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Abstract. Two case studies of upper mesospheric and lower
thermospheric (UMLT) high-latitude effects of solar X-ray
flares are presented. Sodankylä Ion-neutral Chemistry Model
(SIC) electron density profiles agree with D-region EISCAT
and riometer observations, provided that the profiles of the
most variable ionisable component, nitric oxide, are adjusted
to compensate for NOx production during preceding geo-
magnetically active periods. For the M6-class flare of 27
April 2006, following a quiet period, the agreement with cos-
mic noise absorption observed by the Sodankylä riometers
was within reasonable limits without adjustment of the [NO]
profile. For the major (X17-class) event of 28 October 2003,
following high auroral activity and solar proton events, the
NO concentration had to be increased up to on the order of
108 cm−3 at the D-region minimum. Thus [NO] can in prin-
ciple be measured by combining SIC with observations, if
the solar spectral irradiance and particle precipitation are ad-
equately known.

As the two case events were short and modelled for high
latitudes, the resulting neutral chemical changes are insignif-
icant. However, changes in the model ion chemistry occur,
including enhancements of water cluster ions.

Keywords. Atmospheric composition and structure (Ion
chemistry of the atmosphere) – Ionosphere (Ion chemistry
and composition; Solar radiation and cosmic ray effects)

Correspondence to:C.-F. Enell
(carl-fredrik.enell@sgo.fi)

1 Introduction

X-rays are emitted by the hot solar corona and absorbed in
the upper and middle atmosphere through direct ionisation
followed by indirect ionisation by the emitted energetic sec-
ondary photoelectrons. The variability of solar emission in
this short-wavelength regime is very large. Figures2 and8
show measurements of hard X-rays, defined here as electro-
magnetic radiation of wavelengths shorter than 1 nm, from
the GOES Space Environment Monitor X-ray (SEM XRS)
sensors (Sylwester et al., 1995). It is evident that the ir-
radiance can vary by 5 orders of magnitude or more. The
upper-atmospheric effects of X-ray absorption during solar
flares have been studied by satellites such as TIMED (Woods
et al., 2002) and the Student Nitric Oxide Explorer (SNOE),
(Bailey et al., 2000). The effects can also readily be mon-
itored remotely by ground-based instruments. During flare
events the electron density in the upper mesosphere – lower
thermosphere (UMLT) region is enhanced, which affects the
propagation of radio waves as measured in HF cosmic noise
absorption with riometers as well as with monitoring of VLF
transmitters. Based on VLF and riometer measurements,
Thomson et al.(2004) andBrodrick et al.(2005) studied the
major solar flare of 4 November 2003, which saturated the
GOES detectors. These studies independently concluded that
the X-ray flare magnitude was in the range X40–X45, i. e.,
the irradiance was 4.0–4.5×10−3 W m−2 in the wavelength
range 0.1–0.8 nm at 1 AU.

The ion and neutral chemical effects of two X-ray flares
have here been modelled for the high latitudes of the EIS-
CAT radar site near Tromsø, Norway (69.59◦ N, 19.23◦ E)
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Fig. 1. The X-ray cross sections of the major atmospheric species,
as taken from the NIST XCOM data base (Berger et al., 1998).

and the riometers at Sodankylä Geophysical Observatory,
Finland (67.37◦ N, 26.63◦ E), respectively. The first event,
on 28 October 2003, was a large solar flare preceding the so-
called “Halloween storm”. Several solar proton events also
occurred during this period (Verronen et al., 2005). The flare
magnitude was classified as X17 (maximum irradiance in the
wide-band GOES XRS detector 17×10−4 W m−2). During
this flare event the EISCAT VHF radar ran thearc dlayer
experiment as a UP (Unusual Programme) special event.

The second event is the M6 (maximum irradiance
6×10−5 W m−2) flare that occurred during the local after-
noon and evening of 27 April 2006. The latter case is suitable
for comparison and verification especially since the GOES
detectors were neither saturated nor much affected by parti-
cles, which may be the case during X-class events.

The rates of hard X-ray ionisation were calculated by fit-
ting a spectral shape to the two GOES hard X-ray channels
and integrating those over the cross sections of primary ion-
isation. Secondary ionisation by the X-ray photoelectrons
was parameterised. The resulting ionisation rates were im-
posed on the comprehensive Sodankylä Ion-neutral Chem-
istry (SIC) model. As will be shown, the resulting electron
density profiles can be forced into agreement EISCAT obser-
vations by adjusting the initial concentration of nitric oxide
(NO). For the quiet period of April 2006, the modelled and
observed cosmic noise absorptions agree rather well without
any adjustments of background [NO].

2 SIC modelling

In the modelling of the effects of these two events we have
applied version 6.8.1 of the SIC model. This model includes
over 300 reactions of

– 36 positive ions

– 27 negative ions

– 14 neutrals

and is the result of the extensions of the original Sodankylä
Ion Chemistry model (Turunen et al., 1996) as described by
Verronen(2006). The model uses altitude profiles of tem-
perature and major atmospheric species from the empirical
MSISE-90 model (Hedin, 1991) and fromShimazaki(1984).
Photoionisation of molecular and atomic oxygen as well as
dissociation of the molecular major species are calculated
based on solar spectral irradiances from the Solar2000 model
(Tobiska et al., 2000). The radiative transfer calculation fol-
lows Rees(1989) with numerical integration based onPress
et al.(1992), disregarding refraction for all wavelengths.

The spectral region was extended into the hard X-ray
region, 0.1–1 nm, by including ionisation and dissociation
cross sections of N2, O2, NO and O (Fig.1) from the NIST
XCOM database (Berger et al., 1998). For solar hard X-
ray spectra, many empirical models are nowadays becom-
ing available, such as the Solar Irradiance Platform that is to
replace the current Solar2000 (Tobiska et al., 2000) model.
For the present purpose, however, we used a simple analyti-
cal approximation (Sect.3). This procedure will be shown to
yield results in approximate agreement with observations for
the M-class flare. However, the possible choices of spectral
models will affect the results and interpretation with respect
to the adaptation of [NO] profiles, so a proper representation
of the solar spectrum is an important issue for further studies.

From the SIC model results, altitude profiles of electron
density are calculated as

Ne(h) =

36∑
i=1

[Pi(h)] −

27∑
j=1

[Nj (h)] (1)

where the sums represent the total concentrations of the pos-
itive and negative ions, respectively.

When setting up a new run, the SIC model is initialised
by repeating a diurnal cycle with photochemical forcing only
until a quasi-steady cycle is obtained. This method provides
control (background) profiles for comparison of the results as
well as initial concentration profiles of all modelled species
for the event runs.

3 Scaling of GOES data

The SEM XRS system of each GOES satellite consists of
two ionisation chambers, one of which is filled with argon
and covers the nominal wavelength range of 0.1–0.8 nm, the
other one xenon-filled and covering the short-wavelength
range of 0.05–0.4 nm (seeGarcia, 1994). To convert the
fluxes integrated over these channels into spectral irradiances
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for the modelling, we have applied an empirical spectrum ac-
cording toCulhane and Acton(1970); in photon energyE
(keV) scale

N(E)=C·T −0.2E−1.3 exp

[
−

E

kT

] [
1−

(
E

88.0

)0.33kT
]−1

(2)

Equation (2) contains two free parameters, a solar coronal
plasma temperatureT and a constantC representing a line-
of-sight integral of coronal electron density.k is Boltzmann’s
constant. It can thus be numerically fitted to reproduce the
two measurement channels of GOES. For the high X-ray ir-
radiances of 28 October 2003, Eq. (2) does not hold true,
since it is valid forT <20×106 K only. The wide X-ray
channel was also saturated during the maximum. In these
cases the spectrum forT =20×106 K was shifted towards
smaller wavelengths until the GOES channel ratios matched
and thenC was scaled to reproduce the irradiance(s) of the
non-saturated channel(s).

For the 27 April 2006 case the maximal irradiances ob-
served were lower than the minimal irradiances of the 28
October 2003 event, so Eq. (2) is assumed to be applica-
ble throughout the event. The scaling for this event could
therefore be automated and for simplicity we assumed the
spectral responses of the two ionisation chambers to be Gaus-
sian with half-widths of 0.1–0.8 nm and 0.05–0.3 nm, respec-
tively, the latter because the X-ray ionisation chamber has a
rather sharp cutoff at 0.3 nm. Although the fitting procedures
described here are somewhat arbitrary, the spectra obtained
have proven to yield results (electron density profiles) well
in agreement with observations.

4 Case 1: 28 October 2003

4.1 Data analysis

The left plot of Fig.2 shows the two 5-min integrated GOES-
10 SEM X-ray channels for the time of the event. The maxi-
mum occurred close to local noon. However, in late October
the solar elevation is low also at noon – the solar zenith an-
gle used in the calculation was close to 83◦ throughout the
event. During the event the EISCAT VHF radar was run-
ning the high-resolutionarc_dlayer experiment which is
a pulse-to-pulse long-lag experiment with high time resolu-
tion for the ranges 60–140 km.

For analysing the experiment data, theFukuyama and
Kofman (1980) (henceforth F-K) theory was fitted to the
EISCAT autocorrelation function (ACF) profiles using the
Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
method (Hastings, 1970). MCMC is a random sampling
procedure which automatically yields the posteriori distri-
butions of the free parameters. The F-K fit parameters are
electron densityNe, electron temperature, ion velocity, ratio
λ=N−/Ne of negative ion to electron density, and collision
frequencyνin. Since the MCMC method can, by definition,

yield only results within the given a priori distributions of the
parameters to fit, wide step-function type prior distributions
were used. The calibration factor of the ACF profiles was
estimated by fitting the first lags of the ACFs to the so-called
raw Ne (N∗

e ) profiles given by the standard EISCAT analy-
sis software GUISDAP1 in the E region. Since ISRs do not
measure the true raw backscattered power (zero lags of the
ACF), GUISDAP calculates theN∗

e values from the 32-µs
pseudo-zero lags of thearc_dlayer experiment, automat-
ically calibrating against thefoE of the co-located EISCAT
dynasonde (I. Ḧaggstr̈om and M. Rietveld, personal commu-
nication).

4.2 Modelling

For modelling the 28 October 2003 case, the SIC model
was initialised for the location of EISCAT at Ramfjordmoen
near Tromsø, Norway (69.59◦ N, 19.23◦ E). The MSIS back-
ground atmosphere was calculated with the following param-
eters:F10.7=217.8 (solar 10.7 cm flux of the preceding day),
F10.7A=164.56 (3-month average ofF10.7) and daily average
Ap=22. Calculations of ionisation and dissociation of nitro-
gen and oxygen were included as in the standard SIC 6.8.1
model and in addition rates due to the fitted hard X-ray spec-
tra, of which the right plot of Fig.2 shows two examples,
were included. The radiative transfer calculations were up-
dated with 5-min time resolution together with estimates of
vertical transport, etc., as described inVerronen(2006).

4.2.1 Scaling of nitric oxide

Nitric oxide (NO) is the main varying ionisable species in
the altitude range of this study. During quiet times, solar
Lyman-α ionisation of NO is the main source of the lower
ionosphere. Hard X-rays, as well as auroral electrons and so-
lar protons, efficiently ionise also the main constituents of the
atmosphere, but we assume their concentrations to be con-
stant, given by the MSISE-90 background.

The odd nitrogen family (NOx=N+NO+NO2) is long-
lived, the lifetime being from about one day in the solar-
illuminated upper atmosphere up to months in the polar
night. Under such conditions transport of NOx to lower alti-
tudes and latitudes is important (Siskind et al., 1997; Callis
and Lambeth, 1998; Vitt et al., 2000; Sepp̈alä et al., 2007).
The balance between the species is governed by photochem-
istry, so that most NOx is converted into NO during day-
time. The concentration of NO thus depends on transport and
preceding production by auroral activity and proton events.
[NO] has a maximum at altitudes between 100 and 120 km,
where both soft X-ray radiation (1–7 nm) and auroral elec-
tron precipitation (assuming typical characteristic energies
of 1–10 keV) dissipate most of their energy. As shown by
SNOE the concentration of NO around the 110-km peak
varies between 107 and 109 cm−3 at high latitudes. See the

1see the EISCAT homepagehttp://www.eiscat.se
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Fig. 2. Left plot: The GOES X-ray channels for the 28 October 2003 event. It should be noted that the wider channel saturated during the
maximum. Right plot: Fitted spectra for the maximum (around 11:10 UT) and minimum (X-rays switched on at 10:50 UT) fluxes during the
model run. Similar spectra fitted to 5-min average GOES data were used throughout the flare runs. The solar zenith angle was around 83◦

throughout the event, since it occurred close to local noon. See Sect.3 for details.
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Fig. 3. SIC model NO concentration profiles at the onset of the X17
flare of 28 October 2003, 10:45 UT. The initial profile was scaled
by constant factors of 10, 30 and 100 at start of run (08:00 UT);
thereafter the profiles change slowly by chemical reactions.

studies byBarth (1992, 1996); Siskind et al.(1998); Saetre
et al. (2004) andSaetre et al.(2007) for further discussions
of these measurements and modelling of NO. We can thus
expect a concentration on the order of 109 cm−3 in active pe-
riods.

To account for this variability of [NO], the modelled and
measuredNe profiles were brought into agreement by scal-

ing the SIC initial concentrations of nitric oxide at the start
of the model run (08:00 UT), multiplying by 10, 30 and 100.
The model runs were continued without X-ray ionisation un-
til 10:45 UT, allowing the numerical solutions to settle to
NO concentrations acceptably close to the observed range
at the maximum. The resulting NO concentration profiles at
10:45 UT are shown in Fig.3. X-ray ionisation was switched
on at 10:50 UT.

The left plot of Fig. 4 shows SIC modelled and
arc_dlayer fitted electron densities for 09:45 UT, which
was the time of a minimum in the electron density before the
flare peak. The F-K MCMC fit was done on data averaged
over 09:25–09:45 UT. For the GUISDAP results the medians
of the 1-min profiles in the same time interval is used, bad
profiles removed by manual inspection. Likewise, the left
plot of Fig. 5 shows modelled and measured profiles for the
peak, 11:10 UT. The EISCAT results were here averaged over
11:05–11:20 UT. The right plots show the relative difference
between the F-K MCMC fitted and the SIC model electron
density profiles,(Ne(F-K)−Ne(SIC)) /Ne(F-K), at the 1 km
resolution of the SIC model runs.

The agreement between SIC modelled and EISCAT
arc_dlayer fitted electron density clearly falls into three
regions.

1. 75–100 km: The profiles agree well when starting with
30–100 times the SIC quiet background [NO]. This
is not unreasonable since proton events occurred and
auroral activity was very high during the days preced-
ing the event and the following extreme “Halloween
storm”. We have previously modelled the effects of

Ann. Geophys., 26, 2311–2321, 2008 www.ann-geophys.net/26/2311/2008/



C.-F. Enell et al.: Case studies of X-ray flares 2315

10
1

10
2

10
3

10
4

10
5

60

70

80

90

100

110

120

Electron density (cm−3)

A
lti

tu
de

 (
km

)
Local minimum before flare (09:25−09:45 UT)

 

 
GUISDAP
Fukuyama−Kofman
SIC 09:45
SIC 09:45, 10x NO
SIC 09:45, 30x NO
SIC 09:45, 100x NO

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
70

75

80

85

90

95

Relative difference

A
lti

tu
de

 (
km

)

Modelled vs measured N
e
, before flare

 

 

F−K vs SIC

F−K vs SIC, 10x NO

F−K vs SIC, 30x NO

F−K vs SIC, 100x NO

Fig. 4. The 28 October 2003 X17 flare event. Left plot: SIC and EISCAT results before the flare onset. GUISDAP profiles are averaged
over the minimum in electron density preceding the flare, 09:25–09:45 UT, bad profiles removed. The F-K MCMC fit was applied to data
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The SIC results are shown for 09:45. Right plot (N.B: altitudes restricted to 70–95 km): Relative differences between F-K MCMC and SIC
electron densities,(Ne(F-K)−Ne(SIC))/Ne(F-K).

solar protons alone during this period (Verronen et al.,
2005). On 28 October 2003, SIC modelled [NO] in this
altitude range was 107–108 cm−3, increasing even more
after the following “Halloween” events. Taking also au-
roral electrons into account, a concentration of close to
109 cm−3 as in these cases (Fig.3) is therefore not unre-
alistic. The exact shape of the modelled electron density
profiles will depend not only on [NO] and the applied
hard X-ray spectra but also on EUV, soft X-rays and
particle precipitation. However, at the time of onset of
this event it appears that simultaneous particle precipi-
tation can be neglected.

2. Above 100 km: Before the flare onset (Fig.4) the elec-
tron density is highly overestimated for the [NO] scal-
ing required for best agreement at 75–100 km. As seen
in Fig. 3 the model concentration of NO at the max-
imum near 110 km is close to 109 cm−3 or higher for
all three scaling factors, so this scaling is possibly un-
realistic. In that case, interpolation between the pro-
files can in principle be applied to obtain an estimate of
the actual NO concentrations. However, part of the dis-
crepancy, especially before the flare onset, can also be
caused by the simple radiative transfer calculation over-
estimating soft X-rays and EUV at these altitudes for
the high solar zenith angle of the event. This source of
uncertainty should be eliminated by a proper radiative
transfer calculation, but this is beyond the scope of the
present study. More likely ionisation by EUV and soft

X-rays are underestimated at the flare maximum. Soft
X-rays (>1 nm) and EUV are included as a daily aver-
age from the SOLAR2000 model (Tobiska et al., 2000).
Thus ionisation by soft X-rays and EUV in the model
run does not follow the flare development. In this case
the lower concentrations of Fig.3 are still correct.

3. Below 75 km: The scattering is affected by the high col-
lision frequency, by the presence of negative ions, and
possibly also by radar self-clutter (F-region backscat-
ter from preceding pulses aliased into the lowest
ranges). The latter is significant only below 65 km
(I. Häggstr̈om, personal communication). The upper
panel of Fig.6 confirms that negative ions are signifi-
cant below 70 km. The middle plot shows modelled and
F-K fitted values of the negative ion to electron density
ratioλ for the flare maximum.

The GUISDAP and F-K electron density profiles agree
fairly well in the pre-flare case, but at the flare maxi-
mum the difference is large. The discrepancy between
F-K and rawNe (the latter not shown in the figures)
is small, however, and attributable to the negative ions.
Turunen(1993) has shown that theFukuyama and Kof-
man(1980) theory represents the effect of negative ions
well. As Fig. 7 shows, the difference is likely caused
by the fact that GUISDAP uses a fixed collision fre-
quency profile whereas it is a fitted parameter in the F-K
MCMC retrieval. It can be seen that the F-K fit repro-
duces the mesopause as a change in the gradient. The

www.ann-geophys.net/26/2311/2008/ Ann. Geophys., 26, 2311–2321, 2008
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Fig. 5. The 28 October 2003 X17 flare event. Left plot: SIC and EISCAT results at the peak of the flare. GUISDAP profiles are averaged
over the period 11:05–11:20 UT. The F-K MCMC fit was applied to data averaged over the same interval. In the model runs the hard X-rays
based on the spectra fitted to GOES data were switched on at 10:50 UT. Results shown are for 11:10. Right plot (N.B: altitudes restricted to
70–95 km): Relative differences between F-K MCMC and SIC electron densities,(Ne(F-K)−Ne(SIC))/Ne(F-K).

GUISDAP profile, calculated from the NRLMSISE-00
model (Picone et al., 2002) temperature and densities of
N2, O2 and O only, clearly lacks this feature. Thus, the
actual electron density at the flare peak is not well re-
produced by the model – the difference is at least a fac-
tor of two. Proton precipitation probably began around
this time (seeVerronen et al., 2005), and the short-
wavelength region of theCulhane and Acton(1970)
spectrum (Eq.2) may not be a good representation of
the actual solar spectrum, especially since one of the
GOES detectors was saturated and the spectrum was
adapted manually. The discrepancy may also be an in-
dication that it would be necessary to introduce hard-X-
ray ionisation earlier in the model run.

A narrow polar mesospheric winter echo (PMWE) is
also visible at around 60 km. The strength of the PMWE
appears to follow the X-ray ionisation, which is ex-
pected since both ionisation and some perturbations,
likely turbulence (Kero et al., 20082 causing a density
modulation fulfilling the Bragg condition at the radar
wavelength are necessary for producing a strong echo.

The lower panel of Fig.6 shows that the change in ni-
tric oxide concentration due to the flare is completely neg-
ligible. The modelled relative change is less than 1/1000,
whereas the SIC model initialisation is considered conver-

2Kero, A., Enell, C.-F., Kavanagh, A., Vierinen, J., Virtanen, I.,
and Turunen, E.: Could negative ion production explain the Polar
Mesosphere Winter Echo (PMWE) modulation in active HF heating
experiments?, Geophys. Res. Lett., in preparation, 2008.

gent for changes of less than a few per cent per cycle. This
does not mean that flares are not a possible significant source
of atmospheric NO. Solar flare events affect the entire sunlit
atmosphere and may last for several days. At lower latitudes,
where the background concentration is orders of magnitude
smaller due to transport and the absence of particle precipi-
tation, flares are likely to enhance [NO] significantly. Refer
to the SNOE observations, such asBarth(1992, 1996); Barth
and Bailey(2004) andSiskind et al.(1998).

5 Case 2: 27 April 2006

The event of 27 April 2006 represents an M-class flare (M6)
in a less disturbed period near solar minimum. The maxi-
mum occurred in the local afternoon and evening, but since
late April is close to the beginning of polar day the solar
elevation was higher than during the 28 October 2003 X17
event. In the period 15:00–17:00 UT the solar zenith an-
gle increased from 70◦ to 82◦. The EISCAT radars were
not running during the maximum of this flare event, only in
the morning and late evening, so comparison with modelling
would not be straightforward. Therefore we restrict this
study to a comparison with riometer measurements. Figure8
shows the X-ray fluxes measured by the GOES 10 satellite
during 27 April 2006. For these runs the SIC model was ini-
tialised for Sodankyl̈a, Finland (67.37◦ N, 26.63◦ E). For the
MSISE-90 background model the parametersF10.7=96.3,
F10.7A=79.7 andAp=3 were used. The model was run for the
time interval 14:00–18:00 UT with and without additional
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Fig. 6. Upper panel: SIC modelled ratioλ of negative ion to elec-
tron density for the 28 October 2003 flare event. Runs start with
100 times the background run NO concentration at 08:00. Mid-
dle plot: SIC modelled and F-K MCMC fittedλ for the 28 Octo-
ber 2003 flare maximum (11:10 UT). Lower panel: Relative NOx
(N+NO+NO2) enhancement due to the flare (event run vs control
run for 100x background [NO] at 08:00 UT). Modelled enhance-
ments of less than a few per cent are insignificant, so there is clearly
no significant change here.

Fig. 7. Comparison of the fixed ion-neutral collision frequency
profile of GUISDAP, calculated from MSIS N2, O2 and O, and
the Fukuyama-Kofman MCMC fit. The F-K fit reproduces the
mesopause well whereas the exponential GUISDAP profile, likely
differing from the real one, may cause misinterpretation of the elec-
tron densities.

X-ray ionisation. In the EUV region of the solar spectra the
irradiances were chosen as the maximum (per wavelength
bin) of the Solar 2000 and the TIMED SEE (Woods et al.,
2002) empirical spectral models. The EUV irradiances were
seen to affect the results somewhat, again indicating that us-
ing proper solar spectra and radiative transfer calculations is
important for the interpretation of the results. Updates of the
X-ray spectra and vertical transport were calculated for each
minute and the MSIS background was updated for each 5-
min interval.

In the upper panel of Fig.9 the development of the SIC
calculated electron density during the event is presented.
From the profiles of electron-neutral collision frequencies,
given by an empirical function of temperature,Ne and the
concentrations of N2, O2, O and He (Banks and Kockarts,
1973), the absorption of radio noise is calculated using the
extended magneto-ionic theory ofSen and Wyller(1960),
following Hultqvist (1968). A pure dipole approximation
of the geomagnetic field at Sodankylä, magnetic latitude
63.8◦ N, was adopted. Figure10 shows the calculated and
observed absorptions from the two Sodankylä riometers at
30 and 51.4 MHz. The modelled absorptions in dB were
calculated for an isotropic wide-beam zenith geometry and
therefore multiplied by a geometrical factorG=1.2.

The observed and modelled absorptions agree fairly well
during the flare. The base level of the observation is higher
than the modelled absorption due to the absorption at higher
altitudes (see e.g.Ranta, 1979) not taken into account here.
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Neither did our modelling take into account D-region ionisa-
tion by electron precipitation. After approximately 17:00 UT
(not shown here) the observed absorption increased above
the modelled absorption. This was due to auroral activity as
evident from inspection of magnetograms. Riometers show-
ing an increase in cosmic noise absorption therefore cannot
per se be used to distinguish between the effects of X-rays
and precipitating particles. Direct or indirect measurements
of particle precipitation is a necessary complement for inter-
preting the source of absorption enhancements.

The middle panel of Fig.9 shows that the ratio of negative
ions to free electrons reaches 0.1 at well below 80 km also in
this case. The lower panel shows an example of water clus-
ter ions (here a proton hydrate). It is seen that water cluster
ion concentrations can increase by some orders of magni-
tude close to the mesopause. All excess ionisation, also by
hard X-rays, could therefore play a role in the formation of
aerosols in the mesopause region, affecting the occurrence
of polar mesospheric summer echoes and noctilucent clouds
during short-term events.

6 Discussion

The ion-neutral chemical model results of the 28 October
2003 X17 and 27 April 2006 M6 flares were compared with
D-region radio observations. For the 27 April 2006 flare,
the cosmic noise absorption calculated from SIC modelNe
profiles agree at least qualitatively with riometer measure-
ments without any adjustments. The background atmosphere
as given by MSIS is likely more reliable for this latter case.
MSIS interpolates profiles taking into account averageAp

andF10.7 above 100 km. The solar elevation was also rather
high during the onset of this event, so the calculation of pho-
toionisation should work without major problems.

In the 28 October 2003 case, preceding auroral activity
and proton precipitation have evidently enhanced the [NO]
background in the upper mesosphere up to 108–109 cm−3.
As seen in Figs.4 and5 the pre-flare result above 110 km fits
measurements without any scaling of the initial [NO] profile,
whereas at the flare maximum the resulting electron density
is too low. This is possibly due to underestimated soft X-ray
fluxes. As mentioned, the issues of proper radiative transfer
at high solar zenith angles also needs further investigation,
since overestimates of the ionisation rates may instead follow
and therefore the higher [NO] values may still be correct.

Neutral chemistry changes are insignificant in these short-
lived high-latitude events, but further model studies will ad-
dress the importance at low latitudes. Finally it should be
noted that effect of heating on atmospheric dynamics during
flares is also very likely of major importance, rendering the
MSISE-90 model values unreliable, but this is beyond the
scope of this paper. We plan to address these questions by
applying a version of the CMAT2 three-dimensional model
(Harris, 2001) where the radiative code has been extended
into the hard-X-ray range (A. Dobbin and A. Aylward, per-
sonal communication).

7 Conclusions

The SIC model has been extended for modelling the ef-
fects of solar hard X-rays. The effects on ion chemistry are
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Fig. 9. SIC model results for the 27 April 2006 M6 flare event.
Upper panel: Electron density. Middle panel: Ratio of negative ion
to electron density. Lower panel: Concentration of then=2 proton
hydrate, showing an increase of a few orders of magnitude in the
mesopause region.
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Fig. 10. Comparison of modelled and observed cosmic noise ab-
sorption for the 27 April 2006 M-class flare. Red curves: Ab-
sorption calculated from SIC modelled electron density profiles and
MSISE-90 neutral density and temperature, using the Sen-Wyller
formalism. Black curves: Absorption measured by the Sodankylä
riometers at 30 and 51.4 MHz.

significant whereas neutral composition is little affected at
the high latitudes and short time scales of this study.

As can be inferred especially from the case study of the
October 2003 X17 flare, not only the [NO] profiles but also
the applied approximations of the solar irradiance in the EUV
and X-ray regions affect the measured electron density pro-
files. It would therefore be desirable to verify the proposed
method by comparison with in-situ measurements of [NO]
during flare events. The calibration of the electron density
profiles and measured cosmic noise absorption is also impor-
tant. Methods for obtaining accurate calibrations of EISCAT
data even during times of strong ionisation, when ionosonde
measurements offoE are impossible due to D-layer absorp-
tion and F-region clutter can affect the measurements, would
be needed.

[NOx] and thus daytime [NO] is highly variable. At
UMLT altitudes, where [NO] profiles normally have a min-
imum at 70–80 km, preceding auroral activity and proton
events may enhance [NO] by one to a few orders of mag-
nitude. Such a scaling of [NO], i.e. total [NO] in the range
108–109 cm−3, brings modelled and measured electron den-
sity profiles into agreement at these altitudes. We can there-
fore conclude with some confidence that the concentration
was at least 108 cm−3 there. Closer to the [NO] maximum
around 110 km a smaller scaling factor must likely be used.

The combination of modelling based on measured or ad-
equately parameterised solar spectra (and energies of pre-
cipitating particles) with incoherent scatter radar or riome-
ter measurements thus provides a method for remote sensing
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of [NO] especially during geomagnetically active times, pro-
vided that the radiative transfer calculation and parameteri-
sation of secondary ionisation are correct.
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