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Abstract. Various dynamo-based techniques have been used
to predict the mean solar cycle features, namely the ampli-
tude and the timings of onset and peak. All methods use
information from previous cycles, including particularly po-
lar fields, drift-speed of the sunspot zone to the equator, and
remnant magnetic flux from the decay of active regions. Po-
lar fields predict a low cycle 24, while spot zone migration
and remnant flux both lead to predictions of a high cycle 24.
These methods both predict delayed onset for cycle 24. We
will describe how each of these methods relates to dynamo
processes. We will present the latest results from our flux-
transport dynamo, including some sensitivity tests and how
our model relates to polar fields and spot zone drift methods.

Keywords. Solar physics, astrophysics,and astronomy
(Magnetic fields; Stellar interiors and dynamo theory;
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1 Introduction

Understanding the mechanism of the solar activity cycle and
predicting the the upcoming cycles’ features remain a key
area of research in solar physics and space science. The so-
lar activity cycle influences the terrestrial systems in vari-
ous ways: posing hazards to satellites, disrupting powergrids,
causing blackouts in radio and telecommunication systems,
even affecting the astronauts in space.

An oscillatory magnetohydrodynamic dynamo, operating
somewhere inside the Sun, is most likely responsible for pro-
ducing a solar cycle. Physical basis of a solar cycle pre-
diction tool should be intimately associated with the under-
standing of solar dynamo processes. In this talk, we will
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present a review of various attempts for building dynamo-
based schemes for predicting solar cycles and their step-by-
step successes. We close by commenting on what should be
the future goals in this topic of research.

2 The dynamo-based tools

Predicting the properties of an upcoming solar cycle started
about 40 years ago. The methods were purely statistical in
those early days. The attempt to find the physical foundation
of a solar cycle prediction scheme was first made in 1970s in
a conceptual qualitative way bySchatten et al.(1978) who
postulated a magnetic persistence between the amplitude of
the current sunspot cycle and the previous cycle’s polar field
after the reversal. In this scheme, a Babcock-Leighton dy-
namo was considered; the polar fields arise from the decay
of the following-polarity spot of a tilted, bipolar active re-
gion, and then these large-scale dipolar poloidal fields were
assumed to be wrapped up by the pole-to-equator differen-
tial rotation (see the schematic diagram in Fig. 1 ofSchatten,
2002) to generate the spot-producing toroidal fields. There-
fore, in this conception it is the latitudinal fields that are being
sheared by the Sun’s latitudinal differential rotation. Hence
the derivation of latitudinal fields from the radial polar fields
is necessary to make a quantitative prediction of cycle ampli-
tude.

Schatten’s important first attempt led us to investigate the
physics behind the following two issues: (i) if the polar fields
from the previous cycle determine the amplitude of the next
cycle, how are such polar fields transported to the shear-layer
at the bottom in 5.5 years? (ii) Do they remain radial down to
the shear-layer? (iii) Are the stronger radial fields associated
with stronger, or weaker latitudinal fields?

In order to find out answers to those questions, we need
to know the transport processes as well as the field ge-
ometry below the solar surface. Observations indicate two
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Fig. 1. Depending on the field geometry below the surface,(a) weak radial fields could be associated with strong latitudinal fields or(b) vice
versa, or weak radial fields could also be associated with weak latitudinal fields(c).

major processes that can transport the large-scale magnetic
fields from the surface to the bottom of the convection zone,
namely turbulent diffusion and advection by meridional cir-
culation. Although observations give some measurements
about the amplitudes of the diffusivity and the meridional
flow speed near the surface, but very little is known about
the profiles and amplitudes of these processes in the deeper
layers below the surface. Therefore theoretical knowledge
about the transport processes are currently the best possible
options that can help determine how long the surface polar
fields would take to reach the bottom of the convection zone.

Figure 1 below demonstrates how the weak polar fields
could give rise to strong or weak latitudinal fields depending
on the field geometry below the surface. Unless the surface
polar fields reach the bottom in just 5.5 years and unless the
latitudinal fields associated with those radial fields are posi-
tively correlated, the spot-producing toroidal fields at the bot-
tom cannot be positively correlated with the previous cycle’s
polar fields. Nonetheless, predictions about upcoming cy-
cles have been made using this scheme (also called the “polar
field precursor method”) which forecasts a very weak cycle
24 (Schatten, 2005; Svalgaard et al., 2005).

Very recently the quantitative estimation of upcoming cy-
cle’s spot-producing flux by directly integrating the induc-
tion equations forward in time has begun and is rapidly gain-
ing interest (Dikpati et al., 2006; Dikpati and Gilman, 2006;
Cameron and Schüssler, 2007). These models assimilate the
observed magnetic data from the surface. Data assimilation
techniques have been used in atmospheric weather prediction
models since 1950s. It is starting now in solar cycle models.
The reason is that a particular class of solar cycle models,
namely the flux-transport dynamos, is calibratible to the Sun.

Figure 2 describes how a flux-transport dynamo works.
Basically it involves the following processes: (i) shearing of
a pre-existing poloidal fields by the Sun’s differential rota-

tion to produce new toroidal fields, followed by eruptions of
sunspots (shown in panels a, b, c of Fig. 2), (ii) spot-decay
and flux-spreading to produce new global poloidal fields at
the surface (panels e, f, g) and (iii) transport of poloidal fields
by the meridional circulation conveyor belt toward the pole
and down to the bottom of the convection zone, followed
by regeneration of new toroidal fields of opposite sign. The
physical foundation of the “magnetic persistence” effect, or
the duration of the Sun’s memorry of its past magnetic fields,
can be understood in this class of dynamos with the help of
Fig. 2 which demonstrates that a mass-conserving meridional
flow with a solar-like surface flow-speed would take about
20 years to carry the poloidal magnetic flux from the mid-
latitude at the surface to the mid-latitude at the bottom of the
convection zone. Therefore, the Sun’s poloidal fields from
a few past cycles, rather than just the previous cycle’s po-
lar fields, should contribute in determining the “seed” for the
next cycle’s spot-producing fields.

The dynamo period in flux-transport dynamos is primarily
governed by the meridional flow speed (Dikpati and Char-
bonneau, 1999), the cycle period being almost inversely
proportional to the meridional flow amplitude. If the flow
changes from cycle to cycle and/or within a cycle, the dy-
namo period will also do so. This particular ingredient it-
self is capable of contributing to the prediction of the timing
for the onset and the duration of a cycle. Dikpati (2004)
calculated the onset timing of cycle 24 based on the ob-
served meridional flow variations during 1996–2003. The
flow slowed down by∼50% during that span of time making
the current cycle 23 longer during its rising and early de-
clining phase. Since the future flow amplitude is unknown,
Dikpati (2004) implemented two different assumptions for
the flow variation in the future, namely (i) the flow will re-
main slow, (ii) the flow will accelerate during 2004 onwards.
As a consequence, the onset of the upcoming cycle 24 was
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Fig. 2. Schematic of solar flux-transport dynamo processes. Red inner sphere represents the Sun’s radiative core and blue mesh the solar
surface. In between is the solar convection zone where dynamo resides.(a) Shearing of poloidal field by the Sun’s differential rotation near
convection zone bottom. The Sun rotates faster at the equator than the pole.(b) Toroidal field produced due to this shearing by differential
rotation.(c) When toroidal field is strong enough, buoyant loops rise to the surface, twisting as they rise due to rotational influence. Sunspots
(two black dots) are formed from these loops.(d, e, f)Additional flux emerges (d, e) and spreads (f) in latitude and longitude from decaying
spots (as described in Fig. 5 of Babcock, 1961).(g) Meridional flow (yellow circulation with arrows) carries surface magnetic flux poleward,
causing polar fields to reverse.(h) Some of this flux is then transported downward to the bottom and towards the equator. These poloidal
fields have sign opposite to those at the beginning of the sequence, in frame (a).(i) This reversed poloidal flux is then sheared again near the
bottom by the differential rotation to produce the new toroidal field opposite in sign to that shown in (b).

predicted to be delayed by 12 months in the former case (see
the blue curve in Fig. 3a) and by 6 months in the latter case
(green curve in Fig. 3a) with respect to an average 10.5 year

duration of past few cycles. This means that cycle 24 is ex-
pected to set in during late 2007 or early 2008.
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We note here that by “onset of a new cycle” we do not
mean the appearance of the “first” new cycle’s spot, rather
the time when the flux from new cycle’s spots exceeds the
flux from old cycle’s spots. Predicting the “first” new cycle’s
spot is not yet possible from such flux-transport models, be-
cause the spot eruption process is not directly included in
such models; instead, the models assume that the tachocline
toroidal flux buoyantly erupted at the surface, when it ex-
ceeds a certain field strength, is the proxy for the spot-flux.

The first truly dynamo-based simulation of the sequence of
peaks of past solar cycles and a forecast of solar cycle 24 was
published by Dikpati and colleagues (Dikpati et al., 2006;
Dikpati and Gilman, 2006). These simulations and forecast
were done by starting from the calibrated flux transport dy-
namo of Dikpati et al. (2004) and making certain modifica-
tions. First, in their Eq. (3) for the poloidal field in terms of
vector potentialA, the link between the toroidal field in the
dynamo at the bottom and the poloidal field at the surface is
replaced by a surface forcing term that is derived from the
waxing and waning of the observed poloidal fields created
by the decay of tilted bipolar active regions in previous so-
lar cycles. This represents a form of 2-D (time-latitude) data
assimilation in the model, a very common practice for me-
teorological forecast models, but perhaps the first time it has
been used in a solar forecasting problem.

As a result of the above modification, no quenching of the
Babcock-Leighton poloidal source and no buoyancy mecha-
nism are included in the model. Mathematically, the model
is changed from being a self-contained nonlinear system (the
only nonlinearity being in the quenching of theα-effects) to
a truly linear system that is forced at the upper boundary by a
measure of the sun’s past surface fields. The resulting equa-
tion for A is given by
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Here m=1.5 is the exponent for an adiabatically strat-
ified solar convection zone with a density profile
ρ(r)=ρb

[
(R�/r)−1

]m (ρb denotes the density at the
convection zone base). The other two parameters have
valuesp=1.0 andq=2.0.

The surface forcing function,F , is derived from the ob-
servational data in such a way as to capture the time-varying
production of poloidal fields from the decay of active re-
gions. The construction of this forcing could be done in a
variety of ways; here we represent it with a Gaussian profile
of fixed width, migrating towards the equator at a fixed rate,
but with a peak determined by the amplitude of smoothed
sunspot area data.

This surface forcing function imposes on the model the
(variable) period of past solar cycles. But as described above
and in Dikpati and Charbonneau (1999), flux-transport dy-
namos already have their own intrinsic period, determined
primarily by the strength of the meridional flow. We do not
know directly from velocity observations prior to 1996 what
the amplitude of this meridional flow was. The best we can
do is to estimate an average amplitude of meridional flow
from the average period of as many past cycles as we have
high quality sunspot data for, which takes us back to cycle 12.
From this data we get an average period of 10.75 years.

If we use a meridional flow amplitude determined in this
way, but force the model with data that has the observed pe-
riod of each sunspot cycle, a phase mismatch in the link be-
tween the toroidal and poloidal fields grows to an unaccept-
ably large value over several cycles’ time integration. This
makes simulation and forecast of cycle peaks impossible. To
avoid this problem, Dikpati deToma and Gilman stretched
and compressed in time the observed data so that each cycle
in the surface forcing had the same period, 10.75 years, as
the intrinsic period of the dynamo, so that no such destruc-
tive phase mismatches would occur. As a result, this method
cannot be used to simulate or predict the period of an up-
coming cycle, but it can be used to predict the amplitude.
Figure 4a compares the stretched and compressed sunspot
data with the original data. Then we represent the latitude
distribution of the poloidal source within each cycle by a
Gaussian with half-width 6◦ latitude (Fig.4b) whose peak
matches with spot area curve for that cycle, which migrates
toward the equator at a fixed rate (30◦ in latitude in 10.75
years). Narrower Gaussians than 6◦ are too narrow to match
with the observed latitudinal spread in the butterfly diagram.
On the other hand, much wider (10◦ or more) ones will ex-
pand by diffusion into a broader band than is observed. This
representation is not unique, and others should also be tried.
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Fig. 3. (a)Time trace of integrated toroidal flux in bottom shear layer for simulations beginning in 1995 with 3 different meridional flow
variations with time;(b) Coronal images at eclipse, showing 2006 corona not at minimum phase(c) observed butterfly diagram from David
Hathaway’s website.

Strictly speaking, the surface poloidal forcing should
come from synoptic observations of the photospheric mag-
netic flux that originates from the decay of active regions,
but such measurements exist only from 1976. But photo-
spheric magnetic flux and sunspot area averaged over several
rotations correlate very well with a linear fit (Dikpati et al.,
2006), so we are able to use the much longer sunspot area
record to create the forcing.

Starting from a fully converged calibrated model solution,
we initialized the model from the beginning of solar cycle 12,
and ran it for the next 13 cycles extending through the up-
coming cycle 24. The time step of this calculation was 0.25
days, determined by CFL condition.

The results of our simulations and predictions for the
peaks of cycles 12–24 are shown in Figs.5a and b, adapted
from Dikpati et al. (2006). In Fig.5a we compare the ob-
served solar cycles (cycle periods all stretched or compressed
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Fig. 4. (a) sunspot area data stretched and compressed (dashed
curve) in time to equalize all solar cycle periods to 10.75 years,
compared to original data (solid curve);(b) Gaussian profiles used
to represent latitude width of sunspot zone at various phases of a
sunspot cycle.

to 10.75 years) with the sequence of simulated peaks. It is
clear from Fig.5a that the correspondence between observed
and simulated cycles is very good, particularly beyond cycle
15. For the first few cycles the agreement is not as good,
because the model is still loading the meridional circulation
“conveyer belt” with fields from previous cycles. The sim-
ulations show two curves for the upcoming cycle 24. The
solid curve represents the case for which the meridional cir-
culation remains fixed at a value that produces the 10.75 year
dynamo period, and shows cycle 24 should have a∼50%
higher peak than cycle 23. The dashed curve represents a
simulation that takes account of time variations in observed
meridional circulation since 1996. For this case, cycle 24 is
forecast to be∼30% higher than cycle 23. Thus, even allow-
ing for variations in meridional circulation, we forecast that
cycle 24 will be substantially more active than the current cy-
cle. There are many other forecasts for cycle 24, most saying
it will be larger than 23, but some saying it will be smaller.
But our forecast is the very first one made using a dynamo
model with real solar data.

The skill of our forecast model is demonstrated more
clearly in the scatterplot shown in Fig. 5c. There plot-

Fig. 5. (a)Observed sunspot area data for cycles 12–23;(b) integral
from 0−45◦ latitude of simulated toroidal magnetic flux in bottom
shear layer for cycles 12–24, plus two forecasts for cycle 24;(c)
scatterplot of sunspot area peaks vs peak of toroidal magnetic flux
integral.

ted are the observed peaks for cycles 12–23 from Fig. 5a,
against the peaks of the toroidal flux integral computed for
the tachocline between the equator and 45◦, from Fig. 5b.
The correlation coefficient for these points is extremely high,
0.987 for cycles 16–23. This calculation was done for a par-
ticular value of the magnetic diffusivity in the bulk of the
convection zone, namely 5×1010 cm2 s−1, but in Dikpati and
Gilman (2006) similar skill levels are reached for a wide
range of diffusivity values, illustrating the robustness of the
model.
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How the model works to achieve its forecast skill is dis-
cussed in detail in Dikpati and Gilman (2006). A key element
of its workings is shown in Fig.6, in which is plotted the lat-
itudinal poloidal field and the toroidal field at similar phases
in cycles 19 and 20. The frames in Fig.6 are snapshots from
a continuous video animation for cycles 16–23, in which the
path followed by new poloidal field of a particular sign in
Bθ can be tracked until it disappears near the base of the
convection zone near the equator 2–3 cycles later. The num-
bers within the plot denote the cycle of origin of each field
tracked in this way through all of cycles 16–23. Figure6
shows an example illustrating the memory of the model’s
poloidal fields from previous cycles, with up to 3 successive
cycles’ fields accumulated at high latitudes by the meridional
flow. The latitudinal differential rotation shearing these fields
produces the toroidal fields shown. The equatorward-flowing
bottom branch of the meridional circulation then sweeps both
poloidal and toroidal fields toward the equator to put in place
the toroidal field that creates the peak of the next cycle. In
this example, the maximum flow speed was 14.5 m s−1 and
the convection zone diffusivity 5×1010 cm2 s−1. The length
of memory is determined by the relative amplitudes of the
magnetic diffusivity and the meridional flow. For weaker
meridional flow and/or higher magnetic diffusivity than the
example shown, the memory would be shorter than three
cycles, down to 1 cycle for 2×1011 cm2 s−1 in the bulk of
convention zone. For lower diffusivity and stronger flow the
memory of the model gets longer.

We close this section with discussion of a very recent
predictive flux-transport model by Cameron and Schüssler
(2007). They postulated that the cross-equatorial transport of
magnetic flux in the late phase of a cycle is a accurate pre-
cursor for the strength of the next cycle. They assimilated
observed surface magnetic data into their one-dimensional
surface flux-transport model, integrated it forward in time to
estimate that transport, and predicted the next cycle’s ampli-
tude. They find a very high correlation (r=0.90) between
the observed amplitude of the next cycle and their predicted
cross-equatorial transport at the end of the previous cycle,
when they represent the latitude information of the surface
poloidal source with equatorward migrating Gaussian as in
Dikpati and Gilman (2006). They also predict high cycle 24.
By contrast, the polar field predicted from the same model
correlates poorly with the amplitude of the next cycle (see
Fig. 1 of Cameron and Schüssler, 2007). This result casts
doubt on the utility of the so-called polar field precursor tech-
niques.

However, assimilating the observed daily latitude profile
of the emerged flux into the model integration, Cameron
and Scḧussler (2007) find that the correlation between the
cross-equatorial magnetic flux transport and the amplitude
of the next cycle declines to a correlation coefficient of only
0.45. They also demonstrated by performing 1000 experi-
ments with random sequences of eight previous cycles that
the next cycle can be predicted with a median correlation co-

Fig. 6. (a), (b) latitudinal component of simulated poloidal field
(red and blue opposite signs) at phase 0.3 of cycles 19 and 20;(c),
(d) same for simulated toroidal field.

efficient ofr=0.83, only if the timing of the minimum before
the cycle to be predicted is precisely known.

While we also need to assimilate the daily latitude profile
in our model (Dikpati et al., 2006; Dikpati and Gilman, 2006)
in the future, we have recently performed simulations by as-
similating spot area data, averaged over as short as one solar
rotation (compared to 13 rotations in Dikpati and Gilman,
2006). We found that this also reduces the skill to 0.85 com-
pared to 0.96 when the forecasted cycle peaks are correlated
with the one-rotation averaged data. But the skill remains
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the same as in Dikpati and Gilman (2006) if we correlate
the model output with the long-term averaged spot area data.
This is because our model with high surface diffusivity and
long traversal time for the surface flux to reach the bottom,
smoothes out the short-term fluctuations.

3 The geomagnetic indices

Feynman (1982) first developed a tool based on the so-called
aa geomagnetic index. She showed to how to split this index
into aaT , a component that is in-phase with solar cycle and
can be related to the toroidal field (the spot-producing field)
of the Sun, and aaaP , index that is out-of-phase with the so-
lar cycle, and can be related to the Sun’s poloidal fields. The
aaP was shown to be a good precursor for predicting the am-
plitude of the next solar cycle. Very recently Hathaway and
Wilson (2006) used this method to predict a high solar cycle
24. This result is consistent with their prediction obtained
from the correlation of the latitudinal drift speed of centroid
of sunspot zone and the second following cycle (Hathaway
and Wilson 2004). This correlation is also consistent with
the “time-delay” or the “magnetic persistence” effect in flux-
transport type dynamos.

4 Issues regarding dynamo-based prediction tools

Certain criticisms have been put forward concerning fore-
casting solar cycle peaks using a flux-transport dynamo
model (Tobias et al., 2006). We were not allowed by Nature
editors to respond to it, so we respond here and elsewhere.

The authors of this letter state a priori that because they
contain parameterizations, flux-transport dynamos have no
predictive power. But it is a logical certainty that predictive
skill of ALL models, not just flux transport dynamos, can
only be judged a posteriori by the results they produce. Fur-
thermore the skill of our model cannot be tested by using
some other model with other physics, such as one that omits
meridional circulation and the time-latitude data assimila-
tion. Also, much of the uncertainty of the effect of poorly
known parameterizations of physical processes is in effect
removed by calibrating the model to solar observations, and
then forecasting only departures from the calibrated solu-
tions. This is common practice and used with great success
in forecast models in other fields, such as meteorology.

Tobias et al. also claim that since the dynamo equations
are extremely nonlinear, chaos intrinsic to the system makes
prediction much more difficult, particularly for longer time
periods. Within a solar cycle, there are short-term chaotic
features which are probably governed by a variety of nonlin-
ear processes including the buoyant rise of initially toroidal
fluxtubes. But we are not attempting to forecast them with
our forced linear predictive tool. Obviously there are aggre-
gate effects of many short-term nonlinear events which lead
to, for example, the average surface poloidal fields that have

a well-defined observed pattern. Our predictive tool captures
this pattern. By analogy, mean flow in a river can be forecast
without forecasting accurately the various eddies that occur
in the flow.

5 Discussion and conclusions

We have shown above that flux-transport dynamos when ap-
plied to the sun can answer many important questions, from
what determines the dynamo period to how the fields of pre-
vious cycles determine the amplitude of the next one. Build-
ing on this success, we plan many sensitivity tests of the
model, and expect to generalize it to ultimately forecast both
the period and the amplitude, as well as simulate and even
forecast the appearance and evolution of nonaxisymmetric
features, such as active longitudes. We already know that
when we split the observed surface magnetic data into North-
ern and Southern Hemispheres, we are able to correctly sim-
ulate the large differences in amplitude between hemispheres
in later cycles when they occur.
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