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Abstract. We present a new class of alternating codes. In-
stead of the customary binary phase codes, the new codes
utilize eitherp or p–1 phases, wherep is a prime number.
The first class of codes has code lengthpm, wherem is a
positive integer, the second class has code lengthp–1. We
give an actual construction algorithm, and explain the princi-
ples behind it. We handle a few specific examples in detail.
The new codes offer an enlarged collection of code lengths
for radar experiments.

Keywords. Radio science (Ionospheric physics; Instru-
ments and techniques)

1 Introduction

Alternating codes are widely used in incoherent scatter radar
measurements and their properties are well known. There
are two classes of these codes. The so called type 1 codes
were introduced byLehtinen(1986). The number of bauds
in any single transmission of a type 1 code, i.e. the code
length, is a power of two. Also the number of transmissions,
i.e. the code set size, is a power of two, which sometimes
causes inflexibility when designing radar experiments. With
this in mind,Sulzer(1993) proposed a new type of alternat-
ing codes (type 2) which made it possible to use other code
lengths. These codes also produce unambiguous back-scatter
autocorrelation function estimates of the target, but there are
no efficient search strategies for finding longer type 2 codes.
The longest type 2 alternating code that we know about has
length 141.

Correspondence to:J. Vierinen
(juha.vierinen@iki.fi)

1The 8 sequences forming the 14-bit code are in hexadecimal
format: 406, b72, 4df, bab, 24c, d38, 295 and de1.

In this paper we generalize previous work (Markkanen and
Nygrén, 1997) and apply it to polyphase codes, i.e. codes
that are phase coded with two or more different phases. We
have identified two different classes of polyphase alternat-
ing codes. The first class includes codes that havep phases
and code lengthspm, wherep is a prime number andm is
a positive integer. The second class contains codes withp–
1 phases and code lengthp–1. The number of codes in a
code set of either class is equal to the (common) length of
the codes belonging to the set. The new codes increase the
number of available code lengths considerably, as shown in
Fig. 1. Within codes shorter than 130, there are eight lengths
of binary codes and additional 64 lengths of polyphase codes.
Often there are several alternating codes of a given length, so
that there are altogether 763 essentially different code sets
shorter than 130.

This paper concentrates on polyphase alternating codes
satisfying the so called weak condition. Strong codes can
be generated from weak codes using the method described
by Sulzer(1989), which also works for the polyphase alter-
nating codes presented here. To create an alternating code set
satisfying the strong condition, the code set is duplicated, and
in each code in the duplicated part, bauds with even indices
are multiplied by−1.

The key property of the new codes (of the lengthpm) is a
close similarity between individual codes in a code set: apart
from one code, the codes are essentially cyclic permutations
of each other. In the next sections we show that an alternating
code set having the cyclic property can be constructed if, and
only if, the number of phases in the code is a prime number.
The role of cyclic permutations was originally found while
searching regularities in binary alternating codes, but their
role in constructing polyphase alternating codes for primes
larger than 2 was not realized at that time.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Fig. 1. Number of different alternating codes up to code length 130.
The black bars represent the well-known binary phase alternating
codes, the white bars represent new polyphase alternating codes.

2 Construction of p-nary alternating codes

By ap-nary sequence (p-nary pulse) we mean a phase modu-
lated pulse where the complex phase factors of the bauds be-
long to the setEp={αi=ei2π

√
−1/p

|i=0, . . . , p−1}. In what
follows, p is a prime number unless otherwise stated. Ap-
nary alternating code of lengthn+1 and sizen+1 is a set
{Ak=(ak,0, . . . , ak,n)|k=0, . . . , n} of p-nary pulses, which
satisfies the natural extension of the weak condition given in
Lehtinen(1986) for binary codes:

Condition 1. For each i, i′, j and j ′ where
j−i=j ′

−i′, i 6=j, andi 6=i′

n∑
k=0

ak,iak,jak,i′ak,j ′ = 0 .

We now first consider codes of lengthn, and later increase
the length ton+1. We denote byM the operator which shifts
the elements of a sequence cyclically by one, that is

M (a0, . . . , an−1) = (a1, . . . , an−1, a0).

Let A=(a0, . . . , an−1) be ap-nary sequence and let us de-
note byU the unit sequenceU=(1, 1, . . . , 1). By multiplica-
tion of two sequences we mean pointwise multiplication⊗,
and by the conjugate ofA we mean pointwise complex con-
jugateA. ThenA⊗A=U , because|ai |=1 for all i.

Let CA be the set of sequences generated by the pulseA,
CA={A, MA, . . . , Mn−1A, U}, whereM i meansi repeated
cyclical shift operations. We will show thatCA constitutes a
p-nary alternating code set, if the following two conditions
are met.

Condition 2a. All the sequences inCA are different.

Condition 3a. Multiplying all the sequences ofCA by a fixed
sequence inCA permutesCA.

To prove that these conditions are sufficient, we need the
following properties 1 and 2 of the sequences satisfying con-
ditions 2a and 3a.

Property 1. The sums of elements ofA is −1.

This can be seen by considering the sequence
S=A+MA+ · · · +Mn−1A+U , which equals (s+1)U

(the sequencesA, . . . ,Mn−1A contain in each location
all the elements ofA in some cyclic order). Because by
condition 3a multiplication byA permutes the terms ofS,
A⊗S=S, and becauseA⊗U=A, it follows that

(s + 1)A = (s + 1)U.

Now condition 2a requires thatA6=U . Thus s+1=0 and
s=−1. Notice that in the case ofp=2, whenEp={1, −1}, it
follows from property1 thatn is odd.

Property 2. There exists ani0 such thatM iA=M i+i0A for
all i.

By condition 3a there is ani0 such thatA⊗M i0A=U , that
is, M i0A=A. Then

M iA = M iA = M iM i0A = M i+i0A, for anyi.

We can now show that the condition1 holds. We denote by
Ai the sequence formed by taking theith elements of the se-
quencesA0, . . . , An−1. Condition1 is then the requirement

that the sum of elements of sequenceD=Ai
⊗Aj⊗Ai′⊗Aj ′ ,

added by 1 (coming fromAn=U ), is 0. That is, the sum of
elements ofD is −1.

Now Ai
=M iA and thus

D = M iA ⊗ MjA ⊗ M i′A ⊗ Mj ′
A.

Property2 says thatD∈C and if we can show thatD 6=U ,
it follows from property1 that the sum of elements ofD is
indeed−1.

BecauseB1⊗B2 6=U for anyB1 6=B2 when elements ofB1
andB2 have absolute value 1, it is enough to show that

M iA ⊗ MjA 6= M i′A ⊗ Mj ′
A. (1)

The left hand side isM iA⊗Mj+i0A=M i(A⊗Mj−i+i0A)

and similarly the right hand side isM i′(A⊗Mj ′
−i′+i0A).

Becausej−i=j ′
−i′, the sequences inside parentheses are

equal, and becausei 6=j , they are not equal toU . Then in-
deedM i(. . .) 6=M i′(. . .), becausei 6=i′.

Finally, we will make the number of codes and the their
length equal by copying the first element of each sequence
to the end of the sequence. ThenAn

=A=MnA. To see that
condition1 is still satisfied, let us first suppose thatn is in
the set{i, j, i′, j ′

} but 0 is not. Then condition1 follows
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trivially from what was said above (by dropping the first ele-
ment of each sequence we have the same codes, only in order
MA, . . . ,Mn−1A, A,U ). If both 0 andn belong to the set
{i, j, i′, j ′

}, the only possibility isi=0, j=i′=n/2. Thenn

must be even, so we can suppose thatp 6=2. With the above
choice of indices the left hand side of Eq. (1) is A⊗Mn/2A

and the right hand side isMn/2A⊗A. As they are conju-
gates, they are unequal, unless they are both equal toU . But
Mn/2A6=A and thusA⊗Mn/2A6=A⊗A=U , and soD 6=U ,
meaning that condition1 is satisfied also in this case.

The requirement thatp is prime is necessary for this
method of constructing alternating codes. With compositep

there isn’t any sequencesA satisfying conditions 2a and 3a.
The essential reason is that for compositep the sequences
A, A⊗A, A⊗A⊗A, . . . can have different number of ones.

3 Construction of the sequenceA

For the construction of sequencesA generating alternat-
ing codes, it will be advantageous, instead ofEp to con-
sider the set of possible exponents ofα, the integers
Zp={0, . . . , p−1} with modp-arithmetic. The sequences
with elements inEp correspond to vectors in the vector space
Zn

p=Zp× . . . ×Zp, multiplication of sequences corresponds
to addition of vectors and the unit sequenceU corresponds
to the null vector0∈Zn

p. The operatorM corresponds to the
linear operator mapping each base vector ofZn

p cyclically to
the previous one.

We now have a vectorA=(a0, . . . , an−1)∈Zn
p and the set

CA={A, MA, . . . , Mn−1A, 0} ⊂ Zn
p. Conditions 2a and 3a

correspond to the following conditions.

Condition 2b. All the vectors inCA are different.

Condition 3b. Adding a fixed vector ofCA to all vectors
belonging toCA, permutesCA.

The sum of any two vectors inCA belong toCA by con-
dition 3b. Because for anyB∈CA also 2B=B+B∈CA and
similarly for anyk∈Zp, it follows thatCA is a vector sub-
space ofZn

p. With m denoting the dimension ofCA, the
number of vectors inCA is pm, and thusn=pm

−1.
BecauseMCA=CA, CA is anM-invariant subspace, and

one could use the theory of invariant subspaces to show the
existence of alternating codes, and to construct the codes.
However, here we present a more elementary derivation of
the construction algorithm.

Condition 3b means that for most indicesj , there is an
index k such thatAk=A+Aj , implying thata0, a1, . . . sat-
isfy for all i linear relationsak+i=ai+aj+i . As solutions of
linear difference equations satisfy these kind of relations, it
seems plausible to try to find the sequenceA as a solution of
a suitably chosen difference equation.

It turns out that the proper order for the difference equation
is m, so let us consider inZp a difference equation

xi+m = bm−1xi+m−1 + . . . + b0xi, i = 0, . . . , (2)

with b0, . . . , bm−1∈Zp. Because (a) anym-tuple of consec-
utive elements of the solution(xi) fixes all subsequent ele-
ments of the solution, and (b) there are only finite number (at
mostpm) of suchm-tuples, the solution is essentially peri-
odic (the sequence can start with a non-periodic part).

Let us suppose that Eq. (2) has a solutionA′
={ai}

∞

i=0
with period n=pm

−1. We will now show that the vector
A=(a0, . . . , an−1)∈Zn

p satisfies conditions 2b and 3b. The
periodic part ofA′ contains all thepm

−1 different non-zero
m-tuples, and soA′ can not have a non-periodic start. Then
an=a0, an+1=a1, . . ., and the m-tuples (a0, . . . , am−1),
(a1, . . . , am), . . . , (an−1, . . . , an+m−2), (0, . . . , 0), which
are the starts of vectorsA, MA, . . . , Mn−1A, 0, are all the
pm different m-tuples ofZp. This proves condition 2b. If
B1, B2∈CA, there isB3∈CA such that the firstm elements
of B1+B2 are equal to the firstm elements ofB3. Be-
causeB1+B2 is also a solution of Eq. (2), it follows that
B1+B2=B3. This proves condition 3b.

Notice that we can choose as ourA any nonzero vector of
Zn

p, e.g. one starting withm−1 zeros followed by 1.
We can summarize the preceding discussion by the follow-

ing result.

Theorem. If a mth-order difference equation inZp is such
that it has a solution with periodpm

−1, the firstpm
−1 ele-

ments of the solution can be used as a generator of ap-nary
alternating code.

4 The number ofpm-type alternating codes

If all the roots of polynomial
Q(x)=xm

−bm−1x
m−1

− . . . −b0 are different, the gen-
eral solution of the difference Eq. (2) is

xi = c1α
i
1 + . . . + cmαi

m, i = 0, . . . ,

whereα1, . . . , αm are the roots ofQ(x) andc1, . . . , cm are
arbitrary coefficients. If (A)Q(x) is irreducible (inZp[x])
and (B) there is no integerd smaller thann=pm

−1 such
that Q(x) dividesxd

−1, then the roots ofQ(x) are differ-
ent and all the sequences(1, αi, α

2
i , . . .) have common pe-

riod n. Then also the period of the sequence(xi) is n. Thus
eachmth-degree polynomialQ(x)∈Zp[x] that satisfies (A)
and (B), determines ap-nary alternating code.

One can see that different polynomialsQ determine differ-
ent codes by noting that an element in the solution sequence
following anm-tuple of form(0, . . . , 0, 1, 0, . . . , 0), with the
1 in thekth place, is the corresponding coefficientbk of Q.

www.ann-geophys.net/26/2237/2008/ Ann. Geophys., 26, 2237–2243, 2008
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It is possible to show (e.g.Lidl and Niederreiter, 1997,
p. 85) that the number of differentmth-degree polynomials
Nc satisfying the conditions (A) and (B) is

Nc =
ϕ(pm

− 1)

m
.

Hereϕ(i) is the Eulerϕ-function, which is the number of in-
tegers smaller thani which do not have a common factor with
i. It can also be shown that there are no other setsC satisfy-
ing conditions 2b and 3b, so the numberNc is the number of
different alternating codes satisfying those conditions. This
means especially that for any prime numberp and any pos-
itive integerm there existp-nary alternating codes of length
pm.

5 p-nary alternating codes of lengthp

We will now look more closely at the casem=1. In this case
the difference equation is simply

xi+1 = b0xi b0 ∈ Zp, i = 0, 1, . . . , (3)

and if we choosex0=1, its solution isxi=bi
0 (modp).

We get thus a suitableA if and only if all the numbers
1, b0, . . . , b

p−2
0 modp are different, that is, ifb0 is the gen-

erator of the cyclic multiplicative groupZ∗
p.

As an example, the only generator ofZ∗

3 is b0=2, giving
the set of sequences

C = {(1, 2, 1), (2, 1, 2), (0, 0, 0)}

of exponents of the basic phase factorα=e2π
√

−1/3 of the
3-nary code. ForZ∗

5 there are two generatorsb0=2 and 3,
giving the sets of exponents

C = { (1, 2, 4, 3, 1), (2, 4, 3, 1, 2), (4, 3, 1, 2, 4),

(3, 1, 2, 4, 3), (0, 0, 0, 0, 0) }

and

C = { (1, 3, 4, 2, 1), (3, 4, 2, 1, 3), (4, 2, 1, 3, 4),

(2, 1, 3, 4, 2), (0, 0, 0, 0, 0) }

for α=e2π
√

−1/5.
Let b0 be a generator ofZ∗

p and A the solution of
the corresponding difference Eq. (3). It was shown in
Sect. 3 that the sequencekA belongs to the code for all
k=0, . . . , p−1, and we can change the order of sequences
to haveC={0, A, 2A, . . . , (p−1)A}. This means that the
columns of the alternating code are suitably chosen columns
of the Fourier matrixFp=(fij ) with fij=eij2π

√
−1/p.

The columns ofFp are orthogonal and form a closed set
under pointwise multiplication. This is true for arbitrary
(also non-prime)p and we can use the columns, or rather,
the columns consisting of the corresponding exponents, for
searchingp-nary alternating codes for anyp. Using theFp is
analogous to the use of Walsh sequences inLehtinen(1986).

Because all the pointwise products of columns ofFp and
their conjugates are also columns ofFp, a setC is an al-
ternating code if the pointwise products of those columns
that correspond to the indices of condition1 are differ-
ent from U . Multiplication by complex conjugate corre-
sponds to subtraction of exponents, and so for arbitraryp

the setCA={0, A, 2A, . . . , (p−1)A} with the generating se-
quenceA=(a0, . . . , an−1)∈Zn

p is an alternating code ifA
satisfies the following condition (analogous to the condition
for Walsh indices given inLehtinen(1986)).

Condition 4. For each i, i′, j and j ′ where
j−i=j ′

−i′, i 6=j, andi 6=i′,

(ai − aj ) − (ai′ − aj ′) 6= 0 .

The condition 4 can be rephrased: all differences (mod
p) of valuesai, aj of elements ofA with fixed difference of
indicesi, j are different.

We will now consider again for a primep the sequence
A=(1, b0, . . . , b

p−2
0 ) modp, which generates an alternating

code of lengthp–1 (we drop the duplicate element from the
end).

Because of periodicity ofbi
0 with respect toi the se-

quenceA satisfies an even stronger condition: all differences
(mod p) of valuesai, aj of elements ofA1 with fixed differ-
ence (modp−1) of indicesi, j are different. Then it triv-
ially satisfies also the following condition: all differences
(mod p−1) of indicesi, j of elements ofA with fixed dif-
ference (modp) of valuesai, aj are different.

For the “dual” sequenceA′ with indices 1, b0, . . . , b
p−2
0

and corresponding values 0, 1 . . . , p−2 this means that all
differences (modp−1) of values of elements ofA′ with
fixed difference (modp) of indices are different. But this is
again stronger than the condition for (p–1)-nary alternating
codes: all differences (modp−1) of values of elements
of A′ with fixed difference of indices are different. Thus
the sequenceA′ generates a (p–1)-nary alternating code of
lengthp–1.

Example. Dual 7-nary and 6-nary sequences.
Whenp=7 andb0=3 , we have the following situation:

Z7 Z6
index: 0 1 2 3 4 5 :value
value: 1 3 2 6 4 5 :index

This gives the sequence (1,3,2,6,4,5,1) for generating a
7-nary alternating code and the sequence (0,2,1,4,5,3) for
generating a 6-nary alternating code.

It can be noted that whereas inp-nary codes the first and
last columns are identical and the constant column ofFp is
not in the code, in (p–1)-nary codes all the columns ofFp−1
are in the code exactly once.

Due to the close connection between thep-nary and (p–
1)-nary alternating codes, one might think that the number of

Ann. Geophys., 26, 2237–2243, 2008 www.ann-geophys.net/26/2237/2008/
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p-nary and (p–1)-nary alternating codes is the same. How-
ever, this is not the case. Differentp-nary codes correspond
to different sequences of the same (p–1)-nary code, and thus
the construction presented here gives only one (p–1)-nary
alternating code for each primep. This can be seen by notic-
ing that if b0 andb1 are generators ofZ∗

p, there is ak0 such

thatb0=b
k0
1 . If thenA={a1, a2, . . .} andA′

={a′

1, a
′

2, . . .} are
dual sequences of{1, b0, . . .} and{1, b1, . . .},

a′

(bk
0)

= a′

(b
k0k

1 )
= k0k = k0a(bk

0),

implying thatA′
=k0A.

6 Algorithm for generating pm-length alternating codes

Finding alternating codes is a fairly simple computation
which involves going through all thepm different m-tuples
b=(b0, ..., bm−1) with elements inZp.

For eachb, we generate a solution of the corresponding
mth order difference equation (2) starting with the the initial
valuesxi=0 for i=0 . . . m−2 andim−1=1 (notice that the so-
lution is calculated in modulop arithmetic). Next we check
if the solution(xi) has periodpm

−1. If it has, then this so-
lution can be used to generate an alternating code set. The
resulting code is

Aj = (αxj , ..., αxj+pm−1), j = 0, ..., pm
− 2,

Apm−1 = (1, 1, ..., 1) ,

whereα=e2π
√

−1/p.
To generate a (p–1)-nary code, one first constructs the

generator of the correspondingp-nary code and then forms
the (p–1)-nary code set using the transformation described
in Sect.5.

Table 1 lists alternating codes for the first few hundred
code lengths, one code per code length. The codes are ex-
pressed in terms of number of phasesp, generating coef-
ficientsb=(b0, ..., bm−1) and code length. As an example,
Fig. 2 shows a 25 baud alternating code set. A program
for generating weak and strong alternating codes is avail-
able at:http://mep.fi/ac, the program is also available as an
online supplement athttp://www.ann-geophys.net/26/2237/
2008/angeo-26-2237-2008-supplement.zip.

7 Discussion

It is also possible to use truncated polyphase alternating
codes in a similar manner as binary phase alternating codes,
in order to have smaller number of bauds.

It has been shown inLehtinen et al.(1997) that the non-
randomized binary strong alternating codes have as bad a co-
variance behaviour as possible (in the sense explained there).
That behaviour was shown to depend only on the conditions
that for the corresponding weak code the sum of elements of

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Fig. 2. The phases of a 25 baud 5-nary alternating code. The cyclic
nature of the code set is evident. One can also see property2, which
implies that each code is conjugate symmetric.

any columnAi in the matrix that has the code sequencesAk

as rows, is 0, and that for anyi, j , the productAi
⊗Aj of two

columns is eitherU or Ak for somek. As all the polyphase
alternating codes presented in this paper also satisfy those
conditions, the corresponding strong codes have bad covari-
ance behaviour and will benefit from randomization. We note
that it is possible to randomize any alternating code set with
arbitrary phase factors.

As arbitrary waveform generators have become more com-
mon in radar signal processing hardware, transmission of
complicated codes such as the polyphase codes presented
in this paper have become practical. Because these codes
also have constant amplitude, there is no transmission power
trade-off compared to binary phase codes. Given the fact that
polyphase alternating codes have the same properties as bi-
nary phase alternating codes, it should be relatively simple
to modify existing correlators and analysis programs to use
these new codes.

One benefit of polyphase alternating codes is the larger
set of code lengths compared to binary phase codes. This
helps in radar experiment design where one wants to have
as many bauds as possible (for good spacial resolution) but
at the same time wants to keep the code cycle is short as
possible (because of rapidly changing targets). With increas-
ing computing power, handling longer codes, (say) up to 128
bauds is possible. The new codes may help in optimizing
experiment parameters especially for these longer codes.

www.ann-geophys.net/26/2237/2008/ Ann. Geophys., 26, 2237–2243, 2008
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Table 1. Alternating codes with lengths up to 366. The number of phases is denoted byNp, the number of different code setsNc and the
generator coefficients are denoted byb. Only one generatorb is given for each code length. The (p–1)-nary codes are generated from the
next consecutive prime.

Length Np Nc b Length Np Nc b Length Np Nc b

2 2 1 1 88 88 1 ↓ 226 226 1 ↓

3 3 1 2 89 89 40 3 227 227 112 2
4 2 1 1, 1 96 96 1 ↓ 228 228 1 ↓

4 4 1 ↓ 97 97 32 5 229 229 72 6
5 5 2 2 100 100 1 ↓ 232 232 1 ↓

6 6 1 ↓ 101 101 40 2 233 233 112 3
7 7 2 3 102 102 1 ↓ 238 238 1 ↓

8 2 2 1, 0, 1 103 103 32 5 239 239 96 7
9 3 2 1, 1 106 106 1 ↓ 240 240 1 ↓

10 10 1 ↓ 107 107 52 2 241 241 64 7
11 11 4 2 108 108 1 ↓ 243 3 22 2, 0, 0, 0, 1
12 12 1 ↓ 109 109 36 6 250 250 1 ↓

13 13 4 2 112 112 1 ↓ 251 251 100 6
16 2 2 1, 0, 0, 1 113 113 48 3 256 2 16 1, 0, 0, 0, 1, 1, 1, 0
16 16 1 ↓ 121 11 16 3, 1 256 256 1 ↓

17 17 8 3 125 5 20 2, 0, 1 257 257 128 3
18 18 1 ↓ 126 126 1 ↓ 262 262 1 ↓

19 19 6 2 127 127 36 3 263 263 130 5
22 22 1 ↓ 128 2 18 1, 0, 0, 0, 0, 0, 1 268 268 1 ↓

23 23 10 5 130 130 1 ↓ 269 269 132 2
25 5 4 2, 2 131 131 48 2 270 270 1 ↓

27 3 4 2, 0, 1 136 136 1 ↓ 271 271 72 6
28 28 1 ↓ 137 137 64 3 276 276 1 ↓

29 29 12 2 138 138 1 ↓ 277 277 88 5
30 30 1 ↓ 139 139 44 2 280 280 1 ↓

31 31 8 3 148 148 1 ↓ 281 281 96 3
32 2 6 1, 0, 0, 1, 0 149 149 72 2 282 282 1 ↓

36 36 1 ↓ 150 150 1 ↓ 283 283 92 3
37 37 12 2 151 151 40 6 289 17 48 3, 4
40 40 1 ↓ 156 156 1 ↓ 292 292 1 ↓

41 41 16 6 157 157 48 5 293 293 144 2
42 42 1 ↓ 162 162 1 ↓ 306 306 1 ↓

43 43 12 3 163 163 54 2 307 307 96 5
46 46 1 ↓ 166 166 1 ↓ 310 310 1 ↓

47 47 22 5 167 167 82 5 311 311 120 17
49 7 8 2, 2 169 13 24 2, 4 312 312 1 ↓

52 52 1 ↓ 172 172 1 ↓ 313 313 96 10
53 53 24 2 173 173 84 2 316 316 1 ↓

58 58 1 ↓ 178 178 1 ↓ 317 317 156 2
59 59 28 2 179 179 88 2 330 330 1 ↓

60 60 1 ↓ 180 180 1 ↓ 331 331 80 3
61 61 16 2 181 181 48 2 336 336 1 ↓

64 2 6 1, 0, 0, 0, 0, 1 190 190 1 ↓ 337 337 96 10
66 66 1 ↓ 191 191 72 19 343 7 36 3, 0, 1
67 67 20 2 192 192 1 ↓ 346 346 1 ↓

70 70 1 ↓ 193 193 64 5 347 347 172 2
71 71 24 7 196 196 1 ↓ 348 348 1 ↓

72 72 1 ↓ 197 197 84 2 349 349 112 2
73 73 24 5 198 198 1 ↓ 352 352 1 ↓

78 78 1 ↓ 199 199 60 3 353 353 160 3
79 79 24 3 210 210 1 ↓ 358 358 1 ↓

81 3 8 1, 0, 0, 1 211 211 48 2 359 359 178 7
82 82 1 ↓ 222 222 1 ↓ 361 19 48 4, 4
83 83 40 2 223 223 72 3 366 366 1 ↓
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Even with the new codes, there are still gaps in the avail-
able code lengths (Fig.1). This raises the question of whether
there could also be alternating codes for the missing lengths.
We have done a complete search of codes with columns from
the Fourier-matricesFp for all numbers up top=15. For
numbers followed by a prime there is indeed a unique code.
On the other hand, for the numbers 8, 9, 14 and 15 no al-
ternating codes were found. These are the first composite
numbers not followed by a prime. This small search hints to
the possibility that there are nop-nary alternating codes of
lengthp (at least codes formed fromFp), except whenp or
p+1 is a prime.
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