
Beam width (3 dB full width) 3◦

Beam angle zenith and 10◦ off zenith
Number of Beams used East, West, Zenith, North, South
Pulse width 3µs uncoded (450 m)
Inter Pulse Period 0.9 ms
Maximum number of range bins 125
Number of Coherent integrations 40
Maximum number of FFT points 256

fluctuations in the viscous dissipation regime (n=−7), rocket
cannot detect weak fluctuations at meter scales in regions of
low electron density. In some of the cases the scales of turbu-
lence in viscous dissipation regime is much smaller than the
detection limit of rocket. The MST radar on the other hand
can detect 3 m fluctuations even when they are extremely
weak. Also, due to different locations of rocket range and
the radar site, it was not possible to look at the same vol-
ume by both techniques. Another problem is the inability of
the Chaff technique to provide winds above about 75 km alti-
tude. Although these shortcomings of the experimental data
set do not allow us to draw firm conclusions, a number of
interesting results and properties of mesospheric turbulence
are reported in this paper.

3 Results

3.1 Electron density fluctuations from Langmuir probe

Figure 2 shows the electron density profile obtained during
the ascent of the rocket. During the down leg, the rocket
appeared to be tumbling below 90 km so the results for de-
scent are not considered. A small spin modulation at 4.6 Hz
was present through out the flight. The current collected by
the LP sensor was converted into electron density by cali-
brating the maximum electron density of E-region obtained
by the rocket with the electron density determined from the
critical frequency of E-layer obtained from an ionosonde at
Sriharikota. During the rocket ascent, steep gradients of elec-
tron density were observed between 67.5 and 71 km but be-
yond this height, such sharp gradients were generally ab-
sent and the profile showed a relatively slow and monotonic
increase of electron density. Figure 3 shows the electron
density gradient scale length,L [1/L=(1/ne)(dne/dh)] cal-
culated over an altitude interval of 200 m. It can be seen
that very strong positive and negative gradients were present
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Figure 3. Electron density gradient scale length, L-1 over 200 m during the ascent of the RH 
300 MK II rocket launched at 1142 hrs LT from Sriharikota on 23 July 2004. 

 

Fig. 3. Electron density gradient scale length,L−1 over 200 m dur-
ing the ascent of the RH 300 MK II rocket launched at 11:42 LT
from Sriharikota on 23 July 2004.

in 67.5–71 km region, moderate gradients in the 84–89 km
region and weak gradients in the intervening region (71–
85 km).

Figure 4 shows power spectra of fluctuations constructed
from the rocket data of all the three channels men-
tioned above, for altitude ranges of 67.5–69.3 km, 69.3–
71.0 km, 74.9–76.5 km, 76.5–78.0 km, 84.0–86.6 km and
86.6–89.0 km, which will henceforth be termed as R1, R2,
R3, R4, R5 and R6 regions. The spectra in all the six
ranges were estimated using 1024 points, which corresponds
to about 4 s data for R1 and R2, about 6 s data for R3 and
R4 and about 8 s data for R5 and R6 regions. Scale sizes (λ)

corresponding to different wave numbers (k) (λ=2π/k) are
marked on the top of the Fig. 4.

A model given by Heisenberg (1948), which exhibits a
smooth transition between the inertial sub range (ISR) and
the viscous dissipation regime (VDR) with spectral indices of
−5/3 and−7, respectively, is well accepted in the literature
to replicate the turbulence spectrum. This model was fitted to
four spectra for the altitude regions R3 to R6, which indicates

Ann. Geophys., 26, 2725–2738, 2008 www.ann-geophys.net/26/2725/2008/



H. Chandra et al.: Mesospheric turbulence study 2729

 19

 

 
 
Figure 4. Spectra of electron density irregularities in 67.5 – 69.3 km, 69.3 - 71 km, 74.9 – 
76.5 km, 76.5 – 78.0 km, 84 - 86.6 km and 84 – 89 km regions computed from Langmuir 
probe measurements. The solid line is the Heisenberg model fitted to the spectrum. The inner 
scale of turbulence l0 obtained from model fit is also shown wherever it can be determined.  
The arrow points towards wave numbers corresponding to 3 m scale size. 

 

Fig. 4. Spectra of electron density irregularities in 67.5–69.3 km, 69.3–71 km, 74.9–76.5 km, 76.5–78.0 km, 84–86.6 km and 84–89 km
regions computed from Langmuir probe measurements. The solid line is the Heisenberg model fitted to the spectrum. The inner scale of
turbulencel0 obtained from model fit is also shown wherever it can be determined. The arrow points towards wave numbers corresponding
to 3 m scale size.

the presence of turbulence in these regions (Fig. 4). The best
fit of the Heisenberg model to the power spectra identifies
the break point between the ISR and the VDR, which occurs
at a wave number corresponding to the inner scale of turbu-
lence (l0). For regions R3, R4, R5 and R6, the inner scales
identified are 18.0, 8.0, 20.5 and 19.5 m, respectively.

For the R5 region, the Heisenberg’s model could be fitted
only up to 10 m scale and the inner scale was found to be
about 20.5 m. Thus one can say that the fluctuations from
large scales down to 10 m scale size were due to the neutral
turbulence. At scales lower than 10 m, where there was sig-
nificantly larger power, the spectrum indicates that the source
of these fluctuations was not neutral turbulence. Plasma in-
stabilities such as cross-field instability could be responsi-

ble for these small-scale irregularities and such irregularities
have been reported earlier in this altitude region during the
daytime (Prakash et al., 1971). Sinha and Prakash (1987)
have reviewed the rocket observations of E-region irregular-
ities produced through the cross-field instability.

For the altitude ranges R1 and R2, the model could not
be fitted as the spectral indices of the entire scale size range
observed by the LP was−5/3 (Fig. 4), which is typical of the
ISR. The scales in the VDR at these altitudes were beyond
the detection limit of the instrument and hence the inner scale
could not be identified. However, as the slopes of spectra
were−5/3, it indicates the presence of ISR and hence the
presence of turbulence at these altitudes also.
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Figure 5. A sonogram showing the strength of irregularities of different frequencies with 
altitude. Two vertical black dashed lines are the fundamental and the second harmonic of the 
rocket spin frequency. The vertical panel on the left shows the relative strength of electron 
density fluctuations as seen in the LP Main channel. 
 
 

 

Fig. 5. A sonogram showing the strength of irregularities of different frequencies with altitude. Two vertical black dashed lines are the
fundamental and the second harmonic of the rocket spin frequency. The vertical panel on the left shows the relative strength of electron
density fluctuations as seen in the LP Main channel.

As shown in Fig. 4, 3-m fluctuations in R1 and R2 regions
fall in the ISR and for R3 to R6 ranges in the VDR. It can
be seen very clearly that the 3-m fluctuations are quite strong
and well above the noise floor for R1 and R2 regions and
slightly above the noise floor for the R6 region.

Table 2 shows the percentage amplitude of the fluctuations
in electron density for a few scale sizes lying in 3 m–50 m in
all the six altitude regions computed from the spectra shown
in Fig. 4. It can be seen that the percentage amplitudes of
irregularities with scale sizes range of 3 m–50 m, which fall
mostly within the inertial sub-range and partly in the VDR,
are much higher in the lower altitude region as compared to
the upper regions. The percentage amplitude of fluctuations
decreases with the decrease of scale size. The percentage
amplitude of 3-m fluctuations was 2.4%, 1.6% and 0.03% in
R1, R2 and R6 regions, respectively. For regions R3 and R4,
the percentage amplitudes of 3 m fluctuations were below the
sensitivity of the LP.

Figure 5 shows a sonogram constructed from the data of
the LP Main channel which shows the presence of irregulari-
ties of having frequencies (scale sizes) up to 100 Hz (greater
than about 10 m) at different altitudes. The rocket spin fre-
quency and its second harmonic can be seen very clearly in
the sonogram. The sonogram also shows that the irregulari-
ties are present in the entire altitude region of 67.5 to 89 km,
though with varying amplitudes. The strongest irregularities
are present in 67.5–71 km and 84–89 km regions.

3.2 Horizontal winds from chaff release

Figure 6 shows the zonal and meridional components of the
neutral wind derived from radar tracking of metallic chaff
released by the RH-200 rocket launched at 12:15 LT on 23
July 2004. Zonal component of the wind was predominantly
westwards for the entire height range except that it became
eastwards above about 74 km. This shows that strong shears
in zonal winds were present between 73 and 76 km. As
shown in Fig. 6, moderate shears in the meridional com-
ponent of the wind were also present in 70–76 km altitude
range, establishing that the horizontal wind in the height
range of 70–76 km had shears of about 20 ms−1 km−1. Be-
cause of inherent limitation of this rocket-chaff technique,
it was not possible to measure wind velocities beyond the
height range of 75–76 km (Chakravarty et al., 1992).

3.3 Radar observations

3.3.1 Mesospheric echoes and variabilities

Figure 7 shows height-time intensity (HTI) diagram of meso-
spheric echoes observed on 23 July 2004 for all scans taken
together at different beam positions. Top panel shows the
HTI diagram during 09:00–16:00 LT and the bottom panel
shows the amplified view of the same diagram during 09:00–
10:30 LT to show the presence of the layer in 65–67 km
region. Echo SNR is represented in logarithmic scale as
shown on the right side of Fig. 7. It may be mentioned that
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Table 2. Percentage amplitude of irregularities produced by the neutral turbulence mechanism in six altitude regions.

Scale size (m)
Percentage amplitude (%)

67.5–69.3 km 69.3–71.0 km 74.9–76.5 km 76.5–78.0 km 84.0–86.6 km 86.6–89.0 km

3 2.4 1.6 * * * 0.03
5 3.4 3.0 * * * 0.04
10 9.6 4.9 0.2 * * 0.10
20 19.5 8.5 0.4 1.1 1.1 0.45
30 25.3 10.2 1.2 3.0 1.6 1.45
40 33.8 16.8 1.3 3.9 4.0 2.13
50 43.3 28.5 1.6 7.0 5.8 5.50

* These amplitudes were below the detection limit of LP
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Figure 6. Zonal and meridional wind profiles obtained from radar tracking of metallic chaff 
released from a RH 200 rocket launched from Sriharikota. 
 

 

Fig. 6. Zonal and meridional wind profiles obtained from radar tracking of metallic chaff released from a RH 200 rocket launched from
Sriharikota.

SNR computation has been done with noise power reckoned
over the coherent integration filter bandwidth of 27.7 Hz.
Since the signal bandwidth is typically 2 Hz for the meso-
spheric echoes observed by VHF radar and also the echoes
are weak due to weak refractive index fluctuations/gradients,
SNR generally is found to be less than 1. In the present
observational scheme, mean noise floor in terms of SNR
is −18 dB and SNR of random noisy peak (which has no
time and height continuity) is about−12 dB. Thus any sig-
nal stronger than−12 dB should be considered as reliable
mesospheric echoes. Maximum SNR is found to 6 dB, which
means the mesospheric echoes had a dynamic range of 18 dB

(−12 dB to 6 dB) and the strongest signal is 18 dB higher
than noise. The vertical distribution of radar backscattered
signals shows the presence of a strong scattering layer in
73.5–77.5 km region during 10:45 and 13:15 LT, a scattering
layer in 68–70 km region around 13:25 h and another scatter-
ing layer around 65–67 km region during 09:00–10:30 LT.

To present the height time variabilities of the echoes in
different beam directions, SNRs observed in different beams
are shown separately in Fig. 8 for the period 10:40–12:30 LT.
As evident from these figures, echoes were observed more
times in east, west and zenith beams as compared to north
and south beams. It may also be noted that in general echoes
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Figure 7. Height Time Intensity (HTI) diagram constructed from the MST radar echoes at 
Gadanki, with 450 m altitude resolution. The top panel shows the strength of radar echoes 
during 0900 – 1600 LT and the bottom panel shows the amplified view of echoes during 
0900 – 1030 LT. Scales on the right shows the echo SNR. 
 

 

Fig. 7. Height Time Intensity (HTI) diagram constructed from the
MST radar echoes at Gadanki, with 450 m altitude resolution. The
top panel shows the strength of radar echoes during 09:00–16:00 LT
and the bottom panel shows the amplified view of echoes during
09:00–10:30 LT. Scales on the right shows the echo SNR.

are weaker in the east and south beam as compared to west,
zenith and south beams.

3.3.2 Horizontal winds derived using MST radar observa-
tions

Figure 9a and b shows zonal and meridional components
of the winds derived using the MST radar observations
shown in Fig. 8. Positive (negative) velocity represents
eastward/northward (westward/southward) winds. It can be
seen that both zonal and meridional winds are mostly within
±20 ms−1 and are in good agreement with those observed by
the rocket-borne chaff experiment (Fig. 6). The time varia-
tion of the zonal and meridional wind components averaged
within the altitude region of the scattering layer (75–77 km)
is shown in Fig. 10. The magnitude of the zonal winds, which
are mostly westward, varies between few ms−1 to −40 ms−1

with most of the points between 0 and−20 ms−1. A period-
icity close to 10 min can be seen clearly in both the wind
components. The meridional winds are mostly northward
and their magnitude varies between 0 and 40 ms−1 with most
of the points between 0 and 20 ms−1. To see the altitude vari-
ation of zonal and meridional winds, average winds for 7 min
duration for an altitude range of 74–77 km for 11:42 LT and
11:57 LT have been shown in Fig. 11. The first time corre-
sponds to the RH-300 rocket launch time and the other just
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Figure 8: Signal plots of the radar echoes along the five beams on 23 July 2004. 
 

 

Fig. 8. Signal plots of the radar echoes along the five beams on 23
July 2004.

15 min after that. It would have been good to compute these
wind components around 12:15 LT, which was the launch
time of Chaff flight but the radar did not observe echoes in
all the beams and hence the wind components could not be
estimated correctly at 12:15 LT. At 11:42 LT the zonal veloc-
ity was in the range of−10 to 5 ms−1 and the meridional
component in the range of 10 to 15 ms−1. At 11:57 LT, the
zonal component was westward with values in the range of
−10 to−15 ms−1 and the meridional component was close
to 15 ms−1 with one value at the top echoing region being
about 5 ms−1. The two sets of profiles are quite consistent.
Comparing with the chaff-derived velocities over SHAR, the
basic pattern of winds appears similar in nature both in mag-
nitude and direction. The periodicity of 10 min seen both in
zonal and meridional components in 75–77 km region points
towards the possibility of the presence of gravity waves and
hence the turbulence.
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Figure 9: Range-time-velocity maps showing (a) the zonal and (b) meridional wind 
components over Gadanki on 23 July 2004. 
 

 
 
Figure 10: Time variation of the zonal and meridional components of wind averaged over 75-
77 km over Gadanki on 23 July 2004. 
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3.3.3 Doppler spectral width

Spectral widths observed in different beam directions are
shown in Fig. 12. These represent mean and standard de-
viations of spectral widths observed in different directions.
Spectral widths presented in zonal (meridional) direction
have been obtained by combining observations made in east
and west (north and south) beams. In these figures, spec-

tral width represents square root of variance. In general the
spectral widths vary between 1 and 3 ms−1 with most values
between 2 and 3 ms−1. The values are found to be some-
what more in the east-west beams as compared to north-south
beams as well as zenith.
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Table 3. Turbulence parameters obtained by rocket-borne LP.

Parameter Units 74.9–76.5 km 76.5–78.0 km 84.0–86.6 km 86.6–89.0 km

l0 m 18 8 20.5 19.5
η m 2.43 1.08 2.77 2.64
ε mWKg−1 1 59 164 200
K m2 s−1 1.8 113 298 365
uz m2 s−2 0.33 2.67 4.4. 4.87
LB km 0.11 0.91 1.45 1.61
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Figure 11: Altitude variation of the zonal and meridional winds over Gadanki at the time of 
RH 300 rocket launch (1142 hrs LT) and at 1157 hrs LT, which is close to the time of RH 
200 rocket launch on 23 July 2004. 
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4 Turbulence parameters derived using rocket and
radar observations

4.1 Rocket observations

Turbulence parameters are derived from power spectra of
electron/ion density fluctuations as described in earlier works
(Chakrabarty et al., 1989; Sinha, 1992). Such spectra show a
change in the spectral index at the inner scale of turbulence
(l0), which typically is about a few tens of meters. For neu-
tral turbulence generated fluctuations, the spectra from in-
ner scalel0 to outer scale or the buoyancy scale (LB) shows
spectral index of approximately−5/3 (ISR). The region from
inner scale to Kolmogorov microscaleη, falls in VDR and
shows a much steeper spectral index of−7. In view of a
sharp change in the spectra at the inner scale,l0 can thus be
found from the spectra. Oncel0 is determined, other turbu-
lence parameters viz., the vertical turbulent velocityUz, en-
ergy dissipation rateε, Kolmogorov microscaleη, the outer
scaleLB and the eddy diffusion coefficient K can been ob-
tained using the following relations,

η = l0/7.4

ε = ν3/η4

K = 0.81ε/ω2
B

Uz = ε/0.4ωB

LB = 2πuz/0.9ωB

where ν is the kinematic viscosity andωB is the Brunt-
Vaisala frequency, which can be obtained from models.

Using a kinematic viscosity value of 2.13 m2 s−1 and
a Brunt-Vaisala frequency of 20 mHz, turbulence parame-
ters were computed for four altitude ranges, for which the
Heisenberg model fit yielded the inner scale unambiguously,
and the same are given in Table 3. The energy dissipation
rate is 1 mW/kg in R3 region and increases to 200 mWkg−1

in R6 region and thus shows an increasing trend with increas-
ing altitude. The eddy diffusion coefficient and the vertical
turbulent velocity also show similar trend

4.2 Radar observations

Most of the values of spectral width were 2 ms−1 and hence
this value has been taken to estimate the energy dissipation
rate using the following relation (Hocking, 1982).

ε ≈ 2.9v2fB
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Fig. 12. Mean spectral widths along the East-West, Zenith and North-South beams on 23 July 2004.

wherefB is the Brunt-Vaisala frequency in Hertz andv is the
horizontal rms velocity. The effect of the beam broadening
and shear broadening has been neglected. Hocking (1982)
assumed that the rms velocities are equal along vertical and
horizontal directions. With this assumption, we find that for
73.5–77.5 km region, where the radar observed a strong scat-
tering layer, the energy dissipation rate is 23 mWkg−1 for
assumed Brunt-Vaisala frequency of 20 mHz.

5 Discussion

Electron density measured by the rocket showed that very
strong gradients were present in 67.5–71 km, weak gradi-
ents in 71–84 km and moderate gradients in 84–89 km re-
gions. As shown in Table 2 the percentage amplitudes of
irregularities in 3 m–50 m scale sizes, is highest in the 67.5–
71 km, modest in 84–89 km and smallest in 74.9–78.0 km re-
gion. The present observation of higher amplitude of fluc-
tuations in regions of steeper electron density gradients is in
conformity of with the results of Gallet (1955) and Villars
and Weiskopf (1955), who showed that turbulent fluctuations
of neutral density can be transmitted to the electron density
more efficiently in presence of electron density gradients.

In view of the facts (a) that the spectra at four altitude re-
gions fitted well with Heisenberg’s model of turbulent spec-

trum and spectra of the other two regions showed a slope
of −5/3, (b) present as well as earlier works show that in
presence of electron density gradients, fluctuations in neu-
tral density can be transmitted to electron density more ef-
ficiently, (c) that the electron density irregularities as well
as sharp gradients in electron density were present, (d) that
shears in horizontal neutral winds (both zonal and merid-
ional) which are essential for excitation of Kelvin Helmholtz
instability, which leads to wave breaking and turbulence,
were present, (e) that there are no known plasma insta-
bility processes at such low altitudes (67.5–78 km region)
which can produce the observed irregularities, it is concluded
that the irregularities observed by the rocket in 67.5–71.0,
74.9–78.0 km and 84–89 km regions (R1 to R6) were pro-
duced through neutral turbulence mechanism. In R1 and R2
regions, rocket could observe the fluctuations in the ISR,
whereas in R3 to R6 regions, fluctuations in both ISR and
VDR regions were observed. For the altitude region 84.0–
86.6 km, scales below about 10 m scale size seem to have
some other mechanism of generation such plasma instabili-
ties.

The percentage amplitude of fluctuations, which is a mea-
sure of the strength of the turbulence, is large in lower alti-
tudes and decreases with increasing altitudes (Table 2). The
trend of stronger turbulence in lower altitudes can be seen
for all scales from 50 m down to 3 m, indicating that the
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turbulence is strong in the lower altitudes. Based on the
rocket LP data of a large number of flights, Sinha (1992)
had reported similar magnitude and altitude variation of the
percentage amplitude for similar scale size ranges. Table 2
also shows that larger scales have higher amplitude, which
also confirms the inertial nature of the spectra, where larger
scales produce smaller scales.

Rocket observations also show the percentage amplitude
of 3 m fluctuations (Table 2) is quite high (2.4% and 1.6% in
R1 and R2 regions) and small in R5 and R6 regions. In view
of smaller density and weak strength in regions R3 and R4
regions, the percentage amplitude of 3 m fluctuations were
below the rocket detection limit. But based on the rocket
observations one can not rule out the possibility of the pres-
ence of weak 3 m fluctuations in R3 and R4 regions. The
MST radar observations made over Gadanki, which is about
100 km away from Sriharikota, provide information about
3-m electron density irregularities. From the RTI plots for
23 July 2004 it is clear that the intensity of radar backscat-
tered signal was very strong around the rocket launch time
and thereafter it weakened. Around the rocket launch time,
the MST radar observed strong 3-m irregularities in 73.5–
76.5 km region (about 15 dB above the noise level). If we
take a cue from the rocket spectra in 74.9–76.5 km region,
the radar observations in 74.9–76.5 km pertain to the VDR
of turbulence spectrum observed by the rocket. Thus both
rocket and radar did observe 3 m fluctuations in a common
altitude region of 74.9–76.5 km. The sonogram, which was
constructed using the LP Main channel data, also shows that
the rocket observed the presence of weak irregularities (hav-
ing scale sizes in excess of 10 m) in the entire range. It is also
possible that on either side of the common altitude region,
3 m fluctuations were beyond the detection limit of rocket but
well within radar detection limit. Thus based on rocket and
radar observations, the present work reports that 3 m fluctua-
tions were present in a large range of altitudes and were very
strong in the lower altitudes (R1 and R2). This result is at
variance with the results of Royrvik and Smith (1984), who
found 3 m fluctuations measured by the rocket to be in the
noise floor.

The values of inner scale, Kolmogorov microscale and the
outer scale of turbulence at all altitude regions observed by
rocket are within the theoretical limits and similar to earlier
observations (Lubken et al., 1993; Balsley and Gage, 1980).

The energy dissipation rate obtained from rocket was
1 mW/kg−1, 59 mW/kg−1, 164 mW/kg−1 and 200 mW/kg−1

in R3, R4, R5 and R6 regions, respectively and that obtained
from radar was 23 mW/kg−1 in 75–77 km region (which cov-
ers the same altitude region as R3 and R4 of rocket). The
energy dissipation rate is small at lower altitudes and in-
creases with altitude. Royrvik and Smith (1984) found en-
ergy dissipation rate of 50 mW/kg−1 in 85.2–86.6 km region
for Punta Lobos rocket range (12.50◦ S, 76.80◦ W), which
like Sriharikota is a low latitude station. Lehmacher et
al. (2006) reported a value of 170 mW/kg−1 in 92–96 km

region over Roi-Namur, Kwajalein Atoll, Marshall Islands
(9◦ N, 168◦ E). Energy dissipation rates even in high latitudes
(Lubken, 1997), were about 150 mW/kg−1 in 90 km region.
Although, the order of magnitude of the energy dissipation
rates, presented here are similar to the earlier work, the val-
ues appear to be slightly higher. This could be due to the
fact that the day of rocket observations was a magnetically
disturbed day. It is well known that during disturbed days
gravity waves of auroral origin can reach low latitudes and
can enhance the turbulent activity and hence the energy dis-
sipation rate. It can be seen from the spectra in 67.5–71.0 km
region, the energy dissipation scales are below 3-m indicat-
ing that the turbulent kinetic energy dissipation rate in 67.5–
71.0 km region is possibly not very important in this region.
This also support the observation of small values found in
lower altitudes.

In this context, the radar observations can be used for
further insight. Radar echoes are confined to mostly 73.5–
77.5 km and down to 70 km during 14:45–15:15 LT. And no
echoes were observed above 78 km in contrast to electron
density structures observed in the height region of 84–89 km
by the rocket probe. Considering that the height region of
radar echoes is close to the lower altitude region of elec-
tron density structures observed in rocket observations, radar
observations can be related to electron density gradients of
some sort. For horizontally stratified vertical electron den-
sity gradient, the radar echoes are supposed to be observed
only by vertical beam. The fact that the radar echoes were
observed in all beams indicates that some amount of turbu-
lence would have been present to provide electron density
fluctuations, which were present in all beam directions. On
the other hand SNR observed by different beams are found to
be different and in general west, zenith and north beam SNR
are found to be more than that of east and south beam. This
observation is indicative of aspect sensitivity of the radar
echoes. Thus both radar and rocket observations seem to
agree broadly in terms of steep density gradient being re-
sponsible for the observed features.

The detection of turbulence in R1 and R2 regions and no
such detection by the radar points to the possibility that tur-
bulence layers might be thinner than 450 m, which is the
radar altitude resolution. In fact existence of thin layers of
turbulence with thickness as small as 100 m on either side of
a thick turbulent layer has been predicted by direct numeri-
cal simulation (DNS) studies (Fritts et al., 2003). Thus the
present observations point towards the existence of thin lay-
ers of turbulence.

Also the 10 min periodicity found in radar derived zonal
and meridional winds in 73.5–76.5 km region suggests the
presence of gravity waves of that period, whose amplification
during their upward passage and eventual breaking could be
responsible for the turbulence observed by the rocket in re-
gions 74.9–89 km (R3 to R6). As observed by the Chaff ex-
periment, the shears in both the zonal and meridional winds
were also very strong over Sriharikota in 70–76 km altitude
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range around the rocket launch time. If the strong wind
shears produced turbulence due to Kelvin Helmholtz insta-
bility, the gradients in electron density would enhance the
production efficiency of electron density irregularities due to
high electron-neutral collision frequency. Thus the of MST
radar echoes in 73.5–76.5 km might have been due to the
turbulence resulting due to shear instability. Earlier rocket
observations (Sinha, 1992) showed that at altitudes above
80 km, time scale of dissipation of 3 m irregularities is small
as these irregularities fall in the VDR. Due to this, formation
of discrete layer above 80 km altitude would be difficult. The
present MST radar observations of layered structures up to
77.5 km only are in conformity with the present and earlier
rocket observations. This could also be the reason of weaker
fluctuations observed for all scale by the rocket in 84–89 km
regions.

6 Summary

Electron density fluctuations from 50 m down to 3 m scale
size were observed in 67.5–78.0 km and 84–89 km regions by
the rocket during its ascent. These scales cover a substantial
part of the ISR and some part of the VDR at these altitudes.

In view of (a) the shape of the spectra of the fluctuations
matched very well with the characteristic turbulent spectrum
showing a slope of−5/3 in the ISR and gradually going to a
slope of−7 in the VDR, (b) the presence of shears in zonal
and meridional winds, which are essential for the excita-
tion of the Kelvin Helmholtz instability and subsequent wave
breaking and generation of neutral turbulence, (c) the pres-
ence of electron density gradients, which transmit the neutral
fluctuations to electrons more efficiently and (d) the absence
of any plasma instability which possibly can operate at such
low altitudes, it is concluded that the irregularities observed
by the rocket were produced by the mechanism of neutral
turbulence.

Turbulence parameters such as the scales of turbulence
(outer scale, inner scale and Kolmogorov microscale), en-
ergy dissipation rate, eddy diffusion coefficient and vertical
turbulent velocity were calculated from the spectra observed
by the rocket at six altitude ranges and these were found to be
within the theoretical limits and in agreement with the earlier
studies.

The amplitudes of fluctuations at all scale sizes in the
lower altitudes were much larger than those in the upper alti-
tude indicating stronger turbulence in lower altitude regions.
Higher amplitude of irregularities in the lower altitude re-
gions is commensurate with the higher electron-neutral colli-
sion frequency and sharper electron density gradients present
in this altitude region as well as expected higher degree of
turbulence as compared to 74.9–78.0 km and 84–89 km re-
gions, which are much closer to the turbopause altitude.

The 3-m fluctuations observed by the rocket were quite
strong in 67.5–71.0 km region and moderate but well above

the noise floor in 86.6–89.0 km region. As observed by the
MST radar, the 3-m irregularities were found to be present
in 73.5–76.5 km region from 10:30 to 16:00 LT, around 65–
67 km region during 09:30 to 10:30 LT in and in 68–70 km
around 13:25 LT. In view of the facts that this region is con-
ducive to the excitation of the Kelvin Helmholtz instability,
the required wind shears for the excitation of KHI were ob-
served by Chaff and that no other plasma instability can pos-
sibly operate at such low altitudes, it is concluded that the
observed irregularities were produced by the neutral turbu-
lence mechanism. The zonal and meridional winds mea-
sured by the radar in 75–77 km region showed the presence
of a 10-min periodicity, which pointed towards the presence
of gravity waves at those altitudes. It is possible that these
gravity waves got amplified during their upward passage and
their breaking produced turbulence. The detection of turbu-
lent fluctuations in 84–89 km altitude region by the rocket,
substantiate this possibility.

The amplitude of the turbulent fluctuations at all scales
was found to be high (low) when the electron density gra-
dients were strong (weak) as predicted by earlier studies.

Both radar and rocket observations indicate that the thick-
ness of the turbulent layers lies between 3 km to 5 km. The
multi-beam radar observations show the existence of turbu-
lence layer thicknesses as small as 1 km or less. The detec-
tion of turbulence in lower regions (67.5–71.0 km by rocket
and no detection by radar points towards the possible pres-
ence of layers thinner than 450 m. Layers as thin as 100 m
have been predicted by direct numerical simulation studies.
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