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Abstract. A fast method for theoretically comparing the pos-
teriori variances produced by different phase code sequences
in incoherent scatter radar (ISR) experiments is introduced.
Alternating codes of types 1 and 2 are known to be optimal
for selected range resolutions, but the code sets are inconve-
niently long for many purposes like ground clutter estimation
and in cases where coherent echoes from lower ionospheric
layers are to be analyzed in addition to standard F-layer spec-
tra.

The method is used in practice for searching binary code
quads that have estimation accuracy almost equal to that of
much longer alternating code sets. Though the code se-
quences can consist of as few as four different transmission
envelopes, the lag profile estimation variances are near to
the theoretical minimum. Thus the short code sequence is
equally good as a full cycle of alternating codes with the
same pulse length and bit length. The short code groups can-
not be directly decoded, but the decoding is done in connec-
tion with more computationally expensive lag profile inver-
sion in data analysis.

The actual code searches as well as the analysis and real
data results from the found short code searches are explained
in other papers sent to the same issue of this journal. We
also discuss interesting subtle differences found between the
different alternating codes by this method. We assume that
thermal noise dominates the incoherent scatter signal.

Keywords. Radio science (Ionospheric physics; Signal pro-
cessing; Instruments and techniques)

1 Introduction

In incoherent scatter radar measurements the desired range
resolution is often much better than the available pulse length
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of the radar. In order to maximize the statistics of the results
special coding methods like alternating codes have been de-
veloped to allow the radar to be used at full duty cycle and
still produce range resolutions much shorter than the pulse
length used (Lehtinen and Ḧaggstrom, 1987). Typical fea-
tures of these kinds of methods are:

– Long pulses are modulated by a binary phase pattern,
which gives range resolution approximately equal to the
baud length of this pattern.

– This requires relatively little computation because
the resolution is achieved by a simple summa-
tion/subtraction procedure of the corresponding lag
products of all the codes in the code set.

Then there are the newer codes that have the advantage that
the code set can contain fewer codes, especially important
when the equivalent alternating code set has many codes
(Virtanen et al., 2007; Damtie et al., 2002). These codes:

1. preserve the range resolution that the equivalent alter-
nating code set provides,

2. but do not allow this resolution to be accessed by such
a simple procedure as adding/subtracting corresponding
lag products.

3. Instead they require a possibly computationally inten-
sive inversion, and thus are practical now, but were not
two decades ago.

4. Since these codes are found by a search technique, com-
putationally intensive due to the vast number of possible
code sets, it is necessary to make this process efficient.

5. The important thing is not whether data from a code
group can be inverted, but rather how much the signal
to noise ratio of the experiment is degraded by the in-
version.
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6. Since different code sets degrade the SNR by vastly dif-
ferent amounts, a very important part of the search tech-
nique is the evaluation of the degradation.

7. This paper describes a fast method for doing this, a
method that is not necessarily as accurate as slower
methods, but nonetheless is good enough to allow good
code sets to be separated from the vast number of bad
code sets.

We also use the developed comparison method to discuss
some interesting differences found between strong alternat-
ing codes, weak alternating codes (Lehtinen and Ḧaggstrom,
1987) and alternating codes of type 2 (Sulzer, 1993), seen
in the way they perform in terms of variance behavior when
post-integrating lag profile data to coarser resolutions.

The actual (accurate) method for decoding the codes is to
apply linear statistical inversion to the lag profiles measure-
ments, which represent the desired unknown plasma scatter-
ing lag profiles convolved with the range ambiguity functions
corresponding to the different lagged products of the codes in
the code group under study. If the lag profiles are very long,
the faster method of inversion can be based on Fourier trans-
forms of the profiles. These methods will fail near the ends
of the profiles, but they provide us with a much faster way to
estimate the variance behaviour of the inversion process with
results valid if we do not worry about what happens near the
ends of the profiles. Because the code groups are searched
with time-consuming computer searches the speed obtained
this way is essential.

The linear statistical inversion based method is described
in Virtanen et al.(2007). These methods are developed to-
wards general-purpose experiments in another paper in this
special issue (Virtanen et al., 2008). There are also other re-
lated papers in this special issue:

Another paper (Vierinen et al., 2008) describes the effi-
cient search algorithms used for actual searches of the code
quads. We also discuss the advantages of using polyphase
codes and amplitude modulation instead of binary modula-
tion.

We discuss the possibility of doing inversion analysis of
echo amplitude data to solve for the scattering amplitudes in-
stead of correlation properties of the target (Vierinen et al.,
2008b). This way of analysis is advantageous with very nar-
row targets like meteor heads and narrow ionospheric layers.

We have shown that the new experiments can be used to-
gether with advanced MCMC (Markov Chain Monte Carlo)
techniques combined with ionospheric models to do analy-
sis in cases beyond the capabilities of traditional GUISDAP
analysis or the lag profile inversion (Kero et al., 2008).

We have also generalized binary alternating codes to a
general number of phases (Markkanen et al., 2008). This
paper is purely a generalization of the classical way of cod-
ing and decoding by summation – with no need for inversion
methods.

2 Code selection

The focus of the code selection is to find the code sequences
that produce minimum posteriori variances for the inverted
lag profiles. Starting from the scattering process happening
in the ionosphere it is possible to derive an analytical for-
mula for the posteriori variance of any lag value for any code
sequence. For each code length and each lag value the vari-
ance has a theoretical minimum. By comparing the calcu-
lated variances of different codes to the minimum variances
at all lag values the best codes can be selected.

We use here a discrete formalism, where all times (and
ranges which are also specified as corresponding times) are
represented as integers. The discrete formalism can be
derived from the continuous-time formalism developed in
(Lehtinen, 1986; Lehtinen and Huuskonen, 1996) by study-
ing samples of signals given byzi= 1

1t

∫ (i+1)1t
i1t

z(t)dt in the
limit 1t→0.

2.1 Scattering from the ionosphere

The scattering coefficient of an ionospheric plasma element
is noted withxr,t , wherer is signal travel time to the scatter-
ing volume and back andt is time. The scattering is modeled
as a zero mean stochastic process with covariance

〈xr;txr ′;t ′〉 = δrr ′σ
t−t ′

r , (1)

whereδrr ′ is the Kronecker delta andx is the complex con-
jugate ofx. Plasma scattering properties are modeled by the
plasma autocorrelation functionσ t−t

′

r .
In a practical incoherent scatter experiment the illumina-

tion by radio waves is not continuous, but the radar sends
phase coded pulses to the ionosphere. The scattered signal is
recorded in the form of discrete IQ-samples (raw data).

If the discretization step1t is small enough, the ampli-
tude ambiguity function for range simplifies to be equal to
the transmission waveform envt and thus the received com-
plex signal is a weighted sum of the scattering coefficients

zq =

∞∑
r=−∞

envrxq−r;q + εq , (2)

where envq is the complex transmission envelope andεq
the measurement error due to thermal noise. It’s correlation
properties are expressed by

〈εqεq ′〉 =
C

1t
δqq ′ , (3)

whereC is a constant depending on the amplitude of the ther-
mal noise.

2.2 Lag profiles and inversion

In an incoherent scatter radar experiment lagged products of
the received signal and its complex conjugate,

mq;τ = zqzq−τ , (4)
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are calculated. Using Eq. (1) the expectations of the lagged
products can be written in the form

〈 mq;τ 〉 = 〈zqzq−τ 〉

= 〈

∞∑
r=−∞

(envrxq−r;q+εq)·
∞∑

s=−∞

(envsxq−τ−s;q−τ+εq−τ )〉

=

∞∑
r=−∞

envrenvr−τσ
τ
q−r

=

∞∑
r=−∞

Wr;τσ
τ
q−r . (5)

The expectations of the terms containing measurement errors
are zeros.

A range profile of plasma autocorrelation functionσ τq with
a fixed value of time lagτ is called a “lag profile”. In the
analysis several lag profilesσ τq with selected values ofτ are
solved as separate problems to sample the whole plasma au-
tocorrelation function. The difference between a measured
ambiguous lagged product and its expectation is

mq;τ = 〈mq;τ 〉 + εq;τ

=

∞∑
r=−∞

Wr;τσ
τ
q−r + εq;τ . (6)

The error term in Eq. (6) is rather complicated. The fourth
moment’s theorem for complex Gaussian processes imply

〈εq;τ εq ′;τ ′〉 = 〈zqzq ′−τ ′〉〈zq ′zq−τ 〉

〈εq;τ εq ′;τ ′〉 = 〈zqzq ′〉〈zq−τ zq ′−τ ′〉. (7)

These formulas, represented in terms of the real and imagi-
nary parts of the lag profile expectations〈mq;τ 〉 can be found
in the references cited above. The mutual correlations of
the error termεq;τ between both different lags and differ-
ent ranges can be fully explained by these formulas. This
is the correct way to model the self-noise of the lag profile
estimates, when the signal-to-noise ratio is not very low.

For the purposes of this study, we assume a very low
signal-to-noise ratio, and the error term simplifies to

〈Re(εq;τ )Re(εq ′;τ ′)〉 =
C2

1t2
δqq ′ (δττ ′ + δτ0)

〈Im(εq;τ )Im(εq ′;τ ′)〉 =
C2

1t2
δqq ′δττ ′ (1 − δτ0)

〈Re(εq;τ )Im(εq ′;τ ′)〉 = 0, (8)

if τ≥0 andτ ′
≥0. The lag profile estimates are thus indepen-

dent of each other if either the lag values or the range values
differ. The variance of the zero lag profile is two times the
variance of the other lag profiles. Negative values of the lags
are completely dependent on the positive values, being com-
plex conjugates of each other.

The Fourier transform of the measured lag profile is

m̃τ (ω) =

∞∑
q=−∞

eiqω

(
∞∑

r=−∞

Wr;τσ
τ
q−r + εq;τ

)
= σ̃ τ (ω)W̃τ (ω)+ ε̃τ (ω) (9)

as indicated by the convolution theorem of the Fourier trans-
forms. The Fourier transform of the plasma autocorrelation
function σ τr is not the plasma scattering spectrum, because
the transform is taken with respect to the range variabler,
not the time lagτ .

The inversion solution (and the error term) of the Fourier
transform of the unknown lag profile is

σ̃ τ (ω) =
m̃τ (ω)

W̃τ (ω)
−
ε̃τ (ω)

W̃τ (ω)
. (10)

2.3 Posteriori noise

Now lets take a closer look at the transform of the noise, i.e.
the last term in Eq. (9). Using Eq. (8) its covariance can be
written as

〈ε̃τ (ω)ε̃τ (ω′)〉 =

∞∑
q=−∞

eiq(ω−ω′)

= 2πδ(ω − ω′). (11)

The latter term in Eq. (10) is the Fourier transform of the
posteriori noise. By taking the inverse transform we get the
posteriori noise in time domain

ξ = F−1(ε̃τ (ω)/W̃τ (ω)). (12)

The covariance of the posteriori noise in Eq. (12) is

〈ξpξq〉 =
1

(2π)2

2π∫
0

2π∫
0

e−ipωeiqω
′

〈
ε̃τ (ω)

W̃τ (ω)

ε̃τ (ω′)

W̃τ (ω′)
〉dωdω′

=
1

2π

2π∫
0

e−i((p−q)ω) 1

|W̃τ (ω)|2
dω. (13)

The previous holds for a single transmission envelope that
leads to a single range ambiguity function for each lag value.
In case of several envelopes, i.e. a code sequence longer than
one, each of the envelopes produces a different range am-
biguity function for each lag value. From a sequence ofN

codes, equations

Wu
r;τ = envur envur−τ , (14)

u = 1 . . . N , are produced. Each of these range ambiguity
functions produce an equation similar to Eq. (6)

muq;τ =

∞∑
r=−∞

Wu
r;τσ

τ
q−r + εuq;τ (15)
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Fig. 1. Range integration averaging kernels used in the calcula-
tions. The boxcar kernel (magenta) was not used in the subsequent
calculations. The triangle kernel (thick blue) seemed to perform
best while the sin-shaped kernel (thin blue) and the iterated sin-
shaped kernel (dark blue) performed slightly worse. The results
corresponding to the last three kernels are shown with correspond-
ingly colored curves in the results.

and has a Fourier transform

m̃uτ (ω) = σ̃ τ (ω)W̃u
τ (ω)+ ε̃uτ (ω). (16)

The inversion solution (and the error term) for the Fourier
transform of the lag profile using all the measurements can
now be written as

σ̃τ (ω) =

∑N
u=1 W̃

u
τ (ω)m̃

u
τ (ω)∑N

u=1 |W̃u
τ (ω)|

2
+

ε̃τ (ω)√∑N
u=1 |W̃u

τ (ω)|
2
, (17)

whereε̃τ (ω) is the Fourier transform of a normalized white
noise. The posteriori noise covariance is

〈ξpξq〉 =
1

2π

2π∫
0

e−i(p−q)ω∑N
u=1 |W̃u

τ (ω)|
2
dω. (18)

From Eq. (18) we get the posteriori variance of the inversion
result

〈ξpξp〉 =
1

2π

2π∫
0

1∑N
u=1 |W̃u

τ (ω)|
2
dω. (19)

that has a minimum

〈ξpξp〉 ≥

(
N∑
u=1

∞∑
r=−∞

|Wu
r;τ |

2

)−1

. (20)

2.4 Proof of the accuracy limit

It is surprisingly easy to see that the inequality (20) must be
true. For this, let us assume that the only unknown lag profile
value isσ τq and that we know all the other values ofσ τp , if

p 6=q. Our only unknown then appears in the measurement
Eq. (15) multiplied by all the valuesWu

r;τ
with 1≤u≤N and

−∞<r<∞.
As the error terms in Eq. (20) are assumed normalized and

independent, the inversion accuracy for this only unknown
variable is easily seen to be equal to the right hand side of
Eq. (20).

If we now drop the assumption about exact knowledge of
the other scattering termsσ τp , p 6=q, the estimation accuracy
of the previously only unknown cannot get any better. Thus,
the inequality in Eq. (20) must be true.

The inequality (20) is also a consequence of the well-
known mathematical fact that the harmonic mean of numbers
is smaller or equal to the arithmetic mean of the numbers.

2.5 Code selection criteria

Now we have finally arrived to the formulas that can be used
in comparing different code sequences. The efficiency of a
code is defined as ratio of the minimum posteriori variance
as defined in Eq. (20) and the actual posteriori variance of the
code under study,

R =

(∑N
u=1

∑
∞

r=−∞
|Wu

r;τ
|
2
)−1

1
2π

2π∫
0

1∑N
u=1 |W̃u

τ (ω)|
2
dω

. (21)

In practical calculations the Fourier transform of the range
ambiguity function can be handled with DFT. When the in-
tegral in the denominator is written in discrete form using
Riemann sum, we get the form(∑N

u=1
∑

∞

r=−∞
|Wu

r;τ
|
2
)−1

1
M

∑M−1
q=0

1∑N
u=1 |W̃u

τ ;q
|2

→ R asM → ∞. (22)

In the case of binary code groups the nominator can be sim-
plified even further. The amplitude of range ambiguity func-
tion is |Wu

r;τ
|=1 in all non-zero parts of the function. If the

codes haveNb bits and only the full lags (multiples of the bit
length) are studied, Eq. (22) can be written in form

(N(Nb − τ))−1

1
M

∑M−1
q=0

1∑N
u=1 |W̃u

τ ;q
|2

→ R asM → ∞. (23)

2.6 Range integration

As lag profile inversion is usually not performed with the
best possible range resolution, but range integration is used at
least at larger ranges, it is useful to investigate how the code
sequences behave in the integration process. Whereas the
maximum range resolution is achieved by using the original
range ambiguity samples in the inversion process, convolu-
tions of range ambiguity function and an averaging function
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ψ are used to get the range integrated values. The convolu-
tion gives an extra term to the posteriori variance (Eq.19), so
that the variance of the integrated lag profile is

〈ξpξp〉 =
1

2π

2π∫
0

|9̃(ω)|2∑N
u=1 |W̃u

τ (ω)|
2
dω, (24)

where9̃(ω) is the Fourier transform of the averaging con-
volution kernel9. The discrete version of this formula is
easily obtained by replacing 1/2π by 1/M and the integral
overω by summation over the discrete FFT valuesωi . A very
natural choise for the averaging kernel would be the boxcar
function

9box(n) =
1

Nr
, if 0 ≤ n< Nr, 9(n) = 0 otherwise. (25)

However, it was discovered that the boxcar shape performed
very badly. For this reason we defined a triangular averaging
function by setting

1Nr (n) = n/Nr , if 1 ≤ n ≤ Nr

1Nr (n) = 1 − n/Nr , if N r < n ≤ 2Nr

1Nr (n) = 0, otherwise (26)

and

91(n) = 1Nr /Nr . (27)

Moreover, a sinusoidal shaped averaging function as well as
an iterated sinusoidal averaging function (rather close to box-
car) were defined by

9sin(n) = sin
(π

2
1Nr (n)

)2
(28)

and

9sin sin(n) = sin

(
π

2
sin
(π

2
1Nr (n)

)2
)2

. (29)

All these kernels are shown in Fig.1.

3 Numerical results

As our goal was to find a code sequence of 15 bauds of 10µs
duration, we first evaluated such a code set of randomly cho-
sen binary bauds. The results for the randomly chosen code
set are shown in Fig.3. We have plotted the variances of the
experiments as a function of range integration. The results
from the simple and fast formula (22) or (23) are shown by
the red curve and the results for more careful calculations,
modelling the signal values as 5 samples taken for each baud
by the blue curves. The three different rows of the curves cor-
respond to a different number of fractional lag profiles taken
to represent each full lag value.

The formulas used for both cases are the same. The main
difference is that in the simple case we use 1 discrete sample

to represent each baud, while in the more realistical case we
use 5 samples to represent each baud. Moreover, in the more
realistic case the full lags are multiples of 5 samples and each
of them is estimated using fractional lags around this exact
multiple of 5 samples.

It can be seen that realistic curves rather well follow the
fast formula (22) or (23), but that there are occasionally even
significant discrepancies between them. However, we feel
this anyway justifies the use of rapid formulae in extensive
computer searches.

4 Careful explanation of the result figures

The main contribution of this paper, in addition to Eqs. (22)
or (23) and (24) are the numerical results shown in form of
matrices of curves for different situations. As these graph-
ics contain a great wealth of information, it is necessary to
carfully explain everything shown in them.

The figures consist of three of five rows of panes. The first
row shows the pulse forms and the range ambiguity func-
tions. The second row shows the squared moduli of the
Fourier transforms of the individual range ambiguities, nor-
malized by dividing by the number of codes and the sum of
these individual Fourier transforms. This sum can be consid-
ered as the average Fisher information of the inverse convo-
lution problem. The last 1 or 3 rows show how the results be-
have when range-integrated to various resolutions. We show
the behaviour for both the simplest formula as the red curve
as well as a set of other curves – calculated more carefully by
discretizing the analysis to 5 steps for each baud in the code.
We always show the results for calculation of fractional lags
±2, ±1 and 0 and in the 5-row panels also for other kinds of
fractional lag sets involved in the analysis.

4.1 First line of figure panes

Here we simply show the range ambiguity functions for all
full lags. LAG 0 is different, as the range ambiguity function
is just a constant of the length of the pulse itself and it is
not very informative to show it. Instead, we plot the codes
themselves in that position. To emphasize the difference, we
plot the code in blue. At the top of these panels we also print
the relevant full lag number.

4.2 Second line of figure panes

On the second line of figure panes we plot the average of the
squared moduli of the Fourier transforms of the ambiguity
functions, calculated by simple (no fractional samples) for-
mulas. As the convolution inverse problem diagonalizes on
the Fourier side, this curve can be understood as the repre-
sentation of the diagonal Fisher information matrix of the
inverse problem of deconvolving the ambiguity functions.
This function appears in the denominator of the integral in
Eq. (19).
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Fig. 2. Evaluation of a simple multiple-pulse type code.

If the ambiguity is a Kronecker delta of unit magnitude,
the corresponding Fisher information is a constant one in
Fourier side. Thus, a constant one represents a set of codes
representing exactly the same kind of information that can
be obtained from a single unit-strength pulse pair. A con-
stant unit value here represents a perfect code set in the sense
that the statistical properties of the analysis result are exactly
equal to those corresponding to a simple pulse pair. However,
we have normalized this curve by dividing it by the length of
the ambiguity function – so it actually means that a constant
unit value means pulse compression perfectly done with a
apparent power corresponding to the length of the ambiguity
function.

Please, note that the frequency axis is that of the FFT soft-
ware: zero frequency corresponds to the left side of the figure
while small negative frequencies are found on the right side
of the x-axis. The center of the x-axis corresponds to the
highest frequencies seen with the time discretization chosen.

The Fourier side information is easily interpreted in terms
of what happens with range integration. If we have much in-
formation at zero or low frequencies, it is obvious that range
integration should perform well. This happens clearly in
lag 8 in Fig.4. Also, zero lags integrate well if fractional
lags are taken into account. For the simple discrete case zero
lags are singular and integration cannot help, except for the
case of integration length equal to pulse length, which is seen
as the downward spike on the red curve in some panels. On
the other hand, having little information at DC results in very
bad range integration results. This is remarkably clear for
lags 5 and 10 in Fig.3.

4.3 Last rows of figure panes

The last 1 row or 3 rows of the figure panes show the be-
haviour of the codes, when range-integrated to resolution be-
tween 1 and 20 baud lengths. If we show 3 rows, the dif-
ference between those is in the number of fractional lags
we include to form the final estimate for each full lag. The
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Fig. 3. Evaluation of a randomly chosen 4-code binary sequence of length 15. In the first row of panels the ambiguity functions for each
lag are shown, corresponding to all full lag values. For lag 0 we show the codes themselves (drawn in blue), as the ambiguity functions
would be just constants shapes of length equal to the length of the total pulse. The second row of panels shows the average of the squared
moduli of the Fourier transforms of the ambiguity over the code set (red) and also the individual terms in this average shown by the darker
red lines in bottom. The lower three panels show the behavior of variances of lag profiles if integrated to different resolutions between 1
and 20 baud lengths. The fourth row corresponds to using fractional lags of±2, ±1 and 0 to represent each full lag, while in the third row
we have used fractional lags±1 and 0 and in the fifth row fractional lags±3, ±2, ±1 and 0. The red curves in all the rows correspond to
a simple calculation using no fractional lags at all, while the blue curves correspond to more realistic analysis, all using the fractional lags
specified but 3 different kernels for range integration. The simple red curves are used for fast computer searches and we see that they rather
well approximate the more realistic variance estimates.

alternatives are fractional lags±1 and 0 (3rd row),±2 ±1
and 0 (4th row) and±3 ±2 ±1 and 0 (5th row). If only one
row is shown, the fractional lags are±2 ±1 and 0, which is
the most natural choise, as for 5 samples for each baud this
results in each fractional lag profile being used once and only
once for each full lag profile estimation.

In each of these figures we have plotted in red the simplest
possible result for range integration with only full lags taken
into account in Eq. (24). This is to make it easy to compare
the simple formula to the more careful variance calculations
shown by the thick blue, thin blue and dark blue curves cor-
responding to more careful calculations, discretized at 1/5 of
the baud length and using the different range integration ker-
nels defined in Sect.2.6.

4.4 Normalization of the curves

It is important to understand that we have normalized all the
variance curves by dividing them with the number of inde-
pendent estimates going into the analysis. These factors in-
clude:

– Number of codes in the sequence

– Number of fractional lags

– Range integration

Also, the constantC in Eq. (3) is chosen to be equal to the
baud length, so that for the simplest situations – discretized to
the baud length – the signal thermal noise is assumed to be of
unit variance. In the more accurate calculations discretizing
the signal so that each baud corresponds toNflag samples, the
signal variances are equal toNflag as it should be for sampled
white noise.

The reason for these choises is to make the scales of the
different curves comparable. All variances shown in the
curves should actually be equal to 1 if they would be calcu-
lated by simple estimates just taking into account the number
of independent data going to the analysis. The difference
from 1 is then a measure of non-perfectness of the inver-
sion decoding process and the range-post-integration process
caused by correlations of the errors of the inversion process
as well as detailed behaviour of the ambiguity functions and
the post-integration kernel.

Without this normalization the values of the variance
curves at range-integration 20 should be 1/20 of the value
they have at range-integration 1, which would make these
curves difficult to read. This way the reader may understand
the curves as additional correction factors, which must be
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Fig. 4. Evaluation of the chosen code for a 15-baud 4-pulse experiment. While not perfect, the variances as function of range integration
perform significantly better than in the previous figure with a randomly chosen code. For lags 2, 8, 10, 11 and 12 the variances go down
faster than the range integration would imply. This is connected with the fact that the Fourier side information curve (red curve in the second
row of panels) shows high values for DC and low frequencies.
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Fig. 5. An alternating code set made from a 16-bit strong alternating code by truncating to 12 bits. We have only shown the most natural
fractional lag set:±2/5,±1/5 and 0. It is clear that all lags≥2 display a perfect decoding behaviour – they behave as if plain 2-pulse pairs
corresponding to all 2-pulse-pairs in the set would have been available.

included after simple scalings taking into account the above
listed factors are used.

4.5 Numerical data shown in the panes

In the panes we have also helped the inspector by showing
some numeric data relevant to the curves. We have shown

theR value defined in (Lehtinen et al., 2004) and (Damtie
et al., 2002) to describe the close-to-perfectness of a code
(or here a code set) on the panels of the second row for each
lag profile. There we also print the minimum and maximum
values of the Fourier side information curve, to make it easier
to see how much it differs from a constant 1.
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Fig. 6. A 12-bit weak alternating code set. Some differences to the strong set are visible. While slightly (but insignificantly) worse than the
strong set in case of no range integration, in some cases the integration behaviour is actually better.
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Fig. 7. Alternating code set of length 12 and type 2 introduced bySulzer. Again the coarse analysis (red curve) represents perfect behaviour,
but it seems that in integration and realistically accurate fractional lag calculations the first lags seem to behave somewhat worse than the
alternating codes do.

The inverse ofR, V=1/R corresponds to the variance of
a normalized situation and we have shown that value on the
last rows of panel plotted. The corresponding variance cal-
culated more accurately is also shown in dark blue on the
same panels, as well as the normalized variance integrated to
1 baud length –V (1) – or to 20 baud lengths –V (20).

5 Interesting behaviour of different alternating codes

Alternating codes of various types show rather interesting
small differences in behaviour. The reason for this is that
while the perfect decoding properties exist for all pulse pairs
in alternating codes, essentially only full lags are considered
and finite baud lengths are ignored. Strong alternating codes
eliminate some part of this interplay by guaranteeing disap-
pearance of unwanted responses also for slightly offset lags,
but the other alternating code versions are not equally good
in this respect.
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Fig. 8. Alternating code set of length 10 and type 2. In this set the problem with integration seen in the set of length 12 (previous picture) is
not seen.
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Fig. 9. A set of 15 randomly chosen pulses of 15 bauds each. It seems to be roughly equally good as the chosen set of 4 pulses in Fig.4.

Very interestingly, weak alternating codes (Fig. 6) may
actually perform better in range integration than strong al-
ternating codes (Fig. 5). This is because they probably have
less phase changes in the ambiguity functions than the strong
ones. They are less perfectly similar to independent pulse
pairs, and this can actually help regarding integration. For
example: a pair of pulses with no phase shift between them
behaves better in integration than a single pulse, while of
course worse regarding the original resolution.

Type 2 alternating codes of length 12 also show a degrada-
tion of performance in range integration (Fig. 7), while those
codes of length 10 do not seem to show this (Fig. 8). This

is due to the detailed working of amplitude functions in the
sub-baud range resolution, but what exactly happens cannot
be explained here.

We have also evaluated the behaviour of the first 7 lags
of randomly chosen code sets of lengths 15 and 150, respec-
tively (Figs. 9 and 10). These figures show that neither of
these sets seems to behave as well as any of the alternating
code sets. Compared to the set of 4 specially chosen codes
(Fig. 4), the set of 15 randomly chosen pulses seems to be of
approximately equal performance.
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Fig. 10. A set of 150 randomly chosen pulses of 15 bauds each. This many pulses are necessary to make random code sets to be comparable
to alternating code sets.

6 Conclusions

We have developed a fast method useful in comparing vari-
ances of lag profiles and range-integrated lag profiles using
sets of codes in incoherent scatter radar measurements. We
have shown that faster and more approximative ways to ap-
ply the method produce approximatively the same kinds of
results as better modeled and more realistic ways to apply
the method. This makes it possible to use the method for ex-
tensive computer searches of codes, where speed is essential.

We have also shown that the behavior of a new 4-pulse
15-baud code (Fig. 4) is almost as good as known methods
of same number of bauds but with much larger number of
pulses in the cycle.

In addition, we have found subtle differences in the be-
havior of the previously known different types of alternating
codes and have seen that randomly chosen code sets need
to be very long to produce equally good results as the other
methods discussed.
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