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Abstract. The classification of X-ray solar flares is per-
formed regarding their effects on the Very Low Frequency
(VLF) wave propagation along the Earth-ionosphere waveg-
uide. The changes in propagation are detected from an ob-
served VLF signal phase and amplitude perturbations, taking
place during X-ray solar flares. All flare effects chosen for
the analysis are recorded by the Absolute Phase and Ampli-
tude Logger (AbsPal), during the summer months of 2004–
2007, on the single trace, Skelton (54.72 N, 2.88 W) to Bel-
grade (44.85 N, 20.38 E) with a distance along the Great Cir-
cle Path (GCP)D≈2000 km in length.

The observed VLF amplitude and phase perturbations are
simulated by the computer program Long-Wavelength Prop-
agation Capability (LWPC), using Wait’s model of the lower
ionosphere, as determined by two parameters: the sharpness
(β in 1/km) and reflection height (H ′ in km). By varying the
values ofβ andH ′ so as to match the observed amplitude
and phase perturbations, the variation of the D-region elec-
tron density height profileNe(z) was reconstructed, through-
out flare duration. The procedure is illustrated as applied to
a series of flares, from class C to M5 (5×10−5 W/m2 at 0.1–
0.8 nm), each giving rise to a different time development of
signal perturbation.

The corresponding change in electron density from the
unperturbed value at the unperturbed reflection height, i.e.
Ne(74 km)=2.16×108 m−3 to the value induced by an M5
class flare, up toNe(74 km)=4×1010 m−3 is obtained. The
β parameter is found to range from 0.30–0.49 1/km and the
reflection heightH ′ to vary from 74–63 km. The changes in
Ne(z) during the flares, within height rangez=60 to 90 km
are determined, as well.
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1 Introduction

The lower boundary of the D-region is known, as well as
the upper edge of Earth-ionosphere waveguide, for very low
frequency (VLF) wave propagation. VLF signals from trans-
mitters, emitted with a well stabilized phase and amplitude,
propagating under undisturbed ionospheric conditions, are
continuously recorded by a number of world-wide receivers,
showing the characteristic phase and amplitude diurnal vari-
ation. The most prominent change in the Earth-ionosphere
waveguide is the day-to-night (and reverse) change. How-
ever, significant modifications of the propagating conditions
happen due to severe changes in the lower ionosphere elec-
tron density, induced by solar X-ray flares. Although the
main source of ionization, the Lyman-α emission, is en-
hanced during the flare event, the X-ray emission over-
whelms its effect several times, leading to the increase in the
D-region electron density by 1–2 orders of magnitude. En-
hanced D-region density causes the change in the electrical
conductivity at the upper waveguide edge along the trace of
the VLF signal and consequently, gives rise to the change
in all propagating parameters. These changes are clearly
detected as the perturbation of phase and amplitude on the
records of the diurnal VLF signal variation.

Although flare effects on the VLF signal are always well
recognizable, they can vary substantially along different sig-
nal traces. The theory of VLF propagation through the Earth-
ionosphere waveguide, at regular (quiet) ionospheric condi-
tions, is well established (Wait, 1962). This theory predicts

Published by Copernicus Publications on behalf of the European Geosciences Union.



1732 D. P. Grubor et al.: Classification of X-ray solar flares regarding their effects

Fig. 1. Diurnal variations of the GQD signal phase (upper panel)
and amplitude (lower panel), on 8 July 2005. AbsPAL recordings –
solid lines; LWPC simulation – short dashed lines.

the change in the VLF phase and amplitude along the particu-
lar transmitter to the receiver trace. Starting from this theory,
a set of versatile computer programs for simulation of VLF
propagation along any particular trace and at any regular di-
urnal, seasonal and solar cycle variations of the ionosphere
has been developed. The set of programs has been contin-
uously improved and one recent version, given by Ferguson
(1998) and named Long Wavelength Propagation Capability
(LWPC), is used in the present study.

The LWPC code consists of a set of programs which can
be used separately according to the purpose of calculations.
The default propagation model used by LWPC is the Long
Wave Propagation Model (LWPM), which predicts an ex-
ponential increase in electrical conductivity within the iono-
spheric D-region. The height dependent conductivity param-
eter is given byωr(z)=ω2

0/ν, whereω0 is the electron plasma
frequency, andν is the effective electron-neutral collision
frequency. The neutral particle density varies with height as
exp(−αz), where 1/α is the characteristic scale height. With
the two parameters,β andH ′, introduced by Wait and Spies
(1964), the height profile of the conductivity parameter can
be described in a simple way by:

ωr(z) = 2.5 × 105
· exp[β(z − H ′)],

where ωr(H
′)=2.5×105 s−1. The parameterβ (1/km),

the so-called “sharpness” of the ionosphere lower bound-
ary, gives the relative slope of the conductivity profile
β=(1/ωr)(dωr/dz). The parameterH ′ is the altitude at
which the reflection of the VLF waves takes place. Using
the (β, H ′) pair, the electron density at a given altitudez can
be calculated, as it will be performed further in this paper.
The ionospheric model is called “range exponential” with in-
put data; the distance along the Great Circle Path (GCP) and
its associatedβ andH ′ parameters is used in the LWPC eval-
uations of VLF phase and amplitude.

While Wait’s parameters,βq andH ′
q , describing the quiet

diurnal, seasonal and solar cycle variations of the lower iono-
sphere are well determined, (Thomson, 1993; Thomson and
Clilverd, 2000; McRae and Thomson, 2000), the values of
these parameters describing the solar X-ray flare induced D-
region changes, are still under study. In recent papers, theβ

andH ′ dependence on the solar X-ray flare peak irradiance
has been deduced from VLF phase and amplitude observa-
tions (Thomson and Clilverd, 2001; McRae and Thomson,
2004; Thomson et al., 2004, 2005).

In the present study, VLF observations are used as well,
but with the purpose to examine the development of phase
and amplitude perturbation, as described through the values
of β and H ′, during the whole X-ray flare duration. The
LWPC program has been run to obtain a pair ofβ andH ′ pa-
rameters that leads to the best agreement between observed
and calculated phase and amplitude perturbations, at char-
acteristic stages of the particular flare development. Thus,
from the time varyingβ andH ′, the time variation of the
electron density height profile during single flare event was
reconstructed for the altitude range 60 to 90 km. Conclu-
sively, it was possible to attribute the specific pattern of the
time-varying signal properties to the magnitude of peak X-
ray irradiance, for VLF-detected flare events.

2 Recording, monitoring and simulation of VLF signal

The observations reported presently were recorded by the
VLF receiving system AbsPAL (Absolute Phase and Ampli-
tude Logger – developed by the Radio and Space Physics
Group of Otago University, New Zealand), which is situ-
ated at Belgrade (44.85 N, 20.38 E). The receiver has been in
stable operation since 2004, providing simultaneous, well-
calibrated data (amplitude in dB above 1µV/m, and phase
in deg.), from transmitters: NAA/24.0 kHz, from Maine
(44.63 N, 67.28 W), NWC/19.8 kHz from North-West Aus-
tralia (27.2 N, 114.98 E) and GQD/22.1 kHz from Skelton
(54.72 N, 2.88 W). With the AbsPAL continuous operation,
the received signals reveal regular, diurnal and seasonal am-
plitude and phase variations under unperturbed ionospheric
conditions. The particularly stable daytime propagation on
the GQD path is illustrated by the AbsPAL records on the
quiet day of 8 July 2005, shown in Fig. 1; the phase and
amplitude measurements (upper and lower plot, respectively)
are represented by solid lines. The records are paralleled by
calculations with the LWPC code “bearings”, which operates
with the specified input valuesβq=0.30 1/km andH ′

q=74 km,
for the quiet daytime ionosphere (Ferguson, 1998). The ef-
fective radiated power from the GQD transmitter was esti-
mated by the requirement that on the quiet day (i.e. 8 July
2005), the simulated amplitude and phase match the typical
unperturbed phases and amplitudes measured at Belgrade.
This procedure suggested that for the GQD transmitter (in the
period under study, and at least in the direction to Belgrade),
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the value of 155 kW power is appropriate, and was, there-
fore, adopted in the present study. The corresponding results
of the LWPC code simulation(βq=0.30 1/km,H ′

q=74 km)
with 155 kW power are shown by dashed lines in Fig. 1. It is
evident that measured and calculated phase and amplitude di-
urnal variation match very well. However, the LWPC default
propagation model failed to reproduce the measured night-
time signal variation for any choice of the input parameters,
when the particular GQD path is concerned. Therefore, only
the well-simulated VLF signal, in the period between 02:00
and 21:00 UT, relevant for present study, is shown in Fig. 1.

When solar flares occur, sudden energy bursts in the X-ray
domain appear most distinctly impressed on the VLF signal,
by phase and amplitude with an abrupt increase or decrease,
followed by the subsequent signal recovery within time in-
tervals (typically less than an hour), which correspond to
flare duration. Over 150 flare events, VLF-detected through
May to August in the years 2004–2007, have been analyzed.
Though apparently different depending on the path, the flare-
induced VLF disturbances show stable patterns: while both
phase and amplitude enhancement on long NAA and NWC
paths are regularly detected, VLF perturbations on the short
(1982 km in length) GQD path display more complexity, in-
cluding both an decrease and increase, as well as oscillations,
depending on the flare intensity (Grubor et al., 2005). There-
fore, it is precisely the phase and amplitude perturbation of
the GQD signal that we are concerned with in the present
work. We relate the VLF signal perturbation measured by
the AbsPAL to the solar X-ray irradiance, as monitored by
the GOES 12 satellite; both data sets have 1-min resolution.

A representative example of flare-induced phase and am-
plitude perturbations, measured for the GQD signal, on the
active day of 12 July 2005, in particular, is given in Fig. 2.
The upper panel shows the solar X-ray irradiance as mon-
itored by GOES 12, throughout the day (UT), indicating a
sequence of flares of class C to M, between sunrise and sun-
set.

The features of enhanced X-ray irradiance have a dis-
tinct impact upon the VLF phase and amplitude characteris-
tic (solid lines on the middle and lower panel), which display
different patterns peculiar to the GQD path, throughout a sin-
gle active day. The measured unperturbed daytime values of
phase and amplitude (short dashed lines on the middle and
lower panel of Fig. 2), extracted from their diurnal variation,
as presented in Fig. 1, are shown for reference. The corre-
spondence between the flare event and the VLF signal per-
turbation is remarkable; moreover, the three mentioned types
of phase/amplitude response to the flare are clearly present.
Being registered on the same day and on a single path, they
are expected to relate to the flare size, in particular.

In attempting to model and explain the variability of the
GQD signal as received at Belgrade, two issues are impor-
tant:

Fig. 2. Variation of X-ray irradiance and GQD signal phase and
amplitude on 12 July 2005. X-ray irradiance (upper plot); phase
(middle plot) and amplitude (lower plot) – solid lines. Measured
phase and amplitude on quiet day (8 July 2005) – dashed lines.

1. The amplitude and phase of the GQD signal as recorded
at the Belgrade site vary only slightly during quiet day-
time (from local sunrise to local sunset), especially in
the summer season (e.g. solid lines in Fig. 1). In other
words, under regular conditions, stable daytime prop-
agation allows the waveguide to be characterized by a
single well-defined (βq=0.30 1/km,H ′

q=74.0 km) pair.
This is readily adopted by the LWPC default propaga-
tion model, yielding phase and amplitude values shown
by dashed lines in Fig. 1.

2. The GQD signal path covers less than two time zones,
and is, for that reason, almost equally insolated at any
particular moment, so that each segment of the path can
be considered as equally affected by the flare. Conse-
quently, it can be safely assumed that the variability of
the GQD signal perturbations is strongly dominated by
the variability of the X-ray flux itself: normal incidence
peak irradiance and flare duration. These characteristics
are given by the GOES 12 X-ray data lists in the wave-
length range 0.1–0.8 nm, which can be retrieved via the
web sitewww.sec.noaa.gov.

3 Determination of β and H ′ under flare conditions

The phase1P , and amplitude1A perturbations are de-
termined from the AbsPAL measurements on the quiet day
(Pmq , Amq), and during the perturbation due to flare occur-
rence (Pmp, Amp) as:

1P = Pmp − Pmq and1A = Amp − Amq . (1)

These perturbations are then added to the simulated unper-
turbed (quiet) phasePsq and amplitudeAsq values, given by

www.ann-geophys.net/26/1731/2008/ Ann. Geophys., 26, 1731–1740, 2008

www.sec.noaa.gov


1734 D. P. Grubor et al.: Classification of X-ray solar flares regarding their effects

Fig. 3. Time variation of X-ray irradiance, GQD signal phase and
amplitude during C8.3 (08:03 UT) and C7.5 (08:12 UT) events on
12 July 2005 – solid lines. Extrema indicated by arrows and the cor-
responding UT. Phase and amplitude on the quiet day 8 July 2005 –
dashed lines.

the LWPC default propagation model at the receiver site, to
obtain:

Psp = Psq + 1P andAsp = Asq + 1A, (2)

and the LWPC code is run to find the values ofβ andH ′,
which yield the particular perturbed phases and amplitudes
(Psp, Asp). This run of the LWPC program under per-
turbed ionospheric conditions is performed for several char-
acteristic times during a single flare occurrence, to obtainβ

and H ′ time variability. The unperturbed daytime values,
Psq=359.86 deg andAsq=62.95 dB, obtained by the default
propagation model withβq=0.30 1/km andH ′

q=74 km, are
presently used for determining the perturbed simulated val-
ues, as given by Eq. (2).

Onceβ andH ′ are estimated for a particular moment dur-
ing the flare, the electron density profile for the lower iono-
sphere, corresponding to that moment, is obtained, according
to the well-known model of exponential electron density in-
crease with height (Wait, 1962; Thomson, 1993):

Ne(z, H
′, β)=1.43×1013 exp(−0.15H ′) exp[(β−0.15)(z−H ′)].

(3)

In the present work, the electron density height profile is cal-
culated for the interval fromz=60 km toz=90 km.

4 Analysis of VLF measurements and calculations re-
sults

To illustrate the procedure described in Sect. 3, as well as
the analysis of VLF data, we choose the series of flares that
had occurred on 12 July 2005, and are presented, along with
the VLF measurements in Fig. 2. The reason for this choice

is: 1) the flare intensity (ranging from class C to M) is char-
acteristic for the majority of the flares that have been VLF-
recorded at Belgrade in the years 2004–2007. (In this period,
close to the minimum of the solar activity cycle, only a mi-
nor number of class-X flares has been detected in the summer
months and almost all of them out of local daytime).

2) All but one GQD-path characteristic type of flare-
induced phase and amplitude perturbation are monitored on
12 July 2005, in response to particular flare events in the se-
quence occurring from sunrise to sunset. The flare-induced
phase oscillation, which is not observed on 12 July 2005, is
illustrated by the flare event monitored on 13 July 2004.

The characteristics of the flare-VLF event are given in Ta-
ble 1: the first column identifies the flare by its class (max-
imum irradiance in 10−6 W/m2) and time (UT) of the peak
irradiance appearance. The second column lists the time at
which the characteristic feature of the amplitude perturbation
(minimum/maximum) is detected, followed by the measured
phase and amplitude perturbation, and the LWPC-deduced
β andH ′ parameters that most accurately reproduce these
perturbations. The corresponding electron density (3) at the
reflection height of the quiet ionosphereH ′

q=74 km is pre-
sented in the seventh column. For comparison, the results
that follow from the solution of the electron continuity equa-
tion (called the “Ne(t) method”), yielding the temporal evo-
lution of electron density throughout the flare occurrence
(Žigman et al., 2007), are listed as well. The flare-VLF
events on 12 July 2005 are listed in the order of appearance.
Two events on 13 July 2004 conclude Table 1.

Flare-VLF events from Table 1, that display three charac-
teristic types of perturbation behaviour on the GQD path, are
also presented graphically. Figures 3, 4, 5, which are “close
ups” of Fig. 2, and Fig. 6 (for 13 July 2004), represent the si-
multaneous variations of the X-ray irradiance (upper panel),
the measured perturbed (solid line) and quiet (dashed line)
phase and amplitude (middle and lower panel, respectively),
in function of UT. The extrema are indicated by arrows and
the corresponding UT time of their occurrence, for which the
LWPC code is run.

The first flare in the series on 12 July 2005, of C8.3
class with peak irradianceI=8.33×10−6 W/m2 at 08:03 UT,
induces the drop in phase and amplitude (with minimum
at 08:03 UT), but before irradiance descends to the base
level, a new, lower-intensity flare apparently occurs. The
convolution of the irradiance time distributions of both
flares results in a new peak at 08:12 UT, with irradiance
I=7.51×10−6 W/m2. We assume that further phase and am-
plitude perturbation is controlled by the C7.5 class flare. This
causes a phase decrease to a minimum, but an oscillation in
amplitude, with a maximum (08:13 UT) and the subsequent
shallow minimum (08:29 UT), after which the amplitude re-
covers to its unperturbed value (Fig. 3). The duration of the
flare event is about two hours.

The next occurring (Fig. 2) class C2.3 flare event with
peak irradianceI=2.31×10−6 W/m2 at 10:03 UT causes only
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Table 1. Measured amplitude and phase perturbations, deducedβ andH ′ and electron densitiesNe, at different stages of flare occurrence:
present study* anďZigman et al. (2007)**.

flare class; time UT 1A 1P β (km−1) H ′ (km) Ne (74 km) (m−3)
peak time UT (dB) (deg) * **

12 July 2005

C7.5; 08:12
08:03 −2.09 −8.07 0.410 68.4 2.15×109 2.67×109

08:13 −1.04 −15.66 0.400 67.0 4.09×109 2.92×109

08:29 −1.62 −9.73 0.395 68.5 1.90×109 1.78×109

C2.3; 10:03 10:05 −1.31 −4.25 0.355 70.0 8.94×108 1.17×109

C3.2; 11:27
11:23 −1.47 −9.49 0.360 69.0 1.31×109 1.90×109

11:29 −1.19 −14.44 0.415 67.4 3.34×109 2.71×109

11:38 −1.46 −11.12 0.385 68.3 1.94×109 2.33×109

C1.5; 12:13 1215 −1.51 −4.09 0.350 70.1 8.46×108 7.35×108

M1.1; 13:06
12:59 −1.69 −8.18 0.374 69.0 1.40×109 3.10×109

13:09 +1.07 −23.07 0.490 64.8 1.96×1010 9.16×109

13:49 −1.68 −10.95 0.390 68.3 2.0×109 4.92×109

M1.1; 15:59
15:58 −2.46 −9.15 0.435 68.0 2.94×109 3.53×109

M1.6; 16:24
16:03 −2.14 −12.39 0.440 67.6 3.61×109 4.42×109

16:18 −1.92 −8.01 0.395 68.7 1.75×109 1.67×109

13 July 2004

M5.4; 08:48
08:47 +2.02 −15.23 0.430 65.0 1.04×1010 1.52×1010

08:52 +4.65 −7.09 0.475 63.0 4.02×1010 4.35×1010

09:12 +1.05 −10.27 0.360 67.0 2.69×109 1.84×1010

M3; 12:08
12:07 +2.06 −17.09 0.44 65.0 1,13×1010 7.97×109

12:09 +3,46 −15,65 0.47 64.0 2.38×1010 1.12×1010

12:53 −1.19 −7.40 0.34 69.5 9,98×108 1.69×109

a single minimum in the perturbation of the VLF signal, both
in phase and in amplitude, as shown in the close up in Fig. 4.

The perturbations caused by two subsequent flares, the
first with peak irradianceI=3.18×10−6 W/m2 (C3.2) at
11:27 UT and the successive one with peak irradiance
1.52×10−6 W/m2 (C1.5) at 12:13 UT follow the same pat-
terns as those caused by flares C7.5 and C2.3, respectively, as
can be readily seen from Fig. 2. In particular, the C1.5 class
is the shortest event in the series, lasting around 40 min.

The M1.1 class flare (I=1.1×10−5 W/m2) at 13:06 UT,
was the one with the longest duration on 12 July 2005, ex-
tended in the descending branch, probably due to some su-
perimposed C class flares. According to VLF measurements,
the ionosphere was perturbed for almost three hours. The
type of phase perturbation has the same pattern as for the
flare C7.5, but the intermediate peak in amplitude oscillation

is much more pronounced and exceeds the quiet amplitude
level (Fig. 5). The characteristic features of the amplitude
perturbation are identified as 1) an abrupt decrease to mini-
mum (12:58 UT) preceding the peak X-ray irradiance, 2) am-
plitude maximum reached at 13:09 UT with a time delay of
3 min with respect to peak X-ray irradiance, and 3) passage
through a minimum (13:49 UT) during the long-lasting am-
plitude depression.

A double peaked flare (or two convoluted M class flares),
with the first peak at 15:59 UT, (Fig. 2), caused the amplitude
drop to last more than two hours. In the time interval between
the two X-ray peaks, the recovery of the phase occurs, but
there is no significant recovery of amplitude. The magnitude
of the flare effect on the VLF signal can be clearly seen from
Fig. 2.
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Fig. 4. Time variation of X-ray irradiance, GQD signal phase and
amplitude during C2.3 (10:03) event on 12 July 2005 – solid lines.
Extrema indicated by arrows and the corresponding UT. Phase and
amplitude on the quiet day 8 July 2005 – dashed lines.

Fig. 5. Time variation of X-ray irradiance, GQD signal phase and
amplitude during M1.1 (13:06 UT) event on 12 July 2005 solid
lines. Extrema indicated by arrows and the corresponding UT.
Phase and amplitude on the quiet day 8 July 2005 – dashed lines.

For both events on 13 July 2004: M5.4(I=5.4×10−5 W/m2

at 08:48), and M3.0(I=3.0×10−5 W/m2 at 12:08), the main
feature of the amplitude perturbation is a pronounced peak
exceeding for several dBs the pre-flare amplitude value
(Fig. 6). The peak is preceded by a short lasting drop in
amplitude, followed by a depression with amplitude mini-
mum appearing 50 min and 45 min after the M5.4 and M3.0
peak X-ray irradiance, respectively. Contrary to previous ex-
amples (with a single minimum in phase perturbation), the
phase goes through an oscillation. The appearance of an os-
cillation in the phase (as well as in the amplitude) is appar-
ently peculiar to larger flares, as illustrated by the M-class

Fig. 6. Simultaneous variation of X-ray irradiance and GQD signal
phase and amplitude during M5.4 (08:48 UT) and M3.0 (12:08 UT)
events on 13 July 2004 – solid lines. Extrema indicated by arrows
and the corresponding UT. Phase and amplitude on the quiet day 8
July 2005 – dashed lines.

flares on 13 July 2004. Both flares occur at pre-flare iono-
spheric conditions similar to the regular ones on 8 July 2005.
The additional perturbation in the phase recovery, after the
M3.0 flare, is due to the C5-class flare (12:49 UT) occur-
rence.

5 Discussion

The guidelines for estimation ofβ and H ′ parameters at
perturbed ionospheric conditions are given by Thomson and
Clilverd (2001) and McRae and Thomson (2004). In these
papers the dependences ofβ andH ′ parameters on the peak
X-ray flare irradiance were presented. However, the short
GQD signal path reveals characteristics different than those
of the traces treated in these papers (mainly long over sea
paths) and therefore, requires an independent trial and error
approach forβ andH ′ estimation. Theβ andH ′ param-
eters determined by the simulation procedure described in
Sect. 3, at characteristic stages of amplitude perturbation de-
velopment (Table 1), are presented as a function of the X-ray
flare irradiance on Figs. 7 and 8, respectively.

We compare our results (circles in Figs. 7 and 8) with
the ones reported by Thomson et al. (2005), and from the
previous extensive study of McRae and Thomson (2004),
who have compiled and critically analyzed flare VLF data
from four transmitters in the range 10.2–24.8 kHz (squares
in Figs. 7 and 8). As the latter data are deduced from mea-
surements on significantly larger (of the order of several Mm)
and mainly over sea paths, the agreement can be considered
as fairly good.
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Fig. 7. Ionospheric sharpness,β versus X-ray irradiance. Present
results: circles; Thomson et al. (2005): squares.

The presently evaluatedβ andH ′ parameters display the
same tendency – an increase inβ and a decrease inH ′, with
increasing X-ray flare irradianceI (W/m2), as do the results
of Thomson et al. (2005) and McRae and Thomson (2004).
To some extent, the spread of the present values ofβ is due
to the consideration of different stages of a single flare. If
only the flare peak values were taken into account, as in the
above-cited papers, the increasing trend would be more ap-
parent. Additionally, thePsp andAsp values are found to be
noticeably more sensitive to the variation inH ′ than to the
variation inβ. This contributes, at least partly, to both the
spread of theβ values, on the one hand, and to the coherence
of theH ′ values, on the other.

The electron density (Eq. 3) at quiet reflection height
z=H ′

q=74 km, for the presently obtained (β, H ′) pairs ver-
sus X-ray flare irradiance, is shown by squares in Fig. 9.
An overall good agreement is seen with the results accord-
ing to theNe(t) method ofŽigman et al. (2007), applied
to the flare-VLF events listed in Table 1 (circles in Fig. 9);
both sets ofNe data display the well-known increasing trend
with increasing X-ray irradiance (Mitra, 1974, and references
therein).

The redistribution of ionization at the upper waveguide
boundary due to flare occurrence is illustrated by the electron
density height profile changes during the C7.5 class flare on
12 July 2005, as shown in Fig. 10. At unperturbed (quiet)
ionospheric conditions (short dashed line), there is a mod-
erate increase in electron density from 107 m−3 at 60 km
height, to about 109 m−3 at the upper boundary of the D-
layer (90 km height). The abrupt rise in X-ray irradiance
at 08:03 UT causes the lowering of the altitude at which the
electron density reaches 109 m−3, for about 13 km, (dashed
line). Though the three pertaining values ofβ (Table 1) differ
only by at most 4%, the slope of the (dashed) line at 08:03

Fig. 8. Reflection height,H ′ versus X-ray irradiance. Present re-
sults: circles; Thomson et al. (2005): squares.

Fig. 9. Electron density versus X-ray flare irradiance, at 74 km
height: present results squares – fromβ andH ′ parameters esti-
mated for the flare events on 12 July 2005 and 13 July 2004; circles
– Ne(t) method (̌Zigman et al., 2007) applied to the same series of
flares.

(as well as the value ofβ) is the largest. With the time de-
lay (Mitra, 1974;Žigman et al., 2007) of one minute after
the X-ray peak irradiance, namely at 08:13 UT, the interme-
diate peak in amplitude appears. The corresponding electron
density profile moves to even higher electron densities (solid
line), with slightly lower slope as compared to the the density
profile at 08:03 UT. For the amplitude passing through the
second minimum at 08:29, the slope of the electron density
profile (dotted line) is decreased further, towards the slope of
the regular ionosphere electron density (short dashed line),
revealing the beginning of the ionosphere recovery period.
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Fig. 10.Changes in the electron density profile in the course of flare
C7.5. Pertaining phase and amplitude variation, as shown in Fig. 3.

These changes in electron density profile are of crucial
importance for the Earth-ionosphere VLF propagation path.
The LWPC program, with the incorporated range exponen-
tial model, defined by properly chosenβ andH ′ parameters,
enables the simulation of VLF amplitude and phase variation
along the propagation path, at any moment during the flare.
The amplitude and phase variation along the GCP distance
from the GQD transmitter to Belgrade receiver, calculated
for characteristic times/stages during the C7.5 class flare on
12 July 2005, is given in Fig. 11.

The modal interference minima (e.g. Wait, 1962, Chap-
ter IX, V.L.F. Propagation – theory and experiment), of the
amplitude and phase variation along the GCP path, at regular
conditions are clearly displayed on the typical quiet day of
8 July 2005 (short-dashed line in Fig. 11). The main modal
minimum appears at 750 km from the transmitter, indicating
the place on the GCP most sensitive to the VLF-monitoring
of solar flares. On 12 July 2005, at the time of the C7.5 class
flare occurrence, all modal minima are seen to move towards
the transmitter (Thomson and Clilverd, 2001). The typical
displacements of the modal minima are strongly dependent
on the lowering of the reflection height: thus the reflection
heights at 08:03 UT and at 08:29 UT, which differ by only
0.1 km, result in the overlapping of the pre-flare (dashed)
and post-flare (dotted) curves on the plots in Fig. 11. The
amplitude variation during the flare indicates the tendency
of formation of the modal minimum in the vicinity of the
receiver (lower inset). It is clearly seen that the LWPC simu-
lated phase and amplitude, at the receiver, are decreased with
respect to the quiet day value at all stages of the flare, in ac-
cordance with the measurements, presented in Fig. 3. This
agreement between the simulated amplitude and phase along
the GCP at the particular receiver site, and AbsPAL measure-
ments holds for all the flare events analyzed.

6 Conclusion

VLF phase and amplitude of the GQD/22.1 kHz transmitter
recorded by the Belgrade AbsPAL have been analyzed for
the survey of 150 solar X-ray flare events, occurring in the
period May to August 2004–2007. The measured phase and
amplitude perturbations and their characteristic features, spe-
cific for the short GQD path, which is mostly over land, have
been related to the solar flare intensities, as monitored by the
GOES-12 satellite, the representative examples being given
in Figs. 4 to 6.

The simulation of the VLF propagation at quiet daytime
ionospheric conditions, with the well-established LWPC
code, have been confirmed by phase and amplitude measure-
ments performed at Belgrade. On the basis of this agree-
ment, we have applied the LWPC algorithm to different tem-
poral stages of the measured phase and amplitude perturba-
tion, within a single flare event. Thus, a particular (β, H ′)

pair is assigned to each phase/amplitude perturbation feature
induced by the flare considered (Table 1).

Good agreement is found between the (β, H ′) values
derived presently and the ones analyzed and compiled by
McRae and Thomson (2004) and presented also in Thom-
son et al. (2005), though the latter are deduced for primarily
long, over-sea paths, with one (β, H ′) pair assigned to each
flare maximum. However, we have taken into account thatβ

(andH ′ as well) change during solar flares:β increasing (H ′

decreasing) in the ascending branch of the flare, and quite the
contrary in the descending branch towards irradiance relax-
ation. Thus we have treated the (β, H ′) pair as functions of
time throughout the duration of the flare.

In this way, from the model that basically rests on the
height profile (Eq. 3), a time resolved electron density profile
is obtained (e.g. Fig. 10), which compares favorably with the
prediction of the independentNe(t) model. In spite of the
complexity of the phase/amplitude behaviour on the GQD
path, the increase in the electron density with increasing flare
intensity is remarkably confirmed (Fig. 9). The results ar-
rived at allow for the classification of solar X-ray flares by
their effect on the lower ionosphere and indicate the possible
mechanisms of VLF propagation in perturbed conditions:

1. Low C-class flares cause a small decrease of amplitude
and phase up to a single minimum appearing with a time
delay of a few minutes after peak X-ray irradiance (flare
events C2.3 and C1.5). A likely explanation for the de-
crease in amplitude can be found in the field strength
attenuation as the signal penetrates the D-region under-
going ionization redistribution. Along with the electron
density increase, the upper boundary of the waveguide
drifts slightly downwards to lower heights. In conse-
quence, the modal minimum is formed close to the re-
ceiver, additionally decreasing the amplitude of the re-
ceived signal.
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GCP distance (km)

Fig. 11. Variation of phase and amplitude of the GQD signal along the GCP distance from Skelton to Belgrade, calculated for three
characteristic times during the C7.5 event on 12 July 2005 (see Fig. 3). The close up of the last 300 km on GCP is added to the phase and
amplitude plot.

2. C-class flares above C3 cause a further increase in the
sharpness at the waveguide upper boundary and a de-
crease in the reflection height. Preceded and followed
by minima (e.g. Fig. 3), the intermediate amplitude
maximum appears, but does not exceed the preflare
amplitude value, suggesting the transient stage to the
mirror-like wave reflection. The phase shows only one
minimum, approximately coinciding with the amplitude
intermediate peak. The effect of C7.5 and C3.2 events
on 12 July 2005, represent this type of perturbations.

3. The increase in the flare irradiance above the M-class
level sets the waveguide propagation conditions charac-
terized by high sharpness and very low reflection height.
The intermediate maximum exceeds the pre-flare ampli-
tude value, indicating that a mirror-type reflection takes
place. The descent of the reflection height for almost
10 km reduces the phase on the effectively shortened
path, advancing the phase at the receiver. The effect
of the M1.1 event (Fig. 5) represents this type of pertur-
bation (β=0.49,H ′=64.8, Table 1).

4. The prominent intermediate amplitude peaks, well
above the amplitude preflare value, as seen for events
M5.4 and M3.0, indicate a mirror-type reflection at very
low reflection heights, 63 km and 64 km, respectively.
Unlike the phase variation during the C7.5- and M1.1-
class events, i.e. with a single minimum, the intermedi-
ate peak in phase appears. The phase peak is due to the
slight displacement of phase modal minima toward the

transmitter. The tiny phase peak, present in the case of
the M3.0 event, suggests that flares of higher than M3.0
class have to take place, to give rise to the oscillation
type of phase perturbation.

With β andH ′ taken asβ(I (t)), andH ′(I (t)) an insight is
gained into the VLF propagation along the GCP (displace-
ments of modal minima) and the redistribution of the elec-
tron density height profile during the ascending and descend-
ing stages of the flare evolution (Fig. 11). The correspon-
dence ofNe(z)t at the specified time, according to LWPC
and ofNe(t)h for a specified height, according to theNe(t)

model, anticipate the complementary way in which the two
approaches may be merged into the unified description, pro-
viding a more realisticNe(t, z) electron density profile under
flare conditions.
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