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Abstract. The signature of the ionospheric Alfvén resonator
(IAR), so called spectral resonant structures (SRS) in the
spectra of the electromagnetic noise in the range of 0.1–
10 Hz is rather frequently observed with the search coil mag-
netometer at observatory Barentsburg on Svalbard (L=15).
In this report we discuss some peculiarities of diurnal occur-
rence of SRS at this high latitude station. We show that the
pronounced minimum of the SRS occurrence around noon
can not be explained by the diurnal variations of the so-
lar zenith angle (illumination of ionosphere). We conclude
that the SRS occurrence minimum is the result of the en-
hanced variability of ionospheric parameters when the ob-
serving point enters (during the Earth’s rotation) the region of
the ionospheric projection of the dayside cusp and its vicin-
ity.

Keywords. Ionosphere (Polar ionosphere; Wave propaga-
tion) – Radio science (Electromagnetic noise and interfer-
ence)

1 Introduction

Resonant structures observed in spectra of the geomagnetic
field fluctuations (noise) in the range of 0.1–10 Hz are at-
tributed to signatures of the ionospheric Alfvén resonator
(IAR) (e.g. Polyakov and Rapoport, 1981). These spectral
resonant structures (SRS) have been detected and investi-
gated at low latitudes (B̈osinger et al., 2002), at mid-latitudes
(Belyaev et al., 2000; Pokhotelov et al., 2003; Odzimek et
al., 2004; Molchanov et al., 2004), and in the auroral zone
(Belyaev et al., 1999; Semenova et al., 1999; Demekhov et
al., 2000; Yahnin et al., 2003; Hebden et al., 2005). Recently,
SRS were observed on Svalbard, that is, atL∼15 (Semenova
et al., 2005; Yeoman et al., 2007).
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According to the IAR theory, properties of SRS are deter-
mined by the parameters of the ionosphere forming the IAR
above the observing point. In particular, the maximal elec-
tron density in the F-region is an important parameter as well
as the decay of the density above the F-region (Polyakov and
Rapoport, 1981). In turn, the ionosphere characteristics are
formed under influence of different factors; the significance
of which for the IAR is different at different latitudes. At
low latitudes the illumination by the Sun is the most impor-
tant factor for the IAR formation. Thus, atL=1.4 SRS are
always detected during nighttime, and never during daytime
(Bösinger et al., 2002). Towards higher latitudes the influ-
ence of the solar illumination decreases since the elevation
(zenith) angle of the Sun decreases. In the auroral zone, the
particle precipitation and plasma convection are also impor-
tant. Although the auroral ionosphere is illuminated by the
Sun during summer time, the probability of observing SRS
around local midnight is not negligible here (Yahnin et al.,
2003). In winter, that is, during the “polar night”, the prob-
ability of observing SRS is significant even at noon. In con-
trast to low latitudes, the probability of observing SRS in the
auroral zone is less than 100% even in the darkest times. This
is, in particular, due to geomagnetic activity; in the auroral
zone the SRS occurrence decreases as geomagnetic activity
increases. Such a dependence can be related to the increase
of the conductivity in the E-region due to the precipitation
of more energetic particles. The enhanced E-region conduc-
tivity leads to decrease of the IAR Q-factor (Trakhtengerts
et al., 2000). Another reason that prevents the SRS detec-
tion in the auroral zone can be an enhanced variability of the
ionosphere. Indeed, because of the low intensity and noisy
nature, SRS are detectable only when resonance frequencies
are relatively stable for long (10–20 min) time periods. This
time has been estimated by many authors (e.g. Belyaev et al.,
1999; Molchanov et al., 2004; Odzimek et al., 2004; Heb-
den et al., 2005) as an integration time needed to extract the
weak SRS signal from the noise background. If the IAR
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Fig. 1. Top: Spectrograms ofH and D components of the geomagnetic fluctuations revealed from search coil magnetometer data in
Barentsburg during two successive days (4 June 2006 and 5 June 2006). Bottom: Variations of the absolute value of the time derivative of
the horizontal magnetic field obtained from the standard magnetometer measurements in Barentsburg for the same time interval.

properties significantly vary within this characteristic time,
SRS can hardly be resolved in the dynamic spectra (spec-
trograms). The variability of ionospheric parameters, which
is evident in the auroral zone during magnetic disturbances,
prevents the formation of a stable IAR.

In this paper we discuss the possible reasons of the diurnal
behaviour of SRS at higher latitudes based on observations
in Barentsburg on Svalbard, where the sunlight effect is not
expected to be significant. The next section will describe the
observations. In Sect. 3 the result of calculations of the iono-
sphere reflection coefficient using a local ionospheric model
based on EISCAT Svalbard radar data (Zhang et al., 2005)
will be presented and compared with the observable features.
In the Discussion section we will consider possible reasons
for discrepancies between the observations and modelling.

2 Diurnal behaviour of SRS and geomagnetic activity in
Barentsburg

The SRS observations have been carried out by the Polar
Geophysical Institute at the geomagnetic observatory Bar-
entsburg (78.05◦ N, 14.12◦ E; Corrected Geomagnetic lati-
tude (CGLat) is 75.17; MLT=UT+3) since 2002. The geo-
magnetic fluctuations are recorded by a search coil magne-

tometer with a sampling rate of 40 Hz. The instrument has
a low-frequency cut-off at 0.05 Hz and a plateau-like ampli-
tude response from 0.1 Hz up to tens of Hz. The transfor-
mation factor of the instrument is 240 mV/nT at frequencies
above 0.1 Hz and the sensitivity threshold is<0.1 pT/Hz1/2

at 0.1 Hz.

Upper panel in Fig. 1 presents a spectrogram of the mag-
netic fluctuations during two successive days (4–5 June
2006) in Barentsburg. The main feature, which we would
like to emphasize, is the absence of SRS during the daytime
hours. SRS are detected at 00:00–02:30 UT of 4 June, from
19:00 UT of 4 June till 04:00 UT of 5 June and at 17:00–
24:00 UT of 5 June, that is, during the nighttime hours of
MLT. The example in Fig. 1 relates to the summer, when the
ionosphere above the observing point is illuminated by the
Sun during the whole day. In Fig. 2 another spectrogram
is shown, but for the winter season. The diurnal behaviour
of SRS is, however, similar to that in Fig. 1. Such diur-
nal behaviour is statistically confirmed in Fig. 3 where the
probability to observe SRS during the period of 2002–2006
is presented as dependent on UT. There were no days when
SRS were observed within 09:00–12:00 UT (near noon) dur-
ing the analyzed period. The probability of observing SRS
increases during the nighttime hours. In this respect, the
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Fig. 2. The same as in Fig. 1 but for 12 December 2005 and 13 December 2005.

observations in Barentsburg resemble those at low latitudes
(Bösinger et al., 2002), where the lack of SRS at daytime are,
definitely, related to ionospheric illumination. However, the
similar diurnal behaviour of SRS in any season as well as the
considerations made in the following section, tell us that the
illumination is not a controlling factor at such a high latitude.

The spectrograms presented in Figs. 1 and 2 demonstrate
that around noon the magnetic fluctuations are enhanced in
a wide frequency range. The search coil magnetometer al-
lows us to resolve variations with periods less than∼10 s. A
Bobrov type magnetometer in Barentsburg, which provides
information on longer period variations, also shows an en-
hanced variability of the magnetic field near noon. The bot-
tom panels of Figs. 1 and 2 represent the parameter charac-
terizing the variability of geomagnetic field in Barentsburg,
the |1H /1t |, whereH is the horizontal component of the
ground magnetic field. As estimate we used values of1H
taken for1t=5 min (other values of1t do not change the
result qualitatively). It is clear from the comparison of the
upper and bottom panels of Figs. 1 and 2 that SRS tend to
appear when the variability of the magnetic field is small.

Yahnin et al. (2003) showed that probability of observing
SRS in the auroral zone is higher during small values of the
localK-index (characterizing the local amplitude of the mag-
netic field variation for a 3-h interval). The same is found
for observations in Barentsburg. Indeed, the probability of

 
Fig. 3. The probability of observing the spectral resonant structures
as a function of Universal Time revealed from the search coil mag-
netometer measurements in Barentsburg during 2002–2006.

observing SRS in Barentsburg is some 30% duringK=0 and
decreases with higherK-index (some 20% duringK =1, 8%
duringK=2). DuringK>2 the probability is negligible.

The diurnal occurrence of magnetic disturbances with a
K-index of a certain value in Barentsburg is shown in Fig. 4.
For this plot the data for the year 2005 were used. From
Fig. 4 it is clear that at any 3-h interval of the day the most
probable value ofK-index is 3. The remarkable feature re-
vealed from such a presentation of geomagnetic activity is
that during the daytime there are only few days withK=0–
1. That is, around noon the magnetic field is almost always
disturbed.
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Fig. 4. The number of days in 2005 with aK-index of a certain
value as function of the Universal Time. Note, that the lack of
days with weak activityK=0–1 coincides with minimum of the SRS
probability in Fig. 3.

3 Modelling of the SRS occurrence

The resonant structures can be recognized only if the back-
ground noise intensity varies significantly with frequency.
According to the IAR theory, this occurs in the case of a large
modulation of the upper ionosphere reflection coefficient as a
function of frequency (or sufficiently large resonator quality,
Q-factor). The larger the modulation, the more pronounced
the SRS. The reflection coefficient can be calculated using
an ionospheric model. The advantage of observations in Bar-
entsburg is the close location of the EISCAT Svalbard radar.
On the basis of this radar data a local ionospheric model has
been constructed by Zhang et al. (2005). The model is a part
of the Incoherent Scatter Radar Ionospheric Model (ISRIM)
family, which has been based on data from the Madrigal dis-
tributed data system (http://www.openmadrigal.org). Using
this model the average altitudinal profile of the electron den-
sity can be obtained for given date and time (which determine
the Earth’s dipole tilt and solar zenith angle, respectively).
The solar activity level is characterized by indexF10.7, and
geomagnetic activity level is characterized by theap-index.

We performed the calculations for four days represent-
ing different seasons (22 March, 22 June, 22 September,
22 December). To exclude influence of solar and geomag-
netic activity we set valuesF10.7 andap as, respectively,
135 and 15, representing median solar activity and weak
geomagnetic activity. Thus, any variations in the mod-
elled ionospheric profiles were due to changes of the solar
zenith angle. First, diurnal variations of the height distri-
bution of the electron density for selected days were ob-
tained using the local ionospheric model. They are pre-
sented in Fig. 5 (on the left). Then, using the electron den-
sity height distributions the ionospheric reflection coefficient
was calculated using the full wave algorithm of Ostapenko
and Polyakov (1990). The result is shown in Fig. 5 (on
the right) in the form of artificial spectrograms. All the
calculated reflection coefficients have clear resonant struc-

ture implying pronounced SRS at any local time. To char-
acterize the depth of modulation of the reflection coeffi-
cient quantitatively one can introduce a parameter depend-
ing on the difference between the intensities of the coeffi-
cient in the minima and maxima. As such parameter we used
A=[(R12−R1)+(R12−R2)+(R23−R2)+(R23−R3)]/4, where
R1, R2, R3 are values of the reflection coefficient in first, sec-
ond and third minima, andR12 andR23 are maximal values
of the reflection coefficient between first and second min-
ima, and between second and third minima, respectively. The
diurnal behaviour of the parameterA for different seasons
exhibits no significant variations both with local time and
season (not shown) implying equal chances for the SRS to
be resolved. Thus, the calculations on the basis of the local
ionosphere model demonstrate that the SRS observability is
not significantly influenced by the ionospheric illumination
by the Sun. This means that another reason must be respon-
sible for the lack of dayside SRS observations. We suggest
that this reason is related to the enhanced variability of the
magnetic field observed at Barentsburg during the daytime
hours.

4 Summary and discussion

In Sect. 2 we considered the occurrence of SRS at Barents-
burg, Svalbard. The most remarkable feature in the diurnal
behaviour of SRS is the total lack of SRS detection around
noon, independent of the season. At the same time, the
ground magnetic field at Barentsburg exhibits an enhanced
variability near noon.

In Sect. 3 we modelled the influence of the illumination of
the ionosphere above Svalbard on the ionospheric reflection
coefficient during weak geomagnetic and median solar activ-
ity. A clear resonant structure is found in the reflection co-
efficient independent of UT and season, despite variations in
the height distribution of the electron density. Although the
IAR frequencies vary with time and season, estimates of the
IAR quality demonstrate that SRS should be detectable dur-
ing the whole day. It is clear, however, that the ionospheric
model which is used for calculations can reproduce only av-
erage ionospheric parameters, but not their variability.

The IAR theory (e.g. Polyakov and Rappoport, 1981;
Trakhtengerts et al., 2000) predicts, in particular, the depen-
dence of the modulation depth of the reflection coefficient
on two parameters characterizing the upper ionosphere: the
electron density in the F-region and the scale of the elec-
tron density decay above the F-region maximum. The in-
crease (decrease) of every of these parameters leads to the
decrease (increase) of the modulation depth. An inspection
of the electron density altitudinal profiles revealed from the
model by Zhang et al. (2005) and used for the construc-
tion of Fig. 5 (left side) demonstrated that there is a general
anti-correlation of these two parameters during their diurnal
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Fig. 5. On the left: Model representation of the diurnal variations of the electron density versus height above Svalbard. On the right: Diurnal
variations of the ionospheric reflection coefficient calculated on the basis of the IAR theory, taking account of the electron density model.
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variations (not shown). Evidently, this should lead to relative
stability of the SRS modulation depth in our modelling.

Viljanen et al. (2001) have statistically investigated the
time derivative of the ground magnetic field variations us-
ing the IMAGE network of magnetometers in Fennoscandia
and Svalbard. They showed that on Svalbard the number of
timesteps with|dH/dt|>1 nT/s has a pronounced local maxi-
mum around noon (their Fig. 8). This agrees with our conclu-
sion on the dayside enhancement of the magnetic field vari-
ability on Svalbard.

The magnetic variability measured locally is, of course,
not a direct measure for the ionospheric variability overhead.
In particular, on the night side the magnetic disturbances can
be produced by a substorm developing well equatorward of
the high latitude station. In such cases the magnetic distur-
bances do not affect the SRS observability (see, for example,
interval of 17:00–21:00 UT on 5 June 2005 in Fig. 1). It is
worth noting that around noon Svalbard is typically in a re-
gion where several magnetospheric domains (such as cusp,
plasma mantle, boundary layers) have their footprints. These
domains (and their ionospheric counterparts) have different
properties since they are populated with different kinds of
particles, and their boundaries are rather unstable since they
are subjected to the influence of the variable IMF and solar
wind. The enhanced variability of the ground magnetic field
in this region agrees with some statistical studies based on
satellite measurements. For example, Matsuo et al. (2003)
using the DE-2 satellite data stressed that the largest iono-
spheric electric field variability is observed in the vicinity of
the cusp. Also, Shepherd et al. (2003) noted the high level
of the ionospheric convection variability near the cusp. It is
reasonable to consider the variability of the ground magnetic
field as a manifestation of the variability of the ionosphere
parameters.

From the CHAMP satellite data Ritter et al. (2004) found
that during quiet periods (preferable conditions for the SRS
observations) the strongest field aligned currents concentrate
near the cusp region. Ritter et al. (2004) also noted that dur-
ing such quiet periods the ionospheric Hall currents in the
polar region are also enhanced around noon. One can expect
that changes in the intensity and location of the currents (due
to the variability of the interplanetary medium parameters)
will produce a magnetic effect on the ground, which is larger
at noon in comparison with other MLTs.

According to the fact that on the dayside the magnetic (and
ionospheric) variations are seen at different time scales in-
cluding periods of less than 10–20 min (see Figs. 1 and 2),
the ionosphere above Barentsburg around noon is not stable
in the sense of producing the conditions for the formation of
stable IAR eigenfrequencies. This should prevent the SRS
observations in this region. At other MLTs the station is sit-
uated poleward of the statistical auroral oval where one can
expect a more stable ionosphere.

5 Conclusion

From the above considerations of the diurnal behaviour of
SRS in Barentsburg it is revealed that there is clear dayside
minimum of SRS occurrence at the latitudes of Svalbard, and
this minimum can not be explained by the variations of the
solar zenith angle. We conclude that impossibility of the
SRS observations on Svalbard at the daytime relates to the
enhanced variability of the ionosphere above the observing
point, which is manifested by the variability of the ground
magnetic field. We suggest that this enhanced variability in-
dicates the entering of the observing point into the vicinity of
the cusp, while at other MLTs Svalbard is situated poleward
of the auroral oval where ionosphere is relatively stable.

We would like to emphasize the advantage of the SRS ob-
servations in Barentsburg in the close co-location with the
Svalbard EISCAT radar. This opens the possibility to com-
pare observed SRS characteristics with direct measurements
of ionospheric parameters. This will be a task for future in-
vestigations.
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Alfv én resonator, J. Geophys. Res., 104(A3), 4305–4318, 1999.

Belyaev, P. P., Polyakov, S. V., Ermakova, E. N., and Isaev, S. V.:
Solar cycle variations in the ionospheric Alfvén resonator 1985–
1995, J. Atmos. Solar-Terr. Phys., 62, 239–248, 2000.
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