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Abstract. In this paper we develop a modern approach to
solar cycle forecasting, based on the mathematical theory
of nonlinear dynamics. We start from the design of a static
curve fitting model for the experimental yearly sunspot num-
ber series, over a time scale of 306 years, starting from year
1700 and we establish a least-squares optimal pulse shape of
a solar cycle. The cycle-to-cycle evolution of the parame-
ters of the cycle shape displays different patterns, such as a
Gleissberg cycle and a strong anomaly in the cycle evolution
during the Dalton minimum. In a second step, we extract
a chaotic mapping for the successive values of one of the
key model parameters – the rate of the exponential growth-
decrease of the solar activity during then-th cycle. We ex-
amine piece-wise linear techniques for the approximation of
the derived mapping and we provide its probabilistic analy-
sis: calculation of the invariant distribution and autocorrela-
tion function. We find analytical relationships for the sunspot
maxima and minima, as well as their occurrence times, as
functions of chaotic values of the above parameter. Based on
a Lyapunov spectrum analysis of the embedded mapping, we
finally establish a horizon of predictability for the method,
which allows us to give the most probable forecasting of the
upcoming solar cycle 24, with an expected peak height of
93±21 occurring in 2011/2012.

1 Introduction

The sunspot number time series provides the longest exist-
ing record of solar activity, and is thus the best available data
set for studying the long-term evolution of solar activity and,
in particular, of the 11-year activity cycle. Here, we apply
the mathematical concepts of the nonlinear dynamical sys-
tems, in order to derive dynamical properties of the solar
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cycle and to derive short- and long-term predictions of the
sunspot number.

Many attempts have already been made in the past to pre-
dict future solar cycles. They can be grouped into two main
categories (Hathaway et al., 1999):

– Regression Techniques: standard auto-regression,
curve-fitting and neural networks.

– Precursor Techniques: a combination of sunspot num-
ber indicators (tracers of the closed solar magnetic field)
and geomagnetic indicators (proxies of the Sun’s open
dipolar magnetic field).

Regression techniques provide short-term extrapolations us-
ing observed indices of solar activity from the recent past to
extrapolate into the near future. They suffer from a rather
low performance during the transition from one cycle to the
other, while precursor techniques can deliver an estimate of
the amplitude for the next solar cycle one or two years be-
fore the previous cycle has ended. However, both approaches
lack a physical basis. Next to these, magnetohydrodynamical
models have been developed during the last decades to simu-
late the solar dynamo processes that generate the solar mag-
netic activity, but even now, they cannot reproduce the de-
tailed evolution of the solar cycle (for a recent review of this
effort, see Charbonneau, 2005). Therefore, a mathematical
approach of the problem is still useful and productive, in or-
der to progress in this field of research. However, so far, most
of the published methods are either based on crude statistical
techniques and purely empirical relations or they use clas-
sical mathematical tools adapted only to deterministic time
series (e.g. Fourier analysis) or adopt a linear stochastic ap-
proach.

The irregularity of the sunspot time series, both in period
and amplitude, as well as the existence of grand minima,
where the cyclicity vanishes, suggests a more complex evo-
lution. Recently, this was confirmed by advanced models
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Fig. 1. Historical yearly sunspot number time series 1700–2005.
Those original numbers, derived from numerous visual observa-
tions, show not only the 11-year pulsation but also its irregular vari-
ations in amplitude and periodicity.

of the solar dynamo that include a meridional circulation of
the weak surface fields (Charbonneau, 2005; Dikpati et al.,
2006). Although they can only qualitatively reproduce the
solar evolution, such physical models of a nonlinear dynamo
show that the system is highly sensitive to the initial obser-
vational constraints and takes on a chaotic or intermittent be-
haviour.

This is why we apply here two methods adapted to the
analysis of such nonlinear dynamical systems with a lim-
ited number of degrees of freedom. The S plane surface and
Poincare section techniques, as well as a nonlinear mapping
analysis applied to a chaotic time series, can bring qualita-
tive and quantitative insights into the underlying physical dy-
namics. Contrary to earlier studies, we make use here of the
entire sunspot time series, instead of one or just a few past
cycles.

2 Curve-fitting modelling

Figure 1 shows the annual sunspot number (SN) time series
s(t) for the years 1700 through 2005. From the above SN
time evolution, one can easily observe the cyclic behavior
and the cycle-to-cycle variations in amplitude, shape and du-
ration. This led Waldmeier (1935) to first propose the idea of
representing the course of SNx(t) during each cycle, from
minimum to minimum, by a standard curve belonging to a
family of pre-defined standard profiles.

Stewart and Panofsky (1938) proposed a more advanced
function for representing the shape of a cycle, defined as:

x(t) = F (t − t0)
m e−α (t−t0), t0 ≤ t < ∞, (1)

wheret0 is the starting time of a sunspot cycle andF , m, α
are parameters that vary from cycle to cycle. In this repre-
sentation, the ascending and descending phases of the cycle
are described by a power and exponential law, respectively.
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Fig. 2. Pulse shape of a spot cycle modelled by Eq. (2) with pa-
rametersαk=10, ε=1. This parametric representation can fit fairly
well the overall envelope of one solar cycle, using a restricted set of
parameter values.

More recently, De Meyer (2002) used again Eq. (1) in his
“transfer function model” for the sunspot cycle. Through a
numerical technique, he tabulates the parameters for each of
the last 28 cycles. It gives a least-squares optimal approxima-
tion to the annual sunspot number time series. However, De
Meyer’s attempts to extrapolate his model by linear methods
demonstrate a weak prediction capability of this approach.

By contrast, we first modify the pulse shape, as defined
in Eq. (1), and detect the nonlinear dynamics of the least-
squares optimal shape parameters in their cycle-to-cycle evo-
lution. This will allow us to achieve an optimal performance
in a retroactive “forecast” of past cycles and to obtain a most
probable prediction of the upcoming cycles.

We will assume that the time variations of SN can be de-
scribed as a train of pulses using the following signal model:

x (t) =

∑
k

xk (t) ≡

∑
k

Akf

(
t − τk−1

Tk

)
. (2)

For anyk-th pulse corresponding to sunspot cyclexk(t) oc-
curring in the time intervalτk−1≤t<τk between two succes-
sive SN minima, the model is characterized by

1. the deterministic pulse shape (Fig. 2)

f (z) =

{
βz4e−αk z + εk, z ∈ (0,1)
0, z /∈ (0,1)

,

2. the pulse amplitudeAk ;

3. the pulse durationTk=τk−τk−1, whereτ k is the starting
time of the (k+1)-th pulse and

τk = τk−1 + Tk. (3)

All parametersAk, Tk, εk, as well as the damping factorαk
vary from cycle to cycle.β=114 is a scale factor.
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Now we are able to extract the values of the model param-
eters for eachk-th pulse, thus obtaining a parametric descrip-
tion of the shape of each individual solar cycle:

1. sunspot number at the beginning of the cycle

x (τk−1) = Akεk (4)

2. time of extremum (maximum value of the SN)

t
(k)
extr = τk−1 +

4 · Tk

αk
(5)

3. maximum sunspot number (amplitude of the cycle)

x
(
t
(k)
extr

)
= Ak

[
β

(
4

e · αk

)4

+ εk

]
(6)

4. sunspot number at the end of the cycle

x (τk) = Akβe
−αk + Akεk. (7)

We can also formulate the estimation of the model parame-
ters{Ak, εk, αk} by a least-squares fittingx(t) to the sunspot
number time seriess(t). Here, we assume that the lengths
Tk and starting timesτk−1 of the sunspot cycles are given a
priori. A conventional approach for solving this nonlinear
optimization problem is based on numerical methods, e.g.
the maximum neighborhood algorithm of Marquardt. In our
case, we are able to demonstrate an analytical solution of the
following distance function minimization

ρ =

2005∑
t=1700

(s (t)− x (t))2 (8)

with respect to the 28 triples of the parameters{Ak, εk, αk}
of k-th spot cycle, wherek=−4,−3, . . . , 23 are given accord-
ing to the Z̈urich cycle numbering system. Rewriting Eq. (8)
in the form

ρ =

23∑
k=−4

ρk, (9)

where

ρk =

τk∑
t=τk−1

(s (t)− xk (t))
2

≡

τk∑
t=τk−1

[s (t)− Akf (zk (t))]
2 ,

andzk (t)=
t−τk−1
Tk

, we easily find a first equation

∂

∂εk
ρ =

∂

∂εk
ρk

= 2
τk∑

t=τk−1

(s (t)− Ak [g (zk (t))+ εk]) ·Ak = 0 (10)

which must be solved with respect to the amplitudeAk. In-
troducing the new notations

g (z) = βz4e−αk z;

ak =

τk∑
t=τk−1

s (t); dk

=

τk∑
t=τk−1

g (zk (t))

≡ β

τk∑
t=τk−1

(
t − τk−1

Tk

)4

Exp

[
−αk

(
t − τk−1

Tk

)]

and also taking into account that
τk∑

t=τk−1

1=Tk, a root of

Eq. (10) is then given by

Ak =
ak

dk + εkTk
. (11)

A second equation:

∂

∂Ak
ρk = 2

τk∑
t=τk−1

[s (t)− Ak [g (zk (t))+ εk]]

· [− [g (zk (t))+ εk]] = 0, (12)

after substitution of Eq. (11) leads to the solution

εk =
akck − bkdk

bkTk − dkak
, (13)

where

ck =

τk∑
t=τk−1

g2 (zk (t)); bk =

τk∑
t=τk−1

s (t)g (zk (t)) .

Finally, a third equation

∂

∂αk
ρk = 2

τk∑
t=τk−1

[s (t)− Ak [g (zk (t))+ εk]]

· [Ak · zk (t) · g (zk (t))] = 0 (14)

with parametersAk and εk, respectively, expressed as
Eqs. (11) and (13), leads to a nonlinear equation for the last
unknown parameterαk:

ψ (αk) =

τk∑
t=τk−1

s (t) zk (t) g (zk (t))

−Ak

τk∑
t=τk−1

zk (t) g
2 (zk (t))

+Akεk

τk∑
t=τk−1

zk (t) g (zk (t)) = 0. (15)

This nonlinear functionψ can be easily computed and plot-
ted for every sunspot cycle. As a result, we can establish a
typical curve forψ , as shown in Fig. 3 fork=20.
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Fig. 3. Nonlinear functionψ for cycle 20.
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Fig. 4. Comparison of the historicals(t) (red curve) and modelled
x(t) (blue curve) annual sunspot number time series in a period
1700–2005. The pulse signal representation can track quite closely
the wide range of cycle shapes and amplitudes. Note, however, that
some details, like flat maxima, lead to local discrepancies.

The rootsα∗

k , k=−4, −3, . . . , 23 can be found with
high accuracy by the simplest numerical methods, e.g.
the Newton method. Thus havingα∗

k , we first obtain
g(zk (t))=β [zk (t)]4 e−α

∗
k zk(t) for any year t in the k-th

sunspot cycle, i.e.τk−1≤t<τk. We then calculate the param-
etersA∗

k , ε
∗

k according to Eqs. (7) and (9). By this way, we
collect all 28 triples{A∗

k, ε
∗

k , αk} and plot the model signal

x (t) =

{
xk (t) = A∗

k

(
β [zk (t)]

4 e−α
∗
k zk(t) + ε∗k

)
,

atτk−1 ≤ t < τk; k=−3, ...,23, (16)

as shown in Fig. 4, where it is compared with the original
sunspot number observationss(t).

The performance of the pulse-shape fitting model
can be evaluated by a statistical analysis of residuals
ξ (t)=s(t)−x(t). Figure 5 shows thisξ (t) function for the
years 1700 to 2005. Its elementary statistical characteristics
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Fig. 5. Residualsξ (t) between observed and modelled annual
sunspot numbers behave largely as Gaussian noise.

are:

−18.85 ≤ ξ (t) ≤ 19.18;
ξ̄ = E [ξ (t)] = 0.12;

σ 2
ξ = E

[(
ξ (t)− ξ̄

)2
]

= 49.48
(17)

Table 1 lists an estimation of the probability density function
(PDF) and of the autocorrelation function (ACF) ofξ (t).

The Goodness-of-Fit test detects a Gaussian distribution
ξ (t). It is important to note thatξ (t) does not behave as white
noise but rather as correlated or “coloured” noise, with an
autocorrelation function of the form:

cξ (τ ) ∼= σ 2
ξ · e−λτ cos

(π
6
τ
)
. (18)

The power spectral density of a noise with such an ACF can
be calculated by using the Wiener-Chinchine theorem. This
leads to:

Sξ (ω) =

∞∫
−∞

cξ (τ ) e
−jωτdτ

= λσ 2
ξ

[
1

λ2 + (ω − ω0)
2

+
1

λ2 + (ω + ω0)
2

]
, (19)

whereω0=π/6. This power distribution of the noise in the
SN data series has thus a Lorentzian profile.

3 Nonlinear mapping technique

Now we rewrite the signal model forx(t) as:

x(t) = xk (t) = µk (t − τk−1)
4 e−γk(t−τk−1) + ηk

at τk−1 ≤ t < τk, (20)

where

µk =
βAk

T 4
k

; γk =
αk

Tk
; ηk = Akεk. (21)
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Table 1. Histogram and normalized ACF of residualsξ (t) which shows Gaussian colored noise properties.

Histogram normalized autocorrelation function

 

 

Table 1. Histogram and normalized acf of residuals ξ(t) which shows Gaussian colored noise 

properties. 

. Histogram normalized autocorrelation function 

 

-18.8454 19.1809
x

0.01

0.02

0.03

0.04

0.05

0.06

pHxL

5 10 15 20 25 30
τ

-0.2

0.2

0.4

0.6

0.8

1

c_ξHτL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18

 

 

Table 1. Histogram and normalized acf of residuals ξ(t) which shows Gaussian colored noise 

properties. 

. Histogram normalized autocorrelation function 

 

-18.8454 19.1809
x

0.01

0.02

0.03

0.04

0.05

0.06

pHxL

5 10 15 20 25 30
τ

-0.2

0.2

0.4

0.6

0.8

1

c_ξHτL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18

0.7 0.8 0.9 1.1 1.2
γHnL

10

20

30

40

50

60

70

80

μHnL 

 

 

 

 

 

 

 

 

 

 

 1

Fig. 6. Scatterplot of the (γn, µn) pairs for available valuesn=−4,
. . . , 23. The points display a distinctive trend which allows one to
derive a least-squares relation between those two parameters.

First, from Eq. (5), we note that the length of the ascending
phaseT +

k relates to the new parameterγk by a simple law:

T +

k =
4

γk
. (22)

Similarly, theµ-amplitude dependency versusγ , shown in
Fig. 6, with points

(
µ∗

k, γ
∗

k

)
, k=−4,−3, ...,23, can be well

approximated by the least-squares fitting function:

µk = 22 · e5.09·(γk−1). (23)

From the least-squares optimal model Eq. (16) with a set of
28 triples{A∗

k, ε
∗

k , α
∗

k }, we also calculate the offset values
η∗

k from Eq. (21). Finally, the neighboring points from a
set

{(
γ ∗

k , η
∗

k

)
, k=−4, ...,23

}
are linked together by a bro-

ken line, as shown in Fig. 7.
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Fig. 7. Piece-wise linear functionν.

We thus finally obtain a piece-wise linear function

ηk = ν (γ k) , (24)

which generates the approximated values ofηk for ar-
bitrary input values of the parameterγ in the interval
A≡0.642≤γn≤B≡1.235.

By analogy, we can design a generator for the descending
phasesT −

k (Fig. 8) for any arbitrary numberk:

T −

k = χ (γ k)

based on the set
{(
γ ∗

k , T
−

k

)
, k=−4, ...,23

}
, where the

lengthsT −

k , k=−4, ...,23 are easily obtained from the his-
torical data seriess(t). It leads to the following formula for
the estimate of the length of any cyclek:

Tk =
4

γk
+ χ (γ k) . (25)
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Fig. 8. Piece-wise linear functionχ .
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Fig. 9. Plot of the cycle-to-cycle evolution of theγn parameter
for n=−4, . . . , 23. A peculiar pattern appears forn=3 to 6, with
a unique consistent linear trend during 4 cycles. This time inter-
val matches a known period of attenuated activity called the Dalton
Minimum.

3.1 Cycle-to-cycle evolution of the model parameterγ

Figure 9 illustrates the cycle-to-cycle evolution of parameter
γ ∗

k =α∗

k/Tk for the full observation period of 305 years.
We note that the four consecutive values

{γ ∗

3 , γ
∗

4 , γ
∗

5 , γ
∗

6 } corresponding to sunspot cycles
in the time range {1775–1823} covering the Dal-
ton minimum all lie along a straight line (Fig. 9)
γ ∗

6 −γ ∗

3
3 k−γ ∗

6 +2γ ∗

3 ≡−0.191·k+1.808, k=3,4,5,6 (red
line in the plot).

A peculiarity was precisely detected by Sonett (1983) and
Wilson (1988) in the solar cycle evolution at the beginning of
the Dalton minimum. They explained it by a possible error or
misplacement of SN minima in the Wolf data, respectively.
Vitinsky, Kopecky and Kuklin (1986) and Serre and Nesme-
Ribes (2000) link this anomaly of SN behavior to a phase
catastrophe over the period 1790–1798 when the solar cycle
evolution was not cyclic but roughly linear, with a greatly
reduced phase evolution rate along the trajectory (Usoskin
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Fig. 10. Plot of
(
γ ∗
n−1, γ

∗
n

)
pairs, with points numbered according

to the Z̈urich cycle numbers.
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Fig. 11. Piece-wise linear approximation of the mappingφ, ob-
tained by connecting neighbouring points (pairs) of Fig. 10 with
straight segments.

and Mursula, 2003). We also detect this phenomenon and in
addition, we extend the time limits of its manifestation to the
period{1775–1823}.

3.1.1 Nonlinear mapping for parameterγ and its properties

We now assume that
{
γ ∗
n

}
is a one-dimensional chaotic pro-

cess generated by a first-order mapφ linking successive val-
ues

(
γ ∗

n−1, γ
∗
n

)
. As all γn are distributed within the inter-

valA≡0.642≤γn≤B≡1.235 (see Fig. 7), a mapφ is used to
transform (A,B) into itself.

The plot of all 27 pairs
(
γ ∗

n−1, γ
∗
n

)
is given in Fig. 10.

Points are numbered according to the Zürich cycle numbers,
i.e. the pair

(
γ ∗

k−1, γ
∗

k

)
corresponds to cycle numberk.

Linking couples of neighbouring points by a line, we ob-
tain a piece-wise linear approximation of a mapφ, as de-
picted in Fig. 11.

A map

γ k = ϕ (γ k−1)

Ann. Geophys., 26, 231–241, 2008 www.ann-geophys.net/26/231/2008/
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≡
{
ϕj (γ k−1)

= ajγ k−1 + bj , γ k−1 ∈ Ij , j = 1,2, ...,26, (26)

where coefficients
{(
aj , bj

)
, j=1,26

}
and a partition{

Ij , j=1,26
}

of the interval(A,B)≡
26⋃
j=1

Ij can be uniquely

specified (see Figs. 10 and 11), generates a stationary chaotic
(period free) sequence of{γn} with a meanγ̄=E [γn] =0.95,
and a varianceσ 2

γ=E
[
(γn−γ̄ )

2]
=0.019.

One realization of the time series{γn, n=1,100} is visu-
alized in Fig. 12.

All fixed points in the map are unstable, i.e.(
dϕ
dγ

∣∣∣
γ=fixed point

>1

)
and hence the Lyapunov exponent

λ = lim
N→∞

1

N

N∑
k

ln
(∣∣ϕ′ (γk)

∣∣), (27)

is positive. It indicates an average rate of the exponential
divergence of the initially closed trajectories-sequences{γn}.

The piece-wise linear mapφ obeys a piece-wise constant
probability density functionpϕ(x) (Baranovski and Daems,
1995), which can be found from the Perron-Frobenius equa-
tion

pϕ(x) =

B∫
A

δ (ϕ (z)− x) pϕ(z)dz. (28)

One can show thatφ is an ergodic map and using Birkhoff’s
ergodic theorem Eq. (27), this leads to

λ =

B∫
A

ln

(∣∣∣∣dϕdx
∣∣∣∣)pϕ (x) dx ∼= 1.21 (29)

and the autocorrelation function is given by

cγ (τ ) = lim
N→∞

1

N

∑
n

γnγn+τ − γ̄ 2

=

B∫
A

xϕ(τ ) (x) pϕ(x)dx − γ̄ 2. (30)

It is important to note that Eq. (29) is in good agreement with
direct estimations of the Lyapunov exponentλmax obtained
from the monthly sunspot number time series (Mundt et al.
1992):

λmax =
λ

E [Tk]
≡

λ

132months
≈ 0.01month−1 (31)

This confirms that the extracted mappingφ precisely reflects
a key dynamic property: a rate of exponential divergence in
the sunspot time series.

An estimation of the probability density and the autocorre-
lation functions for the chaotic trajectory{γn, n=1,10 000}
are collected in Table 2.
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Fig. 12. Cycle-to-cycle evolution of the parameterγn, modeled by
the nonlinear mappingφ. The horizontal time range spans the pe-
riod 1700–2800.

We believe that the small asymmetry in the shape of the
PDF reflects the incompleteness of the mapφ, due to the
limited existing data record. In other words, we expect that
new parameters{γn} derived from the future observations of
the annual sunspot numbers will be not lying on the lines of
the current mapφ and will define new nodes inφ, implying
a splitting of some lines inφ. We think that mainly lines

with the slanting slopes
∣∣∣ dϕdγ ∣∣∣<1 may be split into pairs of

expanding lines with slopes
∣∣∣ dϕdγ ∣∣∣>1. As we see from Fig. 11,

there are only four short lines with low slanting slopes and we
believe that the main structure of theφ mapping is already
included. This observation thus prompts us to already use
the current mapping for attempting a forecast of future solar
activity.

3.2 Nonlinear mapping prediction

The node numbered 23 (pair
(
γ ∗

22, γ
∗

23

)
) corresponds to the

last solar cycle and is thus our starting point when forecasting
the next values{γ24, γ25, γ26, ...}, as shown in Fig. 13.

From the obtained trajectory{γk−1, γk, γk+1, ...} (k=24),
an estimated annual sunspot numberx(t) can be calculated
from Eq. (20) for any yeart after the end of the current 23rd
cycle.

The valuesγk−1, µk−1, ηk−1, Tk−1 andτk−1 must be given
a priori and are initial values for the generation of the next set
of parametersγk, µk, ηk, Tk andτk through Eqs. (26), (23),
(24), (25) and (3), respectively.

We now demonstrate this for the upcoming cycle. A
least-squares curve-fitting set of parameters,{A∗

k, ε
∗

k , α
∗

k },
for k=−4, . . . , 23 and Eq. (21) give us the values
γ ∗

23=0.9707, µ∗

23=19.656, η∗

23=8.997. In addition, γ ∗

23
gives our initial point for mappingφ, thus generating
γ24=ϕ

(
γ ∗

23

)
∼=0.8354 (see Fig. 13). By Eq. (23), we compute

µ24=9.51 and Eq. (24) leads toη24=1.12. The upcoming
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Table 2. Estimates of the PDF and ACF of the parameterγ .
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Fig. 13. Lamerey-K̈onigs diagram showing how predictions of the
next few solar cycles can be iteratively derived from the mapping of
Fig. 11, starting from the last observed cycle (#23).

cycle starts in 2007 (τ23=2007) asT23=11 from Eq. (25). We
finally substituteγ24, µ24, η24 into Eq. (20) atk=24. Hence,
the upcoming cycle is described by the numerical expression:

x24 (t) = 9.51 · (t − 2007)4 e−0.8354(t−2007)

+1.12, 2007≤ t < 2019.3. (32)

Rewriting Eqs. (5) and (6) in terms of{µk, γk, ηk}(k=24) (us-
ing also Eq. 21) we easily obtain for the upcoming cycle:

1. the predicted time of the maximum of cycle 24

t
(24)
extr = 2007+

4

γ24
≈ 2011.79 (33)

2. the predicted sunspot number at maximum

x
(
t
(24)
extr

)
=

(
4

e · γ24

)4

· µ24 + η24 ≈ 92.7 (34)

Taking into account the Gaussian character of theξ (t)
“noise” distribution in sunspot number data, as established
above, the error bars on the cycle peak prediction must be
given by a law±3 σ ξ=±21, whereσξ is a standard deviation
of noise from Eq. (17).

We note that our prediction is in good agreement with a
polar field precursor forecasting by Svalgaard et al. (2005)
and Schatten (2005).

Currently, the Sun is approaching its next activity mini-
mum, and most other predictions suggest that in five or six-
years time, the next solar maximum will be weak. Still, Dik-
pati et al. (2006) used a flux-transport dynamo model and
concluded instead that cycle 24 will have a 30–50% higher
peak than cycle 23. David Hathaway and Robert Wilson
(NASA’s Marshall Space Flight Center) also predict a max-
imum of the smoothed sunspot number of about 145±30 in
2010, while the following cycle should have a maximum of
about 70±30 in 2023. Thus we agree only with their predic-
tion for cycle 25 (see Fig. 16).

4 Auto-regression algorithm for γ -parameter

As we have seen earlier,γ is a central parameter in our non-
linear mapping technique. We now continue to investigate
this parameter by using an auto-regression methodology. We
thus consider{γk, k=−4, ...,23} as an auto-regressive pro-
cess of orderp, i.e.

γj = −

p∑
k=1

akγj−k, (35)

where the auto-regression coefficients{ai, i=1, ..., p} can be
easily calculated by a least-squares technique.

We establish that every j-th cycle has a different op-
timal value p, which minimizes the difference between
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Table 3. Histogram and ACF of the modelled annual sunspot number time series over 10 000 years. The statistical distribution and the
11-year periodicity are quite similar to the past observed but much shorter time series.
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Fig. 14.Auto-regression valuesγ23 versus orderp for γ ∗
23=0.9707

(red line).

γj=−

p∑
k=1

akγj−k and γ ∗

j . As an example, for the current

cycle 23, we see from Fig. 14 that orders 8 and 9 give a very
close auto-regression valueγ23 for γ ∗

23=0.9707.
Making such plots for every cycle, starting from the sec-

ond cycle (in this case p=1), we obtain the following empiri-
cal distribution for the orders:

p∗
=



p1 = 1 with probability 2/27
p2 = 2 with probability 3/27
p3 = 3 with probability 6/27
p4 = 4 with probability 4/27
p5 = 7 with probability 3/27
p6 = 8 with probability 4/27
p7 = 12 with probability 5/27

(36)

Thus, we establish seven most probable auto-regression val-

ues for everyγj=−

p∗∑
k=1

akγj−k and by using Eq. (20) for the
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Fig. 15.The 8 last cycles #16–23 plotted for the 7 most probable au-
toregression values in comparison with the actual historical record
s(t) (red curve).

shape of the k-th cycle, we are able to plot all seven scenar-
ios of evolution of this cycle. Figure 15 shows this for the
8 last cycles in comparison with the actual historical record
s(t) (red curve).

In order to predict the valueγ24 for the upcoming cycle,
we calculate the average

γ24 =
1

7

∑
p∗∈{1,2,3,4,7,8,12}

γ
(p)

24

and compare it withγ nonlinear
24 =ϕ

(
γ ∗

23

)
=0.8354 found

above, as shown in Fig. 16.
Figure 17 illustrates all possible scenarios for the upcom-

ing cycle.
By including the average value forγ24 as a 29th node in

a updated design of the nonlinear mappingφ, we modify a
bit theφ mapping constructed above. Then we can use the
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Fig. 16. Regression values (black points)γ24 versus orderp,
their average (green line) in comparison with the “nonlinear”
γ24=ϕ

(
γ ∗

23

)
=0.8354 (red line). The value obtained from the

nonlinear analysis is systematically lower than autoregression es-
timates.
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Fig. 17. Modelled average sunspot evolution during cycle 24: the 7
black curves and their average (green curve) result from the autore-
gression method, while the red curve is obtained using the nonlin-
ear mapping technique. Comparatively, the latter curve suggests a
lower maximum of about 90, which also peaks about one year later.

new mapping for the generation of the upcoming cycles, as
shown in Fig. 18.

5 Statistical analysis of the modelled annual sunspot
number

Now we can study the statistical properties of the future evo-
lution of the annual sunspot number modeled by the dynam-
ical system approach (mappingφ) based on the continuous-
time pulse shape representation of Eq. (3) for a cycle. A
statistical analysis can be done analytically in terms of the in-
variant density of the mappingφ (see appropriate techniques
in Baranovski and Schwarz, 1999 and 2003) and theory of
the semi-markovian processes (Nollau, 1980). Here, we just
show in Table 3 the resulting plots of the estimates for the
PDF and ACF of the annual sunspot number in a very long
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Fig. 18. Evolution of the sunspot cycles 24–56 modelled by the
modified nonlinear mapping. For such long-term extrapolations,
due to the sensitivity of the solution to initial conditions, only quali-
tative information about the dynamlical evolution is meaningful be-
yond a few solar cycles. In this respect, this extrapolated sunspot
time series contains long-term modulations of the cycle amplitude,
in good accordance with observations from the last two centuries.
Note also that this multi-century extrapolation does not display sys-
tematic secular trends or periods of Grand Minima (intermittent in-
terruptions of the solar cycle, with constantly low activity, as ob-
served in past centuries) in the upcoming 3 centuries.

time interval of 10 000 years. We note that the periodicity of
the ACF is equal to 11 years and the estimates of the PDF
and ACF are close to the ones of the observed daily sunspot
number over the past observed period 1700–2005.

6 Conclusions

In this work, we first applied a nonlinear, least-squares fit-
ting (NLF) to the annual sunspot time series Ri(t) (or x(t),
as used in text for mathematical convenience) for the years
1700<t<2005, which allowed us to characterize each cycle
by a small set of parameters. We then applied two methods
to the NLF output parameters, where each value represents
one of the 23 available solar cycles:

1. A nonlinear mapping technique (NMT) has been con-
structed based on the output parameters

2. A linear regression technique (LRT) has been applied
on the same NLF parameters

3. Finally, we synthesized an hybrid method based on the
combination of both (LRT+NMT).

This allowed us to derive a prediction of the upcoming solar
cycle (#24). Each method produces a different value for the
activity maximum:

– NMT method: maximum of 93±21 in 2011.79±0.5,

– Hybrid method: maximum in the range 100 to 130 in
2010.85±0.5
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However, those values span a limited range and are all sim-
ilar to the current cycle amplitude (110). Although there is
some discrepancy between the results, the range is restricted
enough to exclude either a very strong cycle, similar to cycle
#19 that peaked in 1959 (Rmax=200), or a very weak cycle.

Finally, we modelled the future evolution of the sunspot
number over several millenia. Over such a long term, the
synthesized times series can only reproduce qualitatively the
actual evolution of the sunspot number, given the limited
number of past cycles available to build the nonlinear map-
ping and also given the intrinsically high sensitivity of the
system to initial conditions. However, it allowed us to derive
some global statistics of the time series, which contains many
more cycles than in the available past observations. Those
preliminary results illustrate quite well the potential offered
by those mathematical methods as diagnostic tools for the
physical processes underlying the observed solar activity.
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