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Abstract. In this paper we develop a modern approach tocycle and to derive short- and long-term predictions of the
solar cycle forecasting, based on the mathematical theorgunspot number.

of nonlinear dynamics. We start from the design of a static Many attempts have already been made in the past to pre-
curve fitting model for the experimental yearly sunspot num-dict future solar cycles. They can be grouped into two main
ber series, over a time scale of 306 years, starting from yeacategories (Hathaway et al., 1999):

1700 and we establish a least-squares optimal pulse shape of ) . ]

a solar cycle. The cycle-to-cycle evolution of the parame- — Regression Techniques:  standard auto-regression,
ters of the cycle shape displays different patterns, such as a ~ curve-fitting and neural networks.

Gleissberg cycle and a strong anomaly in the cycle evolution
during the Dalton minimum. In a second step, we extract
a chaotic mapping for the successive values of one of the
key model parameters — the rate of the exponential growth-
decrease of the solar activity during theh cycle. We ex-

amine piece-wise linear techniques for the approximation ofRegression techniques provide short-term extrapolations us-
the derived mapping and we provide its probabilistic analy-ing observed indices of solar activity from the recent past to
sis: calculation of the invariant distribution and autocorrela- extrapolate into the near future. They suffer from a rather
tion function. We find analytical r8|ati0n3hips for the SUnSpOt low performance during the transition from one Cyc|e to the
maxima and minima, as well as their occurrence times, asgther, while precursor techniques can deliver an estimate of
functions of chaotic values of the above parameter. Based Ofhe amplitude for the next solar cycle one or two years be-
a Lyapunov spectrum analysis of the embedded mapping, Weore the previous cycle has ended. However, both approaches
flna”y establish a horizon of predlctablllty for the method, lack a physica| basis. Next to these, magnetohydrodynamica|
which allows us to give the most probable forecasting of themodels have been developed during the last decades to simu-
upcoming solar cycle 24, with an expected peak height ofiate the solar dynamo processes that generate the solar mag-
93+21 occurring in 2011/2012. netic activity, but even now, they cannot reproduce the de-
tailed evolution of the solar cycle (for a recent review of this
effort, see Charbonneau, 2005). Therefore, a mathematical
approach of the problem is still useful and productive, in or-
der to progress in this field of research. However, so far, most
The sunspot number time series provides the longest exisf the.published methods are .either ba;ed on crude statistical
ing record of solar activity, and is thus the best available datd®chniques and purely empirical relations or they use clas-
set for studying the long-term evolution of solar activity and, Sic@l mathematical tools adapted only to deterministic time
in particular, of the 11-year activity cycle. Here, we apply S€res (e.g. Fourier analysis) or adopt a linear stochastic ap-

the mathematical concepts of the nonlinear dynamical sysProach. . . _ o
tems, in order to derive dynamical properties of the solar The irregularity of the sunspot time series, both in period
and amplitude, as well as the existence of grand minima,

Correspondence toA. L. Baranovski where the cyclicity vanishes, suggests a more complex evo-
(alexander.baranovski@gmail.com) lution. Recently, this was confirmed by advanced models

— Precursor Techniques: a combination of sunspot num-
ber indicators (tracers of the closed solar magnetic field)
and geomagnetic indicators (proxies of the Sun’s open
dipolar magnetic field).

1 Introduction

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Fig. 1. Historical yearly sunspot number time series 1700-2005.Fig. 2. Pulse shape of a spot cycle modelled by Eq. (2) with pa-
Those original numbers, derived from numerous visual observatametersy; =10, ¢=1. This parametric representation can fit fairly
tions, show not only the 11-year pulsation but also its irregular vari-well the overall envelope of one solar cycle, using a restricted set of
ations in amplitude and periodicity. parameter values.

of the solar dynamo that include a meridional circulation of More recently, De Meyer (2002) used again Eq. (1) in his
the weak surface fields (Charbonneau, 2005; Dikpati et al.;transfer function model” for the sunspot cycle. Through a
2006). Although they can only qualitatively reproduce the numerical technique, he tabulates the parameters for each of
solar evolution, such physical models of a nonlinear dynamahe last 28 cycles. It gives a least-squares optimal approxima-
show that the system is highly sensitive to the initial obser-tion to the annual sunspot number time series. However, De
vational constraints and takes on a chaotic or intermittent beMeyer’s attempts to extrapolate his model by linear methods
haviour. demonstrate a weak prediction capability of this approach.
This is why we apply here two methods adapted to the By contrast, we first modify the pulse shape, as defined
analysis of such nonlinear dynamical systems with a lim-in Eq. (1), and detect the nonlinear dynamics of the least-
ited number of degrees of freedom. The S plane surface andquares optimal shape parameters in their cycle-to-cycle evo-
Poincare section techniques, as well as a nonlinear mappiniytion. This will allow us to achieve an optimal performance
analysis applied to a chaotic time series, can bring qualitain a retroactive “forecast” of past cycles and to obtain a most
tive and quantitative insights into the underlying physical dy- probable prediction of the upcoming cycles.
namics. Contrary to earlier studies, we make use here of the We will assume that the time variations of SN can be de-
entire sunspot time series, instead of one or just a few pastcribed as a train of pulses using the following signal model:

cycles. .
x(t)-Zka—ZAkf( - 1) )

For anyk-th pulse corresponding to sunspot cyel&r) oc-

Figure 1 shows the annual sunspot number (SN) time seriegurring in the time intervat;_1 <z <7, between two succes-
s(t) for the years 1700 through 2005. From the above SNsive SN minima, the model is characterized by
time evolution, one can easily observe the cyclic behavior
and the cycle-to-cycle variations in amplitude, shape and du-
ration. This led Waldmeier (1935) to first propose the idea of 4 oy
representing the course of SiN¢) during each cycle, from f2) = {IBZ e +e z2€ (0D ,
minimum to minimum, by a standard curve belonging to a 0, ¢ (0.1
family of pre-defined standard profiles.

Stewart and Panofsky (1938) proposed a more advanced 2+ the pulse amplitudet ;
function for representing the shape of a cycle, defined as:

2 Curve-fitting modelling

1. the deterministic pulse shape (Fig. 2)

3. the pulse duratioffy =1, —tx_1, Wherer is the starting
x(t) —F ([ _ to)m 6701 (l*l‘o)’ o<t < oo, (1) time Of the (C"'l)'th pulse and

wherer is the starting time of a sunspot cycle afdm, « o =11+ Tx. ©)
are parameters that vary from cycle to cycle. In this repre-

sentation, the ascending and descending phases of the cychdl parametersAy, Ty, &, as well as the damping factay
are described by a power and exponential law, respectivelyvary from cycle to cyclef=11% is a scale factor.
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Now we are able to extract the values of the model paramawhich must be solved with respect to the amplitutie In-
eters for eacl-th pulse, thus obtaining a parametric descrip- troducing the new notations

tion of the shape of each individual solar cycle:
1. sunspot number at the beginning of the cycle
X (Tg—1) = Areg 4)
2. time of extremum (maximum value of the SN)

k 4. Ty
féxir =T-1+

()

ok

3. maximum sunspot number (amplitude of the cycle)

x (1) = Ak {ﬁ (e _4ak)4 + sk} (6)

g (2) = ple™
Tk

ax = Z s (1); di

=71

Tk

Y g @)

%t — o \? f— T
=F Z ( Tkk 1) Exp|:—ak< Tkk 1”
1=Tp—1

Tk
and also taking into account thaty . 1=T;, a root of
1=Tp—1

Eq. (10) is then given by

ag
Ay = ——. 11
T d+ ey (1D
4. sunspot number at the end of the cycle A second equation:
x (1) = ApBe™ % + Ageg. 7 0 s
() = AP Kk W =2 Y bO-Ade@ o) +al
=751
We can also formulate the estimation of the model parame- _
ters{Ay, ek, ax} by aleast-squares fitting(¢) to the sunspot =g G ) + &l =0, (12)
number time series(z). Here, we assume that the lengths after substitution of Eq. (11) leads to the solution
T, and starting times;_1 of the sunspot cycles are given a
priori. A conventional approach for solving this nonlinear o, _ M, (13)
optimization problem is based on numerical methods, e.g. bi Ty — drax
the maximum neighborhood algorithm of Marquardt. In our \ynere
case, we are able to demonstrate an analytical solution of the . .
following distance function minimization o = Z &2 (24 (1): by = Z s (g 2k (1)) .
2005 1=Tk-1 =71
_ 2
p= D O—x@) () Finally, a third equation
t=1700
T
with respect to the 28 triples of the parametets, e, o) ipk =2 Z [s (1) — Ax[g (zx () + &)
of k-th spot cycle, wheré=—4, -3, ..., 23 are given accord- 9% e
ing to the 4irich cycle numbering system. Rewriting Eq. (8) Ak -z (1) - g (ze )] =0 (14)
in the form
”3 with parametersA; and g, respectively, expressed as
_ Z ©) Egs. (11) and (13), leads to a nonlinear equation for the last
r= k:_4pk’ unknown parameter;:
where &

V) =Y s @)g )

Tk Tk 1=T}—1
pr= Y (s —x@®)P= Y [s®)—Af @), o
—Ar Y () g% (1)

=71 =71
=71
andz; (1) =’_;%, we easily find a first equation o
+Aee Y w (g (1) =0. (15)
o 0 =
ek p= &g p

This nonlinear functiony can be easily computed and plot-

Tk
=2 )" () —Alg @) +ed)-Ar =0 (10)

=71

www.ann-geophys.net/26/231/2008/

ted for every sunspot cycle. As a result, we can establish a
typical curve foryr, as shown in Fig. 3 fok=20.

Ann. Geophys., 26, 2812008
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Fig. 3. Nonlinear functiony for cycle 20. Fig. 5. Residualsé(r) between observed and modelled annual
sunspot numbers behave largely as Gaussian noise.
| are:
s |
—1885<¢ (1) <1918
E=E[E ()] =012 (17)
= =12
o2 =E| (e (1) - §)*] = 4948
) Table 1 lists an estimation of the probability density function
(PDF) and of the autocorrelation function (ACF)&it).
N The Goodness-of-Fit test detects a Gaussian distribution
&(1). Itisimportant to note that(s) does not behave as white
_ noise but rather as correlated or “coloured” noise, with an
autocorrelation function of the form:
Fig. 4. Comparison of the historicalz) (red curve) and modelled ce (1) = %2 Le M COS(Z f> . (18)

x(t) (blue curve) annual sunspot humber time series in a period

1700-2005. The pulse signal representation can track quite closelypq power spectral density of a noise with such an ACF can

the wide range of cycle shapes and amplitudes. Note, however, thaBe calculated by using the Wiener-Chinchine theorem. This
some details, like flat maxima, lead to local discrepancies.

leads to:
o
The rootsoj, k=—4, -3, ..., 23 can be found with St (w) = /cs (t) e /°7dt
high accuracy by the simplest numerical methods, e.g. -0
the Newton method. ) Thus having;, we first obtain _Mz[ 1 N 1 } (19)
g(zx ()= [zx (N]* e~ for any years in the k-th T 2 w—w0)? | A2+ (0 +w0)?)’

sunspot cycle, i.er;_1<t<1. We then calculate the param- ) o o
etersA?, £¥ according to Egs. (7) and (9). By this way, we wherewozn_/G. This power dlstrlbytmn of. the noise in the
collect all 28 tripleg A%, &}, ax} and plot the model signal SN data series has thus a Lorentzian profile.

x (1) = {xk (t) = A} (ﬂ [zx (D]* e~ %O 4 8;:) i 3 Nonlinear mapping technique

attg_1 <t < ; k=-3, ..., 23, (16)  Now we rewrite the signal model far(t) as:

as shown in Fig. 4, where it is compared with the original X (1) = X (t) = ux (1 — gt e D) 4oy
sunspot number observationg). at w1 < t < 1y, (20)
The performance of the pulse-shape fitting model
- . . where
can be evaluated by a statistical analysis of residuals
£(t)=s(t)—x(t). Figure 5 shows thig(¢) function for the BAk (07"

- - =—; = —; = Apéex. 21
years 1700 to 2005. Its elementary statistical characteristic™ Tk4 G Ty’ Tk kek (21)

Ann. Geophys., 26, 23241, 2008 www.ann-geophys.net/26/231/2008/
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Table 1. Histogram and normalized ACF of residuglg) which shows Gaussian colored noise properties.

Histogram normalized autocorrelation function
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Fig. 6. Scatterplot of they,, 1,) pairs for available values=—4,
..., 23. The points display a distinctive trend which allows one to
derive a least-squares relation between those two parameters.

We thus finally obtain a piece-wise linear function
=V, (24)

hich h i I f f -
First, from Eq. (5), we note that the length of the ascendingW ich generates the approximated values iqf for ar

hasel'+ relates to th b imole law- bitrary input values of the parameter in the interval
phasel," relates to the new parametarby a simple law: A=0.642<y, <B=1.235.
4

o4 22) By analogy, we can design a generator for the descending
ke phased;~ (Fig. 8) for any arbitrary numbe.

Similarly, the u-amplitude dependency versus shown in B

Fig. 6, with points(.f, ;") , k=—4, —3, ..., 23, can be well I =x o

approximated by the least-squares fitting function:

based on the se{(y;, T, ).k=—4, ..., 23}, where the

— 22.509mn-D (23) _ . . .
Kk = : lengthsT,”, k=—4, ..., 23 are easily obtained from the his-
From the |east_squares Opt|ma| model Eq (16) with a set O'Forical FIata SeriES([). It leads to the fOlIOWing formula for
28 triples{A}, ¢, a}}, we also calculate the offset values the estimate of the length of any cydle
n; from Eq. (21). Finally, the neighboring points from a 4
set { (¢ nf) . k=—4, ..., 23} are linked together by a bro- 7, — = 4 (). (25)
ken line, as shown in Fig. 7. Yk

www.ann-geophys.net/26/231/2008/ Ann. Geophys., 26, 2812008
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Fig. 9. Plot of the cycle-to-cycle evolution of thg, parameter

for ".:_4' "".23' A.peculiar pattem appears i6+3 t9 6’_ Wm_] Fig. 11. Piece-wise linear approximation of the mappiggob-
a unique consistent linear trend during 4 cycles. This time inter-4 ined by connecting neighbouring points (pairs) of Fig. 10 with

\'(/zliilnrir%ajies a known period of attenuated activity called the Daltonstraight segments.

7

“ g

and Mursula, 2003). We also detect this phenomenon and in
addition, we extend the time limits of its manifestation to the
1823.

3.1 Cycle-to-cycle evolution of the model parameter

Figure 9 illustrates the cycle-to-cycle evolution of parameterP€Mod{1775~
vi =af / Ty for the full observation period of 305 years.

We note that the four consecutive values
{v3.vi.vE.vg} corresponding to sunspot cycles

n the. .tlme range {1775-182% covering the _DaI- cess generated by a first-order ngapinking successive val-
ty‘lﬁy!“'”'m“m all lie along a straight line (Fig. 9) ues (yn*fl, )/n*). As all y, are distributed within the inter-
8 32k—ys+2y3=—0191k+1.808 k=3,4,5,6 (red  val A=0.642<y,<B=1.235 (see Fig. 7), a mapis used to

line in the plot). transform @,B) into itself.

A peculiarity was precisely detected by Sonett (1983) and The plot of all 27 pairs()/j,l, y;) is given in Fig. 10.
Wilson (1988) in the solar cycle evolution at the beginning of points are numbered according to thgrigh cycle numbers,
the Dalton minimum. They explained it by a possible error orj e. the pair(y,j_l, Vk*) corresponds to cycle numbker
misplacement of SN minima in the Wolf data, respectively. L|nk|ng Couples of neighbouring points by a |ine1 we ob-

Vitinsky, Kopecky and Kuklin (1986) and Serre and Nesme- tain a piece-wise linear approximation of a mapas de-
Ribes (2000) link this anomaly of SN behavior to a phasepicted in Fig. 11.

catastrophe over the period 1790-1798 when the solar cycle a map
evolution was not cyclic but roughly linear, with a greatly
reduced phase evolution rate along the trajectory (Usoskinyy = ¢ (Yr—1)

3.1.1 Nonlinear mapping for paramejerand its properties

We now assume thdty*} is a one-dimensional chaotic pro-

Ann. Geophys., 26, 23241, 2008 www.ann-geophys.net/26/231/2008/



A. L. Baranovski et al.: Nonlinear solar cycles forecasting: theory and perspectives 237

= {oj (yi-1)
=ajyk,1+bj, )/k,]_EIj,jZJ.,Z, ..., 26, (26)

where coefficients{(a;, b;), j=1,26} and a partition i
S 26

{I;, j=1,26} of theinterval A, B)= | J I; canbe uniquely  ..|
j=1

specified (see Figs. 10 and 11), generates a stationary chaoti :
(period free) sequence §f, } with a meany=F [y,] =0.95,
and a variance2=E [ (y,—7)?] =0.019.
One realization of the time seri¢g,, n=1, 100} is visu-
alized in Fig. 12. os |
All fixed points in the map are unstable, i.e.

o

(fl—"” - >1> and hence the Lyapunov exponent ’ : : ’ B

7 |y =fixed point

Fig. 12. Cycle-to-cycle evolution of the parametar, modeled by
the nonlinear mapping. The horizontal time range spans the pe-
), (27) " riod 1700-2800.

1
r= lim Xk:In (l¢" o)

is positive. It indicates an average rate of the exponential
divergence of the initially closed trajectories-sequeriggh We believe that the small asymmetry in the shape of the

1995), which can be found from the Perron-Frobenius equal€W parametergy, } derived from the future observations of
tion the annual sunspot numbers will be not lying on the lines of

5 the current map and will define new nodes ig, implying

a splitting of some lines i. We think that mainly lines
Po(x) = /3 (¢ (2) — x) pyp(2)dz. (8)  \ith the slanting slope#j—;f‘ <1 may be split into pairs of
A
_ . " .

One can show that is an ergodic map and using Birkhoff's expanding lines with S|Op,#§7‘ >,1' Aswe sge from Fig. 11,
ergodic theorem Eq. (27), this leads to there are only four short lines with low slanting slopes and we

believe that the main structure of tilemapping is already
B do included. This observation thus prompts us to already use
A= / In (’d—’)p(p (x)dx =121 (29) the current mapping for attempting a forecast of future solar

* activity.

and the autocorrelation function is given by 3.2 Nonlinear mapping prediction

1 I
¢y (1) = ,\,If‘oo N Z YnVnte =V The node numbered 23 (pdi,. 153)) corresponds to the
" last solar cycle and is thus our starting point when forecasting

B o
@ 5 the next value$y»4, y2s, y26, ...}, s shown in Fig. 13.
= /’“p (x) pp(x)dx —y*. (30) From the obtained trajectory_1, vk, Vi1, ...} (k=24),
A an estimated annual sunspot numbén can be calculated

Itis important to note that Eq. (29) is in good agreement with from Eq. (20) for any year after the end of the current 23rd
direct estimations of the Lyapunov exponéntay obtained  cycle. .
from the monthly sunspot number time series (Mundt et al. The values_1, px—1, nk—1, Tx—1 andr,_1 must be given

1992): a priori and are initial values for the generation of the next set
s A of parametersy, uk, nr, Tx andr, through Eqgs. (26), (23),
Amax = ~ 0.01montht (31)  (24), (25) and (), respectively.

E[T]  132months We now demonstrate this for the upcoming cycle. A

This confirms that the extracted mappipgrecisely reflects  least-squares curve-fitting set of parametgrs;, f, o},

a key dynamic property: a rate of exponential divergence infor k=—4, ..., 23 and Eg. (21) give us the values

the sunspot time series. ¥53=0.9707, 115,=19.656, n5,=8.997. In addition, y;,
An estimation of the probability density and the autocorre-gives our initial point for mappingp, thus generating

lation functions for the chaotic trajectofy,,, n=1, 10000 v2a=9 (v53) =0.8354 (see Fig. 13). By Eq. (23), we compute

are collected in Table 2. 124=9.51 and Eq. (24) leads tg4=1.12. The upcoming

www.ann-geophys.net/26/231/2008/ Ann. Geophys., 26, 2812008
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Table 2. Estimates of the PDF and ACF of the parameter

Probabity density functiop,, (x) Autocorrelation function
p (X)
_ o €y (T)
5 . )
4
3 0.6
r=4
2 o
=17
‘et LA 1Ky
annii| il =3 ,
0.64206 1.23549 - » - P
7 Taking into account the Gaussian character of &g
A “noise” distribution in sunspot number data, as established
r \ above, the error bars on the cycle peak prediction must be
/ / \ given by a lawt3 0 =+21, wheres; is a standard deviation
. of noise from Eq. (17).
\ / A \_{_ L ———7————~ 23 We note that our prediction is in good agreement with a
, ! i \ V polar field precursor forecasting by Svalgaard et al. (2005)
\ / ! \ N \/ and Schatten (2005).
N / 4 . Currently, the Sun is approaching its next activity mini-
V i \ y mum, and most other predictions suggest that in five or six-
""""""""" 1 Jz years time, the next solar maximum will be weak. Still, Dik-
V pati et al. (2006) used a flux-transport dynamo model and

concluded instead that cycle 24 will have a 30-50% higher
peak than cycle 23. David Hathaway and Robert Wilson

Fig. 13. Lamerey-konigs diagram showing how predictions of the (NASAs Marshall Space Flight Center) also predict a max-

next few solar cycles can be iteratively derived from the mapping of .
Fig. 11, starting from the last observed cycle (#23). imum of the smoothed sunspot number of about33 in

2010, while the following cycle should have a maximum of
about 7@:30 in 2023. Thus we agree only with their predic-
cycle starts in 2007t3=2007) asT>3=11 from Eq. (25). We tion for cycle 25 (see Fig. 16).

finally substitutey,s, 124, n24 into Eq. (20) att=24. Hence,

the upcoming cycle is described by the numerical expression: . )
4 0.8354(1—200 4 Auto-regression algorithm for y-parameter
x24 (1) = 9.51- (1 — 2007 ¢~0-8354(t—2009

+1.12, 2007< r < 20193. (32) As we have seen earliey,is a central parameter in our non-
. i _ linear mapping technigue. We now continue to investigate
Rewriting Egs. (5) and (6) in terms Ofi, v, n}(k=24) (US- s harameter by using an auto-regression methodology. We
ing also Eq. 21) we easily obtain for the upcoming cycle: 4, o considely;, k=—4, ..., 23} as an auto-regressive pro-

1. the predicted time of the maximum of cycle 24 cess of ordep, i.e.
4 P
1%y = 2007+ — ~ 201179 B3)  yi=— @i (35)
Y24 k=1
2. the predicted sunspot number at maximum where the auto-regression coefficiefits i=1, ..., p} can be
2 easily calculated by a least-squares technique.
x (tg(f}) ) = ( : ) W24+ M4 X 927 (34) We establish that every j-th cycle has a different op-
€-y24 timal value p, which minimizes the difference between

Ann. Geophys., 26, 23241, 2008 www.ann-geophys.net/26/231/2008/
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Table 3. Histogram and ACF of the modelled annual sunspot number time series over 10000 years. The statistical distribution and the
11-year periodicity are quite similar to the past observed but much shorter time series.

Histogram of the annual sunspot number

ACF of the annual sunspot number

0.0175

0.015 M

0.0125

001

0.0075 |

0.005

0.005

HHHHHHHmmﬁ

x

163.453

0.75
0.5 [

0.25

AAAAAA@
[

0.5

-0.5

estimates of y

1.75
1.5
1.25

0.75
0.5
0.25

5 10 15 20

25

p

Fig. 14. Auto-regression valueg3 versus ordep for y;,=0.9707

(red line).
p
Yi=— 2 akVj-k
k=1

andy;.

As an example, for the current

Fig. 15. The 8 last cycles #1623 plotted for the 7 most probable au-
toregression values in comparison with the actual historical record
s(t) (red curve).

shape of the k-th cycle, we are able to plot all seven scenar-

cycle 23, we see from Fig. 14 that orders 8 and 9 give a verygs of evolution of this cycle. Figure 15 shows this for the
close auto-regression valygs; for y;,=0.9707.

Making such plots for every cycle, starting from the sec- () (red curve).

ond cycle (in this case p=1), we obtain the following empiri-

cal distribution fo

=1
p2=2
p3=3
pr={pa=4
ps=17
p6 =28
p7r =12

r the orders:

with probability 2/27
with probability 327
with probability §27
with probability 427
with probability 327
with probability 4/27
with probability 527

(36)

8 last cycles in comparison with the actual historical record

In order to predict the valugy4 for the upcoming cycle,
we calculate the average

: x

p*€{1,2,3,4,7,8,12}

(p)

V24 = Y24

and compare it withyjoninea,
above, as shown in Fig. 16.

Figure 17 illustrates all possible scenarios for the upcom-
ing cycle.

(v35) =0.8354 found

Thus, we establish seven most probable auto-regression val- By including the average value fgps as a 29th node in

ues for every;=— > axy;j—« and by using Eq. (20) for the

*

p

www.ann-geophys.net/26/231/2008/

a updated design of the nonlinear mappinhgve modify a
bit the ¢ mapping constructed above. Then we can use the
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Fig. 16. Regression values (black pointg)4 versus orderp, Fig. 18. Evolution of the sunspot cycles 24-56 modelled by the

their average (green line) in comparison with the “nonlinear” Modified nonlinear mapping. For such long-term extrapolations,
v24=¢ (v33) =0.8354 (red line). The value obtained from the due to the sensitivity of the solution to initial conditions, only quali-

nonlinear ana|ysis is systematica”y lower than autoregression estative information about the dynamlical evolution is meaningful be-
timates. yond a few solar cycles. In this respect, this extrapolated sunspot

time series contains long-term modulations of the cycle amplitude,
in good accordance with observations from the last two centuries.

24th sunspot  cycle Note also that this multi-century extrapolation does not display sys-
140 tematic secular trends or periods of Grand Minima (intermittent in-
120 terruptions of the solar cycle, with constantly low activity, as ob-

served in past centuries) in the upcoming 3 centuries.

time interval of 10 000 years. We note that the periodicity of
the ACF is equal to 11 years and the estimates of the PDF
and ACF are close to the ones of the observed daily sunspot
number over the past observed period 1700-2005.

CEEE

310 312 314 316 318 320

years

6 Conclusions
Fig. 17. Modelled average sunspot evolution during cycle 24: the 7
black curves and their average (green curve) result from the autoreln this work, we first applied a nonlinear, least-squares fit-
gression method, while the red curve is obtained using the nonlinting (NLF) to the annual sunspot time seriegtiR(or x(z),
ear mapping technique. Comparatively, the latter curve suggests as used in text for mathematical convenience) for the years
lower maximum of about 90, which also peaks about one year Iater1700<t<2005, which allowed us to characterize each cycle
by a small set of parameters. We then applied two methods

to the NLF output parameters, where each value represents
new mapping for the generation of the upcoming cycles, agne of the 23 available solar cycles:
shown in Fig. 18.
1. A nonlinear mapping technique (NMT) has been con-
structed based on the output parameters

5 Statistical analysis of the modelled annual sunspot

number 2. A linear regression technique (LRT) has been applied

on the same NLF parameters

Now we can study the statistical properties of the future evo- 3. Finally, we synthesized an hybrid method based on the
lution of the annual sunspot number modeled by the dynam-  combination of both (LRT+NMT).

ical system approach (mappigg based on the continuous- ] . o .

time pulse shape representation of Eq. (3) for a cycle. AThis allowed us to derive a prediction of_the upcoming solar
statistical analysis can be done analytically in terms of the in-Cycle (#24). Each method produces a different value for the
variant density of the mapping (see appropriate techniques activity maximum:

in Baranovski aqd Schwarz, 1999 and 2003) and theory of _ NMT method: maximum of 9321 in 2011.79-0.5,

the semi-markovian processes (Nollau, 1980). Here, we just

show in Table 3 the resulting plots of the estimates for the — Hybrid method: maximum in the range 100 to 130 in
PDF and ACF of the annual sunspot number in a very long 2010.85:0.5
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However, those values span a limited range and are all sim€harbonneau, P., St-Jean, C., and Zacharias, P.: Fluctuations in
ilar to the current cycle amplitude (110). Although there is  Babcock-Leighton dynamos. I. Period doubling and transition to
some discrepancy between the results, the range is restricted chaos, Astrophys. J., 619, 613-622, 2005. o
enough to exclude either a very strong cycle, similar to cycleDe Meyer, F.: A response model for the sunspot cycle, Koninklijk
#19 that peaked in 1959 (Rmax=200), or a very weak cycle. Meteorologisch Instituut van Belgie, Wetenschappelijke en tech-
Finally, we modelled the future evolution of the sunspot _ "iSche publikatie, 21, 1-19, 2002. -

. . Dikpati, M., de Toma, G., and Gilman, P. A.: Predicting the strength

number over several millenia. Over such a long term, the

hesized i . | d litatively th of solar cycle 24 using a flux-transport dynamo-based tool, Geo-
synthesized times series can only reproduce qualitatively the phys. Res. Lett., 33, L05102, 1-4, 2006.

actual evolution of the sunspot number, given the limited yathaway, D. H., Wilson, R. M., and Reichmann, E. J.: A synthesis

number of past cycles available to build the nonlinear map-  of solar cycle prediction techniques, J. Geophys. Res., 104(10),
ping and also given the intrinsically high sensitivity of the  22375-22388, 1999.

system to initial conditions. However, it allowed us to derive Nollau, V.. SemiMarkovsche Prozesse, AkademieVerlag Berlin,

some global statistics of the time series, which contains many 1980.

more cycles than in the available past observations. Thosé&chatten, K. H.: Fair space weather for solar cycle 24, Geophys.
preliminary results illustrate quite well the potential offered  Res. Lett,, 32, 1212086, doi:1.1029/2005GL0O24363, 2005.

by those mathematical methods as diagnostic tools for theerre, T. and Nesme-Ribes, E.: Nonlinear analysis of solar cycles,

. . . Astron. Astrophys., 360, 319—-330, 2000.
physical processes underlying the observed solar activity. Sonett, C. P.: The great solar anomaly ca. 1780-1800 — an error in

compiling the record, J. Geophys. Res., 88, 3225-3228, 1983.
Stewart, J. Q. and Panofsky, H. A. A.: The mathematical character-
istics of sunspot variations, Astrophys. J., 88, 385-407, 1938.
Svalgaard, L., Cliver, E. W., and Kamide, Y.: Sunspot cycle 24:

smallest cycle in 1000 years?, Geophys. Res. Lett., 32, L01104,
1-4, 2005.
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