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Abstract. We present a novel method for analyzing range
and Doppler spread targets in the amplitude domain using
linear statistical inversion. The result of the analysis is
an estimate of the range dependent amplitude behaviour of
the target backscatter during the time that the transmission
passes the target. A meteor head echo and strong backscat-
ter from artificially heated regions of the ionosphere are used
to demonstrate this novel analysis method. Plans to apply
amplitude-domain radar target estimation methods to more
complicated noisy underdetermined targets are also briefly
discussed.
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regularities; Instruments and techniques)

1 Introduction

Incoherent scatter radar targets are usually analyzed in the
power domain using lag-profile or correlation based meth-
ods. For example,Virtanen et al.(2008a) discusses auto-
correlation function estimation of range and Doppler spread
ionospheric targets through statistical inversion. On the other
hand, for targets that are spread only in range, matched fil-
ters or range sidelobe-free inverse filters have been used to
analyze targets in the amplitude domain (e.g.Sulzer, 1989;
Ruprecht, 1989).

Lag-profile analysis usually implies pre-defined integra-
tion times, range gates and lags to be estimated. These set-
tings do not necessarily preserve all the information of the
target. Also, lag-profile analysis inherently implies that the
target backscatter is modelled as a stationary stochastic pro-
cess – an assumption which is not always true.

While filter based amplitude domain decoding methods
are fast and well proven, they are not suitable for all situ-
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ations. For example, the matched filter suffers from range
ambiguities and has an underlying assumption of a point-like
target. The sidelobe-free inverse filter on the other hand does
not have range ambiguity problems (Lehtinen et al., 2004;
Vierinen et al., 2006), but just like the matched filter, there
is an assumption that the target scattering coefficient (being
defined as the ratio of target backscatter to the complex am-
plitude of the transmission) stays constant while the trans-
mission pulse travels through the target. In reality this as-
sumption is often violated. A good example is the F-region
heating that is discussed later.

In this study we present a novel method for estimation of
the target backscattering in the amplitude domain. To do
this, we model the time evolution of the reflection ampli-
tude for each range gate using a parametric model. For a
wide target that is also Doppler spread, this results in a dif-
ficult underdetermined problem with many more parameters
than measurements. But when the target is sufficiently nar-
row in both range and Doppler spread, the problem becomes
an overdetermined linear statistical inverse problem which
can be solved. We describe this analysis procedure and as
an example we show how to get high spatial and temporal
resolution amplitude estimates of narrow and strong radar
targets, even with transmissions that are coded with bauds
longer than the range resolution. The fundamental limit is
set by the sample rate used to measure the echo.

The strong artificial ionospheric heating effects shown in
this study were seen at the EISCAT Tromsø site on 18 Oc-
tober 2007 with O-mode heating during an experiment that
was mainly intended for D-region studies. The heating was
pointed in vertical direction with a 10 s on 10 s off modu-
lation. The heater was operating at 5.4 MHz with an effec-
tive radiated power of 600 MW. Strong backscatter was of-
ten seen during the heater on period. The radar experiment
was designed to also probe ranges up to 1100 km unambigu-
ously by use of uneven inter pulse periods, which enabled us
to also see strong heating effects in the F-region with three
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Fig. 1. Simplified range-time diagram of backscatter from a strong
narrow region. In this example there are two transmit samples and
three ranges that cause backscatter. The red lines visualize the
changing amplitude of backscatter at each range. The gray area
represents the area where the backscatter of one sample originates
from (assuming boxcar impulse response).

out of four echos. In addition to the strong F-region heat-
ing effects, we also saw a strong sporadic E-layer heating,
although it was less frequent and often of much shorter du-
ration. The heating effects were seen on both UHF and VHF
radars. The short transmission pulse length of 150µs, while
necessary for D-region studies, prevented us from forming a
high resolution spectrum of the target, but this could be eas-
ily remedied by using a longer transmission pulse in future
experiments.

2 Amplitude model of an incoherent scatter target

Using discrete time and range, the direct theory for a signal
measured from a radar receiver can be expressed as a sum of
range lagged transmission envelopes multiplied by the target
backscatter amplitude

m(ti) =

∑
j

ε(ti − rj ) ζ(rj , ti − rj ) + ξ(ti). (1)

Here m(t)∈C is the measured baseband signal (the nota-
tion ∈C means that the signal is complex-valued),ε(t)∈C is
the transmission modulation envelope,ζ(r, t)∈C is the range
and time dependent target scattering coefficient andξ(t)∈C
is measurement noise consisting of thermal noise and sky-
noise from cosmic radio sources. The measurement noise
is assumed to be a zero mean complex Gausian white noise
with variance Eξ(ti) ξ(tj )=δi,j σ 2. Rangesrj are defined in
round-trip time at one sample intervals andti denotes time as
samples.

There are many possible ways to modelζ(r, t). One pos-
sibility is to use a Fourier series in time, so our model param-
eters will consist ofk terms of a Fourier series representation
of the target scattering coefficient for each range of interest.
This has the advantage that we can define the frequency char-
acteristics that we expect to see in a target, as it is often the
spectral properties that are of interest. Thus, we can express

ζ(r, t) using coefficientscj,k∈C of the series

ζ̂ (rj , t) =

∑
k

cj,ke
iωk t , (2)

with frequency parametersωk selected so that the frequency
domain characteristics can be determined from the data. The
backscatter amplitude of the target can thus be modelled us-
ing the parameter setθ={cj,k}, which hasNr×Nf parame-
ters, whereNr is the number of ranges andNf is the number
of elements in the Fourier series representation of the target
amplitude. Thus,θ contains the parameters that we will at-
tempt to infer based on the measurements.

We are left with a simple statistical parameter estimation
problem, with parameters in setθ , which can be solved us-
ing statistical inversion. Using Eqs. (1) and (2), we can then
write our direct theoryz(ti, θ) using the model as:

z(ti, θ) =

∑
j

∑
k

ε(ti − rj ) cj,k eiωk ti . (3)

We can write a likelihood function as a product of indepen-
dent complex Gaussian densities, as our measurements are
assumed to be distributed this way. HereD represents the set
of measurementsD={m(t1), ..., m(tN )}:

p(D | θ) =

∏
i

1

πσ 2
exp

{
−

|m(ti) − z(ti, θ)|2

σ 2

}
(4)

Normally, if the target range extent is wide, we would need
many more parameters inθ than there are measurements. In
this case it would be necessary either to use prior informa-
tion or instead of backscatter coefficients, estimate the sec-
ond order statistical properties of the target backscatter coef-
ficients:σ(r, τ )=Eζ(r, t) ζ(r, t+τ). This is what is done in
traditional analysis using lagged product datam(t) m(t+τ)

to determineσ(r, τ ) without estimatingζ(r, t).
If we are interested in a narrow region only, as depicted

in Fig. 1, we can leave out all parameters that are not from
ranges that are interesting to us, assuming that the backscat-
ter from these ranges merely adds to the measurement noise.
If the range we are interested in has a very strong signal com-
pared to the surrounding ranges, this is a good assumption to
make. In this case, the problem becomes easy to solve as we
have more measurements than model parameters. This study
focuses on narrow strong targets that fulfill this criteria.

3 Numerical details

Assuming that we know the white noise varianceσ 2, our
problem is a linear statistical inverse problem (Kaipio and
Somersalo, 2004). We can find the maximum a posteriori
parametersθMAP

1 using linear algebra if we write Eqs. (1)
and (3) in the form

m = Aθ + ξ , (5)

1i.e. the peak of the probability density function
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Fig. 2. Modulus of raw VHF measurements from a strong narrow
layer in the F-region. Two meteor head echos can also be seen be-
low the F-region backscatter. The strong echos below are ground
clutter echos. Origin of time is the end of the TX pulse.

where the measurements and parameters are vectors and
the theory is expressed as a matrix. The measure-
ment vector is m=[m(t1), ..., m(tN )]T and the number
of measurementsN=Nr+l−1 is a sum of target ranges
and transmission envelope lengthl. The parameter vec-
tor is θ=[c1,1, c1,2, ..., cNr ,Nf

]
T, which has Nr×Nf el-

ements. Errors are uncorrelated soξ∼N(0, 6), with
6=diag(σ 2, ..., σ 2). The theory matrixA can be expressed
using Eq. (3).

To solve this problem efficiently, we used a software pack-
age called FLIPS2 (Orisp̈aä and Lehtinen, 20083). The li-
brary uses QR-factorization via Givens rotations to solve the
system of overdetermined linear equations. FLIPS can also
be used to evaluate the posterior distribution of the parame-
ters, which can be used to express errors associated with the
parameters.

4 Example: F-region heating effect

During our 18 October 2007 daytime D-region heating ex-
periment there was a sporadic E region during most of the
experiment. In addition to this, we saw many strong O-mode
heating related backscatter enhancements from the F-region

2available athttp://mep.fi/mediawiki/index.php/FLIPS
3Orisp̈aä, M. and Lehtinen, M. S.: Fortran Linear Inverse Prob-

lem Solver (FLIPS), Inverse Problems and Imaging, in preparation,
2008.
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Fig. 3. Example transmission and echo from a point-like heating
effect in the F-region. In this case from the EISCAT UHF signal.
The transmitted signal is in the beginning of the signal, followed
by ground clutter and the ionospheric echo. At around 1500µs one
can see the F-region heating related echo. The time on the x-axis is
in samples which are 0.5µs long. The red and blue represent real
and complex parts of the baseband signal.

and the sporadic E region on both VHF and UHF radars. By
looking at the raw echos, shown in Fig.2, it is evident that the
heating effect was very strong and concentrated in a narrow
region. By looking at the individual echos it was clear that
the target was not completely coherent because the strong
echo was not even close to an exact copy of the transmission
pulse. An example of a transmission and the corresponding
echo from the heated F-region is shown in Fig.3.

To examine the amplitude of the F-region heating, we
modelled 12 ranges 1µs apart. Our coding, described in
Virtanen et al.(2008b), used four 150µ pulses with 10µs
bauds. The transmission envelopeε(t) was sampled directly
from the waveguide. We modelled the range dependent am-
plitude using seven Fourier series parametersωk 6.667 kHz
apart within a±20 kHz spectral area. The number of pa-
rameters was chosen so that the fit was good, while still giv-
ing residuals of correct magnitude. The signal was strong
enough for us to be able to construct a decent estimate for
each separate echo. Figure4 shows the modulus of the pa-
rameterscj,k for each of the modelled ranges as a function
of time during the 10 s heating period. This parameter plot
can also be interpreted as a dynamic spectrum of the range
dependent backscatter amplitude. The modelled backscatter
amplitude at ranges 199.65–201.3 km during the first 100 ms
of heating is shown in Fig.5.
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Fig. 4. Heating in the F-region at 150 m resolution from one heating period starting from 10:45:20. The temporal resolution is approximately
2.5 ms (uneven IPPs). The figure contains the modulus of one set of spectral parameters for each transmit pulse, the values are in linear scale.
The values are the statistically most probable values given the measurements. Each range gate is represented with a±20 kHz spectrum at a
6.67 kHz frequency resolution. The spectrum is dominated by one central peak. The heated layer is completely contained within a 1.8 km
range interval and most of it is within a 600 m region. After recovering from the strong overshoot in the beginning, the heated region moves
down at about 45 m/s during a single 10 s heating period. The spectrum seems to broaden and strengthen slightly towards the end of the
heating period.

The results are similar to the ones obtained byDjuth et al.
(2004), except that we have slightly worse frequency resolu-
tion due to the shorter transmission pulse. But we are able to
obtain much better temporal resolution. During this experi-
ment, we did not record plasma lines, but this same method
is applicable for analyzing them, provided the plasma line
bands are sampled.

5 Example: sporadic E-layer heating effect

The sporadic E region heating effect was analyzed using the
same Fourier series parametersωk as the F-region heating in
the previous section. The combined results of one 10 s heater
on period are shown in Fig.6. Compared to the F-region
heating effect, both the spectrum and the layer itself is very
narrow. The spectrum is so narrow that only the zero fre-
quency component of the Fourier series has significant power
– the change in amplitude is only apparent when inspecting
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Fig. 5. Estimated backscatter amplitude from three ranges during the first 100 ms of heating. The estimate is based on the statistically most
probable value of parameter vectorθ given the measurements. The red and blue lines represent the real and complex parts of the baseband
signal in linear scale. This F-region heating event is the same as the one in Fig.4. The amplitude is modelled for 150µs, which is the time
that the transmission pulse travels through the range gate. Discontinuities in the figure are greater than they appear in, they are determined
by the inter-pulse period, which is approximately 2.5 ms in this case.

the signal on a pulse to pulse basis, where the slow changes
begin to appear.

The results from the sporadic E layer heating show varia-
tion in backscatter power during the on-period. The heating
effect is mostly contained in one 150 m range gate, with a
weak signal in the neighboring gates in the beginning of heat-
ing (the measurements could not be explained with only one
range without causing worse residuals, which is an indication
that these additional ranges are needed in the model). There
is certain similarity to heating effects reported byRietveld
et al. (2002), with the exception that the ion-line spectrum
obtained here is very narrow, less than 10 Hz.

In this case, the amplitude mostly contained very slow
changes and one can easily see the main Doppler shift of
−8 Hz by inspecting the estimated amplitude data. During
the first echo received after heating on, there is a strong over-
shoot, which is not there any more during the next echo. In
addition to this there were at least three detectable harmon-
ics of 50 Hz, with 50 Hz the strongest of them, only approxi-
mately 10 dB lower than the main peak centered at−8 Hz. It
is unclear what causes these harmonics, but we have ruled
out the EISCAT VHF transmitter by inspecting the trans-
mitter envelope sampled from the wave guide. The receiver
chain also seems to be free of any of these components, as
e.g. the ground clutter does not contain any of these compo-

nents. Two feasible alternatives could be the heater RF or
direct power transmission line modulation of the sporadic E
region in the ionosphere.

6 Example: meteor echo

Meteor head echos are also one example of strong point-like
radar targets. Two meteor head echos are shown in Fig.2
below the F-region heating effect. Meteor head echos are
routinely measured with high power large aperature radars
such as EISCAT or Arecibo radars (e.g.Mathews et al., 1997;
Pellinen-Wannberg, 2005). These measurements are usually
modelled with a delayed transmission envelope multiplied by
a complex sinusoid

m(t) = ε(t − r) ζ eiωt . (6)

The meteor velocity and range are then determined by find-
ing the best fitting parametersζ , r andω. This is actually
a good model, but it cannot describe arbitrary amplitude be-
haviour, and moreover it cannot be used to model range de-
pendence very well. Typically, there is an underlying as-
sumption of a point-like target, which results in range am-
biguities for a spread target.

www.ann-geophys.net/26/2419/2008/ Ann. Geophys., 26, 2419–2426, 2008
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Fig. 6. Backscatter amplitude estimate of the sporadic E-region heating effect. The time is relative to the start of the 10 s O-mode heater
on period. The figure above shows the modulus of the seven±20 kHz Fourier series coefficientscj,k used to estimate the amplitude of each
range gate during the 150µs that the transmission pulse passes each range. The heating effect is mostly concentrated in only one range gate,
with slight hints of power on the neighboring range gates, which cannot be explained by a model with only one range gate. The figure on the
lower left depicts the amplitude behaviour of the first 200 ms of heating at 107.55 km. Blue is real and red is the imaginary part of the signal,
the black line is the modulus of amplitude. The first echo is stronger and at a different phase than the rest of the backscattered waveform.
On the lower right is the low frequency spectrum of the reflection amplitude from 107.55 km estimated over the whole 10 s heater on period.
The main Doppler shift is centered at around−8 Hz. The blue vertical lines depict 50 Hz harmonics shifted by−8 Hz. It is unclear why
the 50 Hz harmonics are in the received backscatter signal – but it does not seem to be caused by the EISCAT VHF TX or RX receive path.
Possibilities include heater modulation or a direct modulation by ground based power transmission lines.

To demonstrate amplitude domain analysis of meteor head
echos, we modelledζ(rj , ti) at 9 ranges using 9 Fourier se-
ries coefficients centered around 40 kHz, which was approx-
imately the Doppler shift of the meteor head echo. The raw
voltage data was sampled at 8 MHz bandwidth. The modulus
of the coefficientscj,k for one meteor head echo is shown in
Fig. 7. The code length was 104µs with 2µs bauds. The
backscatter amplitude is concentrated in a 100 m region with
a backscatter magnitude decreasing with range. This could
be a signature of the quickly vanishing trailing edge of the
meteor head echo, but a more rigorous analysis would be re-
quired to verify this.

7 Discussion

We have demonstrated a method that gives very good tem-
poral and spatial resolution for decoding strong sufficiently
narrow targets. The method works with many types of radar
transmissions, and can thus be run as a secondary analysis
for situations where strong echos are observed. The method,
although very promising, is still new and thus there remains

work to be done with testing, parametrization, estimation er-
rors, transmission code optimality, and numerical solution
methods.

In this study we used a Fourier series to model the target,
as it was the most straightforward one and it resulted in a lin-
ear model. Because of the small number of parameters in the
series, there will certainly be some artifacts caused by this
parametrization. The most notable one is that the amplitude
behaviour tends to be periodic at the ends of the estimation
interval, which is visible in Fig.5. In cases where the target
backscatter amplitude is sufficiently narrow band, a better
parametrization for target backscatter amplitude would more
likely be a complex sinusoid multiplied by a cubic spline.
This would also be more suitable for meteor head echos, as
this would allow more precise determination of the Doppler
shift. This approach results in a non-linear statistical inverse
problem which can be solved, e.g. by using MCMC (Hast-
ings, 1970).

In addition to the examples presented in this study, there
are also many other possible applications for this method.
In the case of strong targets, our method will be directly
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Fig. 7. The modulus of the Fourier series coefficientscj,k . The meteor head echo is about 100 m wide and the main 40 kHz Doppler shift
dominates the model.

applicable. For weak targets it is yet unknown how our
method will perform, and it is a topic of future work. For
example, near earth asteroids are an example of narrow radar
targets that are fairly weak. Range-Doppler measurements
of near earth asteroids (Hudson, 1993) are routinely used to
determine the shape of the target. The range-amplitude mea-
surement presented in this paper would offer more informa-
tion than a traditional power domain range-Doppler estimate.
The reason for this is that it is possible the reduce the range-
amplitude estimate into a power domain range-Doppler es-
timate by simply taking the modulus of the Fourier domain
representation of the amplitude, but this would mean discard-
ing the phase information.

In this paper, we have not covered transmission code op-
timality in terms of amplitude domain inversion. In order to
optimize a transmission code for a certain kind of target, one
needs to calculate the covariance matrix for the parameter
vectorθ . In matrix form this is

6p = σ 2(AHA)−1, (7)

whereA is the theory matrix from Eq. (5) andσ 2 is the mea-
surement noise variance. This matrix contains the transmis-
sion envelopeε(t) and the Fourier series termseiωk ti . Here
AH is the complex conjugated transpose of the theory matrix
A. There are several aspects of the covariance matrix that
one can optimize, but in general the errors of the parameters
should be small and as independent as possible. This leads
to several different code optimization criteria, such as min-
imization of the determinant of the error covariance matrix.
Code optimization is a topic of future work.

Also, we have not yet visualized the estimation errors
properly with the results, although this is pretty straightfor-
ward to do, as the problem gives a well defined Gaussian

posterior covariance. This will be important when infering
physical parameters from amplitude domain estimates.

It would be interesting to repeat the experiments shown
in the examples with a longer transmit pulse and a higher
sample rate to achieve better frequency and height resolution.
The plasma lines should also be measured and analyzed us-
ing the method described here. Preferably the data should be
sampled at a large enough rate to fit the whole signal.

In this work we have used a discrete time and range model.
Some improvements in estimation accuracy can be expected
if the model would include proper range ambiguities that also
take into account the impulse response of the receiver chain.

While we have only applied this method to strong overde-
termined targets, there might also be a possibility to extend
this method to analyze underdetermined and weak incoher-
ent scatter targets. It is not yet completely clear how this
would be carried out. However, we plan to develop methods
for a calculus of singular distributions for the target scatter-
ing coefficients, which could then be used in a further step of
analysis modeling the scattering autocorrelation function as
an unknown instead.
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to thank M. Orisp̈aä for implementing FLIPS and showing how to
use it. The work has been supported by the Academy of Finland
(application number 213476, Finnish Programme for Centres of Ex-
cellence in Research 2006-2011). The EISCAT measurements were
made with special programme time granted for Finland. EISCAT is
an international assosiation supported by China (CRIRP), Finland
(SA), Germany (DFG), Japan (STEL and NIPR), Norway (NFR),
Sweden (VR) and United Kingdom (STFC).

Topical Editor K. Kauristie thanks I. McCrea and another
anonymous referee for their help in evaluating this paper.

www.ann-geophys.net/26/2419/2008/ Ann. Geophys., 26, 2419–2426, 2008



2426 J. Vierinen et al.: Amplitude domain analysis of strong range and Doppler spread radar echos

References

Djuth, F. T., Isham, B., Rietveld, M. T., Hagfors, T., and Hoz, C. L.:
First 100 ms of HF modification at Tromsø, Norway, J. Geophys.
Res., 109, A11307, doi:10.1029/2003JA010236, 2004.

Hastings, W.: Monte Carlo Sampling Methods Using Markov
Chains and Their Applications, Biometrika, 57, 97–109, doi:
doi:10.2307/2334940, 1970.

Hudson, R. S.: Three-dimensional reconstruction of asteroids from
radar observations, Rem. Sens. Rev., 8, 195–203, 1993.

Kaipio, J. and Somersalo, E.: Statistical and Computational Inverse
Problems, Springer, 2004.

Lehtinen, M. S., Damtie, B., and Nygrén, T.: Optimal binary phase
codes and sidelobe-free decoding filters with application to inco-
herent scatter radar, Ann. Geophys., 22, 1623–1632, 2004,
http://www.ann-geophys.net/22/1623/2004/.

Mathews, J., Meisel, D., Hunter, K., Getman, V., and Zhou,
Q.: Very High Resolution Studies of Micrometeors Using the
Arecibo 430 MHz Radar, Icarus, 126, 157–169, doi:10.1006/icar.
1996.5641, 1997.

Pellinen-Wannberg, A.: Meteor head echos – observations and
models, Ann. Geophys., 23, 201–205, 2005,
http://www.ann-geophys.net/23/201/2005/.

Rietveld, M. T., Isham, B., Grydeland, T., Hoz, C. L., Leyser,
T. B., Honary, F., Ueda, H., Kosch, M., and Hagfors, T.: HF-
Pump-Induced Parametric Instabilities in the Auroral E-Region,
Adv. Space Res., 29, 1363–1368, doi:10.1016/S0273-1177(02)
00186-2, 2002.

Ruprecht, J.: Maximum-Likelihood Estimation of Multipath Chan-
nels, PhD thesis, Swiss federal institute of technology, 1989.

Sulzer, M. P.: Recent incoherent scatter techniques, Adv. Space
Res., 9, 1989.

Vierinen, J., Lehtinen, M. S., Orispää, M., and Damtie, B.: General
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