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Abstract. We present a new class of alternating codes. In- Inthis paper we generalize previous wokkgrkkanen and
stead of the customary binary phase codes, the new codddygrén 1997 and apply it to polyphase codes, i.e. codes
utilize eitherp or p—1 phases, wherg is a prime number. that are phase coded with two or more different phases. We
The first class of codes has code length, wherem is a  have identified two different classes of polyphase alternat-
positive integer, the second class has code lepgth We  ing codes. The first class includes codes that hapbases
give an actual construction algorithm, and explain the princi-and code lengthg™, wherep is a prime number ang: is

ples behind it. We handle a few specific examples in detail.a positive integer. The second class contains codes pwith
The new codes offer an enlarged collection of code lengthsl phases and code lengti+1. The number of codes in a
for radar experiments. code set of either class is equal to the (common) length of
the codes belonging to the set. The new codes increase the
number of available code lengths considerably, as shown in
Fig. 1. Within codes shorter than 130, there are eight lengths
of binary codes and additional 64 lengths of polyphase codes.
Often there are several alternating codes of a given length, so
that there are altogether 763 essentially different code sets
shorter than 130.

Alternating codes are widely used in incoherent scatter radar 11iS Paper concentrates on polyphase alternating codes
%gtlsfymg the so called weak condition. Strong codes can

Keywords. Radio science (lonospheric physics; Instru-
ments and techniques)

1 Introduction

measurements and their properties are well known. Ther
Prop generated from weak codes using the method described

are two classes of these codes. The so called type 1 cod ;
were introduced by ehtinen(1986. The number of bauds y Sulzer(1989, which also works for the polyphase alter-

in any single transmission of a type 1 code, i.e. the Codenating codes presented here. To create an alternating code set
length, is a power of two. Also the number of transmissions,satiSfying the strong condition, the code set is duplicated, and

i.e. the code set size, is a power of two, which sometimed" each code in the duplicated part, bauds with even indices

causes inflexibility when designing radar experiments. With&€ multiplied by—1. ,

this in mind,Sulzer(1993 proposed a new type of alternat- The '_‘EY Pr_ope”y of th_e new codes (of Fhe length) is a

ing codes (type 2) which made it possible to use other cod&lose similarity between individual codes in at_:ode set: apart
lengths. These codes also produce unambiguous back—scattfé m one code, the codes are essentially cyclic permutations

autocorrelation function estimates of the target, but there ar&! €2ch other. In the next sections we show that an alternating

no efficient search strategies for finding longer type 2 codes.cOde set having the cyclic property can be constructed if, and

The longest type 2 alternating code that we know about haé)nly if, the number of phases in the code is a prime number.

length 14, The role of cyclic permutations was originally found while
searching regularities in binary alternating codes, but their

Correspondence tal. Vierinen role in constructing polyphase alternating codes for primes

(juha.vierinen@iki.fi) larger than 2 was not realized at that time.

1The 8 sequences forming the 14-bit code are in hexadecimal
format: 406, b72, 4df, bab, 24c, d38, 295 and del.

Published by Copernicus Publications on behalf of the European Geosciences Union.



2238 M. Markkanen et al.: Polyphase alternating codes
» 607 . Condition 3a. Multiplying all the sequences 6f4 by a fixed
S a8 sequence it 4 permuteCy.
§ 407 40 40 » 4032 36 36
g L, ma o N To prove that these conditions are sufficient, we need the
§ 20 \ © 0|y fql!owing properties 1 and 2 of the sequences satisfying con-
Z gl Al ] ] ‘H | ditions 2a and 3a.
70 80 % 100 110 120 130 property 1. The suny of elements oft is —1.

30+ 28 A . .
§ L, 2 This can be seen by considering the sequence
S 204 S=A+MA+---+M""1A+U, which equals (s+1)U
S 2w Nu i (the sequencest,..., M" 1A contain in each location
é 10 5.1 8 8 . all the elements ofd in some cyclic order). Because by
3 mzzlzzz‘ﬁlﬁ 3|, ﬂﬁ“l il BRI H Il l condition 3a multiplication byA permutes the terms o,

0 ‘ ‘ ! ‘ ‘ ‘ A®S=S, and becausd®U=A4, it follows that

0 10 20 30 40 50 60 ! '

length
Code lengt +DA=(G+1U.

. . _ Now condition 2a requires thatAU. Thuss+1=0 and
Fig. 1. Number of different alternating codes up to code length 130.S__1_ Notice that in the case gf=2, whenk ,=(1, —1}, it

The black bars represent the well-known binary phase alternating*_II f . thatn is odd
codes, the white bars represent new polyphase alternating codes. ollows from propertyl thatn is odd.

Property 2. There exists aty such thatMi A=Mi+0 A for

2 Construction of p-nary alternating codes alli.

By condition 3a there is afy such thatA@ M0 A=U, that
By a p-nary sequenceptnary pulse) we mean a phase modu- . ; —
is, M'°A=A. Then
lated pulse where the complex phase factors of the bauds be-

long to the seE,,:{a,:eiZ”M/l’U:O, .,p=1l.Inwhat  MiA=MA=MMA=M*0A, foranyi.
follows, p is a prime number unless otherwise statedp-A -
nary a|ternating Code Of |engWH_1 and Size/l+1 is a set We can now ShOW that the Condltld.l’h0|ds. We denote by

{Ar=(ax.o, ..., ar)Ik=0, ..., n} of p-nary pulses, which A’ the sequence formed by taking tith elements of the se-
satisfies the natural extension of the weak condition given ifdUénceso, ..., A,—1. Conditionlis then the requirement
Lehtinen(1986 for binary codes: that the sum of elements of sequenze A'®A/ QA A/,

added by 1 (coming fromt,=U), is 0. That is, the sum of

.. 'y . ./
Conditon 1. For each i,i’,j and j° where elements oD is —1.

L oD i
joi=joi i), andidi Now A'=M"A and thus

n —
> aiacjaiag; =0. D=MARMIA®M'A® M A.
k=0

Property2 says thatDeC and if we can show thaD#U,

We now first consider codes of lengthand later increase it follows from propertyl that the sum of elements @ is

the length toi+1. We denote by the operator which shifts

the elements of a sequence cyclically by one, that is indeed—-1.

’ BecauseB; @ B,U for any Bi# B, when elements o
M (ao, ..., an-1) = (a, ..., anp-1, a0)- and B, have absolute value 1, it is enough to show that
Let A=(ao, .. ., an—1) be ap-nary sequence and let us de- MA@ MJA £ M"A® MJ'A. )

note byU the unit sequencE=(1, 1, ..., 1). By multiplica- : . . L

tion of two sequences we mean pointwise multiplication ~ The left hand side iV’ AQ M/ A=M'(AQM’ ™10 A)

and by the conjugate of we mean pointwise complex con- and similarly the right hand side 81" (A®M/ " +104).

jugateA. ThenA®A=U, becausés; |=1 for all i. Becausej—i=j'—i’, the sequences inside parentheses are
Let C4 be the set of sequences generated by the ptse €qual, and because-j, they are not equal t&¢/. Then in-

Ca={A, MA,...,M""*A, U}, whereM' means repeated ~deedM'(...)#M" (...), because#i".

cyclical shift operations. We will show that, constitutes a Finally, we will make the number of codes and the their
p-nary alternating code set, if the following two conditions length equal by copying the first element of each sequence
are met. to the end of the sequence. Thét=A=M"A. To see that
condition 1 is still satisfied, let us first suppose thais in
Condition 2a. All the sequences i@ 4 are different. the set{i, j,i’, j'} but 0 is not. Then conditiod follows

Ann. Geophys., 26, 2232243 2008 www.ann-geophys.net/26/2237/2008/
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trivially from what was said above (by dropping the first ele-

2239

Itturns out that the proper order for the difference equation

ment of each sequence we have the same codes, only in ordisrm, so let us consider i, a difference equation

MA,...,M"YA, A, U). If both 0 andn belong to the set
{i, j,i’, j'}, the only possibility is=0, j=i'=n/2. Thenn
must be even, so we can suppose thgP. With the above
choice of indices the left hand side of EQ) (s A M"/2A
and the right hand side i8/"/?A®A. As they are conju-
gates, they are unequal, unless they are both equal But
M"?A+A and thusAQM"/2A#A®A=U, and SoD#£U,
meaning that conditiofh is satisfied also in this case.

The requirement thap is prime is necessary for this
method of constructing alternating codes. With compagsite
there isn’t any sequencessatisfying conditions 2a and 3a.
The essential reason is that for compogit¢he sequences
A, AQA, AQAR®A, ... can have different number of ones.

3 Construction of the sequenceA

For the construction of sequencds generating alternat-
ing codes, it will be advantageous, insteadK)f to con-
sider the set of possible exponents @f the integers
Z,={0, ..., p—1} with modp-arithmetic. The sequences

with elements inE, correspond to vectors in the vector space

Xigm =bm-_1Xigm—1+...+box;, i=0,..., (2
with bo, ..., bm—1€Z,. Because (a) any:-tuple of consec-
utive elements of the solutiofx;) fixes all subsequent ele-
ments of the solution, and (b) there are only finite number (at
most p™) of suchm-tuples, the solution is essentially peri-
odic (the sequence can start with a non-periodic part).

Let us suppose that Eg2)(has a solutionA’={g;}?°,
with periodn=p™—1. We will now show that the vector
A=(ao, ...,a,,_l)eZ’}, satisfies conditions 2b and 3b. The
periodic part ofA’ contains all thep™ —1 different non-zero
m-tuples, and sal’ can not have a non-periodic start. Then
an=ag, ay,+1=ai, ..., and the m-tuples (ao, ..., an—-1),
@, ...,am), ...,@n-1,...,a+m-2), (0,...,0), which
are the starts of vectors, MA, ..., M"1A, 0, are all the
p™ differentm-tuples ofZ,. This proves condition 2b. If
B1, B>eCy, there isBzeC4 such that the firstn elements
of B1+By are equal to the firstz elements ofB3. Be-
causeB1+B; is also a solution of Eq.2), it follows that
B1+ B>=B3. This proves condition 3b.

Notice that we can choose as auiany nonzero vector of

Z=Z,x ... xZ,, multiplication of sequences corresponds % €-- 0ne starting witm:—1 zeros followed by 1.

to addition of vectors and the unit sequeri¢ecorresponds
to the null vectoi0eZ’,. The operato corresponds to the
linear operator mapping each base vectdZpfcyclically to
the previous one.

We now have a vectad=(ao, . .. ,a,,_l)eZ’;, and the set
Ca={A,MA,...,M""1A,0} C 7. Conditions 2a and 3a
correspond to the following conditions.

Condition 2b. All the vectors inC 4 are different.

Condition 3b. Adding a fixed vector of 4 to all vectors
belonging toC4, permutesCy4.

The sum of any two vectors i@4 belong toC4 by con-
dition 3b. Because for anBeC4 also 2B=B+BeC4 and
similarly for anykeZ,, it follows thatC, is a vector sub-
space ofZ),. With m denoting the dimension of 4, the
number of vectors i€ 4 is p™, and thusi=p™ —1.

We can summarize the preceding discussion by the follow-
ing result.

Theorem. If a mth-order difference equation i, is such
that it has a solution with periogh™ —1, the firstp™—1 ele-
ments of the solution can be used as a generatorpfary
alternating code.

4 The number of p™-type alternating codes

If all the roots of polynomial
Q(x)=x"—bp_1x™1— ... —bg are different, the gen-
eral solution of the difference EqR)is

X; =clai+...+cmafn, i=0,...,

whereasy, ..., a,, are the roots oD (x) andcy, ..., ¢, are

BecauseM C4=Cq, C4 is an M-invariant subspace, and arbitrary coefficients. If (A)Q(x) is irreducible (inZ,[x])
one could use the theory of invariant subspaces to show thand (B) there is no integat smaller thanm=p™ —1 such
existence of alternating codes, and to construct the codeshat Q(x) dividesx?—1, then the roots oD (x) are differ-
However, here we present a more elementary derivation oént and all the sequencés, «;, al.z, ...) have common pe-
the construction algorithm. riod n. Then also the period of the sequerieg is n. Thus

Condition 3b means that for most indicgsthere is an  eachmth-degree polynomiaD (x)eZ,[x] that satisfies (A)
indexk such thatd;=A-+A ;, implying thatag, a1, ... sat-  and (B), determines a-nary alternating code.
isfy for all i linear relationsiy;=a;+a;,;. As solutions of One can see that different polynomiglsdetermine differ-
linear difference equations satisfy these kind of relations, itent codes by noting that an element in the solution sequence
seems plausible to try to find the sequedrcas a solution of  following anm-tuple of form(0, ..., 0, 1,0, ..., 0), with the
a suitably chosen difference equation. 1in thekth place, is the corresponding coefficiéptof Q.

www.ann-geophys.net/26/2237/2008/ Ann. Geophys., 26, 22873-2008
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It is possible to show (e.d.idl and Niederreiter 1997,
p. 85) that the number of differenith-degree polynomials
N, satisfying the conditions (A) and (B) is

(" -1

c — —m .

Herep(i) is the Eulerp-function, which is the number of in-
tegers smaller thairwhich do not have a common factor with
i. It can also be shown that there are no other Eetatisfy-
ing conditions 2b and 3b, so the numbéris the number of

M. Markkanen et al.: Polyphase alternating codes

Because all the pointwise products of columnggfand
their conjugates are also columns Bf, a setC is an al-
ternating code if the pointwise products of those columns
that correspond to the indices of conditidnare differ-
ent from U. Multiplication by complex conjugate corre-
sponds to subtraction of exponents, and so for arbitpary
the setC,={0, A, 24, ..., (p—1) A} with the generating se-
quenceA=(ao, ..., a,—1)€Z" is an alternating code ifA
satisfies the following condition (analogous to the condition
for Walsh indices given ihehtinen(1986).

different alternating codes satisfying those conditions. This

means especially that for any prime numipeand any pos-
itive integerm there existp-nary alternating codes of length

m

p.

5 p-nary alternating codes of lengthp

We will now look more closely at the case=1. In this case
the difference equation is simply

boeZ, i=01.. |, ©)

and if we choosexp=1, its solution inl:bg (Modp).
We get thus a suitablel if and only if all the numbers
1bg,..., bg_z mod p are different, that is, ibg is the gen-
erator of the cyclic multiplicative grouy,.

As an example, the only generator&f is bo=2, giving
the set of sequences

Cc={121),21,2),(000)}

Xi+1 = box;

of exponents of the basic phase facteee2™~1/3 of the
3-nary code. FofZg there are two generatotg=2 and 3,
giving the sets of exponents

C=1{(1,24231),(243,1,2,4,3,1,2,9),
(3,1,2,4,3),(0,0,0,0,0)}

and

C=1{(1,3421),3,4213),4213,9),
(2,1,3,4,2),(0,0,0,0,0)}

for a=e2TV=1/5,
Let bp be a generator ofZ* and A the solution of

Condition 4. For each i,i,j where

j—i=j—i, i), andii’,
(ai —aj) —(air —aj) #0.

The condition 4 can be rephrased: all differences (mod
p) of valuesa;, a; of elements ofd with fixed difference of
indicesi, j are different.

We will now consider again for a primg the sequence
A=, bo, ..., bg_z) mod p, which generates an alternating
code of lengthp—1 (we drop the duplicate element from the
end).

Because of periodicity obg with respect toi the se-
guenceA satisfies an even stronger condition: all differences
(mod p) of valuesa;, a; of elements ofA1 with fixed differ-
ence (modp—1) of indicesi, j are different. Then it triv-
ially satisfies also the following condition: all differences
(mod p—1) of indicesi, j of elements ofA with fixed dif-
ference (modp) of valuesa;, a; are different.

For the “dual” sequencd’ with indices 1 by, ..., bg*Z
and corresponding values D..., p—2 this means that all
differences (modp—1) of values of elements oft’ with
fixed difference (modp) of indices are different. But this is
again stronger than the condition fgr{1)-nary alternating
codes: all differences (mog—1) of values of elements
of A’ with fixed difference of indices are different. Thus
the sequencd’ generates ap~1)-nary alternating code of
lengthp—1.

and '

Example. Dual 7-nary and 6-nary sequences.
When p=7 andbp=3 , we have the following situation:

the corresponding difference Eq3)( It was shown in i L7 _ _ZG
Sect. 3 that the sequenckA belongs to the code for all mdex: 0 1 2 3 4 5 :yalue
k=0, ..., p—1, and we can change the order of sequences Value: 1 3 2 6 4 5 :index

to haveC={0, A, 2A, ..., (p—1A}. This means that the This gives the sequence (1,3,2,6,4,5,1) for generating a
columns of the alternating code are suitably chosen columng-nary alternating code and the sequence (0,2,1,4,5,3) for
of the Fourier matrixt,=(f;;) with f;; —eii2TV=1/p, generating a 6-nary alternating code.

The columns ofF, are orthogonal and form a closed set It can be noted that whereas jnnary codes the first and
under pointwise multiplication. This is true for arbitrary last columns are identical and the constant columir pfs
(also non-prime)p and we can use the columns, or rather, not in the code, ing—1)-nary codes all the columns 6f,_1
the columns consisting of the corresponding exponents, foare in the code exactly once.
searching-nary alternating codes for apy Using theF), is Due to the close connection between fhaary and p—
analogous to the use of Walsh sequencd<simtinen(1986. 1)-nary alternating codes, one might think that the number of

Ann. Geophys., 26, 2232243 2008 www.ann-geophys.net/26/2237/2008/
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p-nary and p—1)-nary alternating codes is the same. How-
ever, this is not the case. Differeptnary codes correspond
to different sequences of the same-1)-nary code, and thus
the construction presented here gives only opelj-nary
alternating code for each prime This can be seen by notic-
ing that if bg andby are generators c%;, there is &g such

thatbozblio. IfthenA={a1, az, ...} andA'={d}, a;, .. .} are
dual sequences 1, by, ...} and{1, b1, ...},

0 ~NOUODMWNEREO

|

I _ i _ _
a(b]é) = a(b’iok) = kok = koa(bé),

ii

implying thatA’=koA.

IJI

6 Algorithm for generating p™-length alternating codes 17 A~ o~
18 /\_[— @ — —\  — —

Finding alternating codes is a fairly simple computation ;g FTTr— =
:&&\:_:'::'Z_#q:[:

which involves going through all the™ different m-tuples 2 = == o —
b=(b, ..., byy—1) With elements irZ,,. 22 e— o~ e~

For eachb, we generate a solution of the corresponding 23 —/————r~+—F——~———+—~""VF——
mth order difference equatio) starting with the the initial 24
valuesx;=0fori=0...m—2 andi,,_1=1 (notice that the so-

lution is calculated in modulg arithmetic). Next we check ) .
Fig. 2. The phases of a 25 baud 5-nary alternating code. The cyclic

. . ‘ o . . )
:f ';he SOIUtIgn(x’) Q?S perlodpt L. Ifltlt hast’.’ then ;hls S? Thnature of the code set is evident. One can also see prdhemvtyich
ution can be used to generate an alternating code set. |?nplies that each code is conjugate symmetric.

resulting code is

A‘ = xi,-.-, Xj+p"1_1 ) j =Ov"‘7 m_27 [ i
j (a o ) p any columnA’ in the matrix that has the code sequendgs

Apn1=(11,...1), as rows, is 0, and that for arty;, the productd’ ® A/ of two
columns is eithel/ or A¥ for somek. As all the polyphase
alternating codes presented in this paper also satisfy those
conditions, the corresponding strong codes have bad covari-
nce behaviour and will benefit from randomization. We note
hat it is possible to randomize any alternating code set with

whereq=¢2"V=1/p.

To generate ag—1)-nary code, one first constructs the
generator of the correspondingnary code and then forms
the (p—1)-nary code set using the transformation describe

in Sect.5. ;

Table 1 lists alternating codes for the first few hundred arzgz%i?rg?ﬁvgégrsm generators have become more com-
code Iengths, one code per code length. The (;odes are Son in radar signal processing hardware, transmission of
prgssed in terms of number of phagesgenerating coef- complicated codes such as the polyphase codes presented
f|§:|entsb=(b0, -+ bm—1) and code. length. As an example, in this paper have become practical. Because these codes
Fig. 2 ShOWS a 25 baud alternating cod_e set. A Programy sg have constant amplitude, there is no transmission power
for generating wea_k and strong alt_ernatmg ches IS aVa""trade-of‘f compared to binary phase codes. Given the fact that
ablg at: http://mep.fi/acthe program is also available as an polyphase alternating codes have the same properties as bi-
online supplement dtttp://www.ann—geophys.net/26/2237/ nary phase alternating codes, it should be relatively simple
2008/angeo-26-2237-2008-supplement.zip to modify existing correlators and analysis programs to use

these new codes.
7 Discussion One benefit of polyphase alternating codes is the larger
set of code lengths compared to binary phase codes. This
It is also possible to use truncated polyphase alternatindielps in radar experiment design where one wants to have
codes in a similar manner as binary phase alternating code€s many bauds as possible (for good spacial resolution) but
in order to have smaller number of bauds. at the same time wants to keep the code cycle is short as

It has been shown ihehtinen et al(1997 that the non-  possible (because of rapidly changing targets). With increas-
randomized binary strong alternating codes have as bad a cé?g computing power, handling longer codes, (say) up to 128
variance behaviour as possible (in the sense explained therd)auds is possible. The new codes may help in optimizing
That behaviour was shown to depend only on the conditionxperiment parameters especially for these longer codes.
that for the corresponding weak code the sum of elements of

www.ann-geophys.net/26/2237/2008/ Ann. Geophys., 26, 228¥3-2008
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Table 1. Alternating codes with lengths up to 366. The number of phases is denot¥g,lihe number of different code set& and the
generator coefficients are denotedbyOnly one generatdy is given for each code length. The-{1)-nary codes are generated from the
next consecutive prime.

Length N, N. b Length N, N. b Length N, N b

2 2 1 1 88 88 1 N 226 226 1 J

3 3 1 2 89 89 40 3 227 227 112 2
4 2 1 11 96 96 1 N 228 228 1 N

4 4 1 N 97 97 32 5 229 229 72 6
5 5 2 2 100 100 1 | 232 232 1 ¢

6 6 1 N 101 101 40 2 233 233 112 3
7 7 2 3 102 102 1 | 238 238 1 J

8 2 2 10,1 103 103 32 5 239 239 96 7
9 3 2 11 106 106 1 N 240 240 1 J
10 10 1 N 107 107 52 2 241 241 64 7
11 11 4 2 108 108 1 | 243 3 22 20,0,0,1
12 12 1 N 109 109 36 6 250 250 1 |
13 13 4 2 112 112 1 | 251 251 100 6
16 2 2 10,01 113 113 48 3 256 2 16 ,0,0,0,1,1,1,0
16 16 1 N 121 11 16 31 256 256 1 N
17 17 8 3 125 5 20 0,1 257 257 128 3
18 18 1 J 126 126 1 J 262 262 1 d
19 19 6 2 127 127 36 3 263 263 130 5
22 22 1 N 128 2 18 10,0,0,0,0,1 268 268 1 J
23 23 10 5 130 130 1 | 269 269 132 2
25 5 4 22 131 131 48 2 270 270 1 |
27 3 4 20,1 136 136 1 N 271 271 72 6
28 28 1 J 137 137 64 3 276 276 1 |
29 29 12 2 138 138 1 | 277 277 88 5
30 30 1 | 139 139 44 2 280 280 1 |
31 31 8 3 148 148 1 | 281 281 96 3
32 2 6 10,0,1,0 149 149 72 2 282 282 1 |
36 36 1 J 150 150 1 | 283 283 92 3
37 37 12 2 151 151 40 6 289 17 48 48
40 40 1 J 156 156 1 | 292 292 1 J
41 41 16 6 157 157 48 5 293 293 144 2
42 42 1 1 162 162 1 I 306 306 1 N
43 43 12 3 163 163 54 2 307 307 96 5
46 46 1 J 166 66 1 | 310 310 1 )
47 47 22 5 167 167 82 5 311 311 120 17
49 7 8 22 169 13 24 24 312 312 1 J

52 52 1 | 172 172 1} 313 313 96 10
53 53 24 2 173 173 84 2 316 316 1 |
58 58 1 N 178 178 1 N 317 317 156 2
59 59 28 2 179 179 88 2 330 330 1 |
60 60 1 1 180 180 1 I 331 331 80 3
61 61 16 2 181 181 48 2 336 336 1 |
64 2 6 10,0,0,0,1 190 190 1 | 337 337 96 10
66 66 1 N 191 191 72 19 343 7 36 .81
67 67 20 2 192 192 1 | 346 346 1 )
70 70 1 N 193 193 64 5 347 347 172 2
71 71 24 7 196 196 1 | 348 348 1 N
72 72 1 N 197 197 84 2 349 349 112 2
73 73 24 5 198 198 1 | 352 352 1 )
78 78 1 N 199 199 60 3 353 353 160 3
79 79 24 3 210 210 1 | 358 358 1 )
81 3 8 10,0,1 211 211 48 2 359 359 178 7
82 82 1 N 222 222 1 I 361 19 48 44
83 83 40 2 223 223 72 3 366 366 1 |

Ann. Geophys., 26, 2232243 2008 www.ann-geophys.net/26/2237/2008/
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