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Abstract. The generation of a high-m Alfv én wave by sub-
storm injected energetic particles in the magnetosphere is
studied. The wave is supposed to be emitted by an alternating
current created by the drifting particle cloud or ring current
inhomogeneity. It is shown that the wave appears in some
azimuthal location simultaneously with the particle cloud ar-
rival at the same spot. The value of the azimuthal wave
number is determined asm∼ω/ωd , whereω is the eigen-
frequency of the standing Alfv́en wave andωd is the particle
drift frequency. The wave propagates westward, in the di-
rection of the proton drift. Under the reasonable assumption
about the density of the energetic particles, the amplitude of
the generated wave is close to the observed amplitudes of
poloidal ULF pulsations.

Keywords. Magnetospheric physics (MHD waves and in-
stabilities) – Space plasma physics (Kinetic and MHD the-
ory)

1 Introduction

Alfv én waves in the range of Pc3–5 can be categorized into
the waves with large and small azimuthal wave numbersm.
Recently, the high-m waves were observed with CLUSTER
(Eriksson et al., 2005, 2006; Scḧafer et al., 2007) and radars
(Fenrich et al., 1995; Yeoman et al., 2000; Wright et al.,
2001; Baddeley et al., 2002). The low-m waves are generated
by the resonant interaction with the fast mode, propagating
from the outer boundary of the magnetosphere. This gen-
eration mechanism is ineffective for pulsations withm�1
(azimuthally small scale waves), because in this case only
an exponentially small part of the fast mode energy pen-
etrates into the magnetosphere (Glassmeier, 1995). Thus,
other sources of the wave energy must be found. Substorm
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injected protons, drifting in the magnetosphere, appear to be
good candidates. It is usually assumed that high-m waves are
excited by unstable proton populations with energies from 10
to 150 keV by means of the drift-bounce instability (Karp-
man et al., 1977). An example of this unstable distribution
function is the bump-on-tail distribution.

There are a number of arguments to support this sugges-
tion. One of them is the coincidence of the directions of
the azimuthal phase velocity of the high-m pulsations and
the proton drift velocity (Fenrich et al., 1995; Yeoman et
al., 2000; Baddeley et al., 2005b; Glassmeier, 1980). Be-
sides, both velocities depend on the radial coordinate almost
in the same way (Allan et al., 1982, 1983). There is some ev-
idence of statistical relations between the high-m pulsations
and ring current intensifications (Anderson, 1993; Yeoman et
al., 2000). Association of the high-m waves with nonmono-
tonic particle distributions have been observed byHughes et
al. (1978), Glassmeier et al.(1999), Wright et al.(2001) and
statistically studied byBaddeley et al.(2002, 2004, 2005a,b).

The bump-on-tail distribution is usually supposed to be a
result of a substorm injection: faster protons reach a given
point on the azimuthal coordinate earlier than lower en-
ergy ones, so high-energy particles are added to the local
background plasma at a higher rate than low-energy parti-
cles (Karpman et al., 1977; Glassmeier et al., 1999). In-
deed, several cases were observed when the wave appeared
in some azimuthal location simultaneously with the cloud of
the particle injected during substorm arrival in the same spot
(Chisham et al., 1992; Wright et al., 2001).

This mechanism of formation of the unstable distribu-
tion presupposes that the bump-on-tail is the natural conse-
quence of the nonstationarity of the injection process. But
the azimuthally drifting injected cloud (which can also be
considered as a moving inhomogeneity of the ring current)
represents an alternating current, which is able to emit the
Alfv én wave itself (Akhiezer et al., 1967, 1975). In a mag-
netospheric context, this generation mechanism was first
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considered byZolotukhina(1974) andGuglielmi and Zolo-
tukhina(1980). A similar problem has been considered for
the magnetosphere of Jupiter, where its moon Io acts as the
moving wave emitter (Neubauer, 1980). This mechanism re-
sembles the generation of waves on the water surface by a
moving ship (the analogy of whistlers and a ship wave has
been considered by Gurnett, 1995).

Then, the drift-bounce instability does not explain some
essential features of the high-m waves. Thus, observed
waves have definitem numbers, although the weekly growth
rate depends on this value (Mager and Klimushkin, 2005).
Consequently, this instability cannot select a narrow range of
them numbers, contrary to observations. Even the direction
of the azimuthal phase velocity of the observed waves cannot
be explained: the instability can generate the waves propa-
gating in both azimuthal directions (Mager and Klimushkin,
2005). Finally, owing to transformation of poloidal Alfv́en
waves into toroidal ones, the instability will be favorable
for amplification of toroidal rather than poloidal oscillations
(Klimushkin, 2000, 2007; Klimushkin and Mager, 2004).
Additional hints that some of the observed high-m pulsa-
tions have been generated by nonstationary current are also
reported byPilipenko et al.(2001).

Our paper studies this generation mechanism in the Earth’s
magnetosphere. In contrast to the previous efforts in
this direction (Akhiezer et al., 1967, 1975; Zolotukhina,
1974; Guglielmi and Zolotukhina, 1980; Neubauer, 1980;
Pilipenko et al., 2001), where only a uniform background
was considered, we explore a two-dimensionally inhomoge-
neous model of the magnetosphere with plasma and mag-
netic field non-uniformity along and across with field lines
taken into account. Besides, as opposed to some earlier pa-
pers (Zolotukhina, 1974; Neubauer, 1980), the field lines
are considered to intersect the highly conductive ionospheric
plasma, which results in the emergence of a standing wave
structure along the field lines. In contrast to our previous pa-
per (Mager and Klimushkin, 2007), here we incorporated the
dependence of the drift velocity on the radial coordinate: this
velocity is supposed to grow with the L-shell.

2 Formulation of the problem

The method for setting up a problem is as follows. At some
initial time instantt=0 a cloud of particles is injected into the
magnetosphere. The particles are drifting in the azimuthal
direction. It is required to obtain an expression for the wave
amplitude and to find the spatio-temporal structure and po-
larization of the wave field.

The magnetosphere is considered as axially-symmetric
and bounded by the highly conductive ionosphere of the
Southern and Northern Hemispheres. The cloud of the in-
jected particles is assumed to be narrowly localized in az-
imuth but distributed over the entire range of L-shells, i.e. in
the radial direction. The source is also distributed along field

lines between conjugated points of the ionosphere. Zolo-
tukhina (1974) and Neubauer (1980) considered the source
compact (localized) in all directions.

The drift angular velocityωd is assumed to be much less
than the characteristic Alfv́en eigenfrequency. In particular,
it means that the velocity of the source is much less than the
Alfv én speed. It corresponds to the energies of the order of
several tens of keV.

Besides, we assumed the drift angular velocityωd to in-
crease with the radial coordinate (L-shell). For simplicity,
we even putωd to be proportional to the radial coordinate,
but we suppose that our results are generally valid for any
increasing functionsωd(L). The most common instance is
probably the case when the angular drift speed decreases
with the L-shell, because in this case the injected protons
conserve the first adiabatic invariant. But, as we will show
in the last section, the case considered in the present paper
happens to be more interesting, since it shows a rather un-
expected feature of the wave field temporal evolution, which
can be used for the verification of our model. On the other
hand, this case can also be realized in the magnetosphere un-
der some conditions (e.g.Southwood, 1980), when there is
loss of injected protons. The case when injected protons have
a drift velocity constant with radius has been considered in
our earlier paper (Mager and Klimushkin, 2007).

Our approach is based on the theory of eigenoscillations
of the axisymmetric magnetosphere developed byLeonovich
and Mazur(1997) andKlimushkin et al.(2004) and uses the
general approach byAkhiezer et al.(1967) andAkhiezer et
al. (1975). A time-dependent external current (formed by the
moving charged particle cloud) is assumed to be the source
term of the wave equation. The particle density of the cloud
is considered to be small compared to the background den-
sity, which allows us to consider the waves in the linear ap-
proximation. The current (wave generator) is considered to
be given, that is we neglect the feedback of the generated
wave on the current. This assumption is probably valid at
the earlier stages of the wave field evolution (Akhiezer et al.,
1967). On the other hand, we do not consider the evolution
within the first few bounce periods, when the cloud is contin-
uing to spread along the field lines and the parallel structure
of the wave has not been settled yet. This time is very short
because the drift velocity is much less than the thermal par-
ticle velocity, so this limitation is not too severe.

3 Main equations

Let us introduce a curvilinear coordinate system{x1, x2, x3
},

in which the field lines play the role of the coordinate lines
x3, i.e. such lines, along which the other two coordinates are
invariable (recall that the superscripts and subscripts denote
contravariant and covariant coordinates, respectively). In this
coordinate system the stream lines are the coordinate lines
x2, and the surfaces of constant pressure (magnetic shells)
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are the coordinate surfacesx1
=const (Fig. 1). The coordi-

natesx1 andx2 have the role of the radial and azimuthal co-
ordinates, and to represent them we shall use the McIlwain
parameterL and the azimuthal angleϕ, respectively. It is
convenient to choose a direction of the azimuthal coordinate
coinciding with the proton drift direction. In order for the co-
ordinate system to remain right-handed, thex3 axis must be
directed opposite to the ambient magnetic field. The physical
length along a field line is expressed in terms of an increase
of the corresponding coordinate asdl3=

√
g3dx3, whereg3

is the component of the metric tensor, and
√

g3 is the Laḿe
coefficient. Similarly,dl1=

√
g1dx1, anddl2=

√
g2dx2. The

determinant of the metric tensor isg=g1g2g3. The equilib-
rium values of the magnetic field and plasma density are des-
ignated asB andρ; ξ is the displacement of plasma from the
equilibrium position,E, b andj are the electric field, mag-
netic field, and current of the wave. The source of the oscil-
lations is a nonstationary external (azimuthal) currentjext,
formed by drifting substorm injected particles. The station-
ary current is absent in the cold plasma approximation.

In this approximation, the linearized equation of small os-
cillations takes the form

ρ
∂2ξ

∂t2
−

1

c
j × B = 0. (1)

The electrodynamic values are interconnected by the equa-
tions

∇ × b =
4π

c
j +

4π

c
jext (2)

(Ampère law),

∇ × E = −
1

c

∂b

∂t
(3)

(Maxwell equation),

E =
1

c

∂ξ

∂t
× B (4)

(frozen-in condition). It is worth noting that the outer cur-
rent appeared only in Eq. (2) (Akhiezer et al., 1975). Using
Eqs. (1–4), we obtain the equation for the wave electric field
E:

1

A2

∂2E

∂t2
− ∇ × ∇ × E = −

4π

c2

∂jext

∂t
, (5)

where A=B/
√

4πρ is the Alfvén speed. Due to infinite
plasma conductivity, the parallel electric field is absent, thus
the wave’s electric field lies on surfaces orthogonal to field
lines. The electric field of the Alfv́en mode can be repre-
sented in the form

E = −∇⊥8, (6)

where8 is a scalar function (“potential”), and∇⊥ is the
transverse nabla operator. Let us substitute Eq. (6) into

Fig. 1. The coordinate system.

Eq. (5) and act on the obtained expression by the operator
∇⊥. As a result, we obtain the equation

LA8 = −
4π

c2

√
g

∂

∂x2

∂

∂t
j2

ext. (7)

Here j2
ext=jext/

√
g2 is the contra-variant azimuthal projec-

tion of the vectorjext, and

LA =
∂

∂x1

[
−

√
g

g1

1

A2

∂2

∂t2
+

∂

∂x3

g2
√

g

∂

∂x3

]
∂

∂x1

+
∂

∂x2

[
−

√
g

g2

1

A2

∂2

∂t2
+

∂

∂x3

g1
√

g

∂

∂x3

]
∂

∂x2

is an Alfvén differential operator. Thus, we have an inho-
mogeneous differential equation which describes Alfvén os-
cillations generated by the external current. The boundary
conditions are chosen as

8|x1,x2→±∞ = 0, 8|
x3
±

= 0. (8)

Here the second condition corresponds to the full wave re-
flection from the ionosphere (x3

± denotes the points of the
intersection of the field line with the ionosphere).

The cloud of drifting particles comprising the external cur-
rent is assumed to be narrowly localized in azimuth, that is
the contra-variant azimuthal projection of the external cur-
rent

j2
ext = e n0 ωd δ(ϕ − ωd t) 2(t), (9)

whereωd(x1) is the bounce-averaged angular drift velocity,
e andn0 are the electric charge and number density of the
particles,2(t) is the Heaviside theta-function, denoting the
instant when the source is “switched on” (injection of parti-
cles into the magnetosphere),ϕ is the azimuthal angle, which
can be used as thex2 coordinate. The physical component of
the current can be obtained by using the linear drift velocity
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Fig. 2. The model of the source.

V =
√

g2 ωd instead of the angular velocity in Eq. (9). The in-
jection takes place at the instantt=0. For simplicity, we put
the drift velocity to be proportional to the radial coordinate,
ωd(x1)=�d x1, where�d does not depend onx1. As is easy
to see that in the course of time the cloud will be stretched
into a spiral (Fig. 2).

In order to solve the wave Eq. (7), we perform the Fourier-
transform of this equation overϕ andt (see Appendix A). As
a result, we obtain a differential equation only with respect
to two variables,x1 andx3:

L̂A8mω = q̃mω, (10)

whereω andm are the parameters of the Fourier transform
over time (frequency) and azimuthal angle (azimuthal wave
number), and

q̃mω = −2mω
√

g
en0ωd

c2

×
1

2π

+∞∫
−∞

2(t ′) exp(iωt ′ − imωd t ′) dt ′.

In Eq. (10), L̂A is the Fourier-image of the Alfv́enic opera-
torLA analogous to the Alfv́enic operator for the monochro-
matic wave with frequencyω and azimuthal wave numberm,
defined as

L̂A ≡
∂

∂x1
L̂T (ω)

∂

∂x1
− m2L̂P (ω),

where

L̂T (ω) =
∂

∂x3

g2
√

g

∂

∂x3
+

√
g

g1

ω2

A2

is the toroidal mode operator, and

L̂P (ω) =
∂

∂x3

g1
√

g

∂

∂x3
+

√
g

g2

ω2

A2
,

is the poloidal mode operator. The eigenvalues of these oper-
ators with the boundary condition on the ionosphere (8) are
denoted�T N and �PN , respectively. They are called the
toroidal and poloidal eigenfrequencies since they character-
ize the purely azimuthal (toroidal) and radial (poloidal) oscil-
lations of field lines (e.g.Klimushkin et al., 2004; Leonovich
and Mazur, 1997).

4 The structure of a single Fourier harmonic

The method of the solution of Eq. (10) has been developed by
Klimushkin et al.(2004). As was shown there, the function
8mω can be represented as

8mω ≈ RN (x1)TN (x1, x3), (11)

whereTN (x1, x3) is an eigenfunction of the toroidal operator
L̂T , defining a longitudinal structure of theN -th harmonic
standing between ionospheres. The normalization condition
is〈√

g

g1

T 2
N

A2

〉
= 1. (12)

(here the angle brackets designate integration along the field

line between the ionospheres,〈...〉=
∫ x3

+

x3
−

(...)dx3). The func-

tion RN (x1) describes the structure of this harmonic across
the magnetic shells.

Let us introduce some definitions. The toroidal and
poloidal eigenfrequencies are functions of the radial coor-
dinatex1. If the wave frequencyω is fixed, we can introduce
the notions of toroidalx1

T N and poloidalx1
PN magnetic shells

determined as solutions of the equations

ω = �T N (x1) (13)

and

ω = �PN (x1), (14)

respectively. The distance between these shells is designated
as1N=x1

T N−x1
PN (in a cold plasma,1N>0). In the ma-

jor part of the magnetosphere, the functions�PN (x1) and
�T N (x1) are monotonically decreasing with the characteris-
tic scalel, which has the same order of magnitude as the size
of the magnetosphere. For the sake of simplicity, we can then
avail ourselves of the linear expansions

�T N (x1) = �0(1 −
x1

l
) (15)

and

�PN (x1) = �0(1 −
x1

+ 1N

l
). (16)
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After substitution of expressions (13) and (14) into Eqs. (15)
and (16), we obtain

x1
T N (ω) = l(1 −

ω

�0
),

x1
PN (ω) = x1

T N − 1N .

Further, if we substitute the function8mω(x1, x3) from
Eq. (11) into Eq. (10), we obtain the ordinary differential
equation defining the radial structure of the wave field:

∂

∂x1
(x1

− x1
T N (ω))

∂

∂x1
RN −

m2

L2
(x1

− x1
PN (ω))RN

= mq(x1, ω,m). (17)

SeeKlimushkin et al.(2004), Leonovich and Mazur(1997)
for more detail. Here

q(x1, ω,m) =
q0

2π

+∞∫
−∞

2(t ′) exp(iωt ′ − im�dx1t ′) dt ′,

q0 = −
el

c2

ωd

�0
〈n0

√
gTN 〉. (18)

The solution of the Eq. (17) satisfying the boundary condi-
tion (8) is

RN (x1, ω,m)

= iq0L

+∞∫
−∞

dκ

+∞∫
−∞

dt ′
2(κ + m�t ′) 2(t ′)√

(κ2 + m2 l2

L2 )(L2

l2
�2t ′2 + 1)

× exp

[
iω(t ′ +

m�

�0
t ′ +

κ

�0
) − im�t ′ + iκ(ξ − 1)

+ imδN

l

L
(arctan

κL

ml
+ arctan�t ′

L

l
)

]
(19)

(see Appendix B). The notations are:

ξ = x1/l, δN = 1N/l, � = �d l.

5 The structure and evolution of the wave field

With the solution (10), we can solve the wave equation (7)
by means of the reverse Fourier transform:

8(x1, x2, x3, t) =

+∞∫
−∞

dω

+∞∫
−∞

dm 8mω eimϕ−iωt . (20)

Thus, according to Eqs. (20, 11), the solution of the wave
equation (7) is

8(x1, x2, x3, t) = RN (x1, x2, t) TN (x1, x3), (21)

where the function

RN (x1, x2, t) =

+∞∫
−∞

dω

+∞∫
−∞

dm RN (m, ω) eimϕ−iωt (22)

defines both the transverse structure of the wave and its evo-
lution. The expression forRN can be reduced to the form
(see Appendix C):

RN (x1, x2, t) = iq0Lµ

×

+∞∫
−∞

dm

+∞∫
−∞

dκ 2(κ + m�t)2(�0t − κ) ei9(m,κ)

×

[
(κ2

+
m2l2

L2
)(

L2(�0t − κ)2

l2
+ (µ + m)2)

]−1/2

(23)

where

9 (m, κ) = mϕ − m
�0t − κ

µ + m
+ κ (ξ − 1)

+ mδN

l

L

(
arctan

κL

ml
+ arctan

L

l

�0t − κ

µ + m

)
. (24)

Since the drift angular velocityωd is assumed to be much less
than the Alfv́enic eigenfrequencies�T N and�PN , the large
parameterµ=�0/� appears. In this case the double inte-
gral (23) can be evaluated by means of the stationary phase
method (see Appendix D). Having done this calculation, we
finally obtain the approximate expression forRN :

RN = A0 ei90 (25)

where the wave phase is

90 ≡ 9(κ0, m0) = m0(x
1)ϕ − �T N (x1)t

+ ka(x
1)1N

[
arctan

kr(x
1, ϕ, t)

ka(x1)
+ arctan

Lϕ

x1

]
, (26)

and the amplitude is

A0 =
i2πq0Lµ 2(ϕ)2(ωd(x1)t − ϕ)

[kr(x1, ϕ, t)2 + ka(x1)2]1/2[x12
+ L2ϕ2]1/2

. (27)

The factor2(ωd t−ϕ) in Eq. (27) shows that the wave field
is absent before the source in this approximation. Also, the
following designations are introduced here: the radial com-
ponent of the wave vector

kr(x
1, ϕ, t) =

µ

l

(
�t −

ϕ l2

x12

)
, (28)

the azimuthal component of the wave vector and the az-
imuthal wave number

ka(x
1) =

µ

L

l − x1

x1
=

m0(x
1)

L
, m0(x

1) =
�T N (x1)

ωd(x1)
. (29)
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Fig. 3. The lines of the constant phase for different time instants.

6 Discussion

Let us discuss the main features of the solution obtained. The
angular frequency of the wave is defined as

ω =
∂9

∂t
= �T N −

1N

l
�0

(
1 +

kr

ka

)−1

≈ �T N .

Hence, the frequency depends on the radial coordinatex1.
Moreover, in the course of timeω is changed from�PN

to �T N . If we define the projection of the wave vector by
means of a similar procedure, that is as partial derivatives
of the phase (26) askr=∂9/∂r, ka=∂9/∂ϕ, then their ex-
pression will differ from Eqs. (28, 29) only by small values,
proportional to the parameterδN=1N/l�1. That means
that Eqs. (28, 29) can be safely used for needs of the qual-
itative discussion. As is seen from those expressions, the
azimuthal wave numberm also depends on time, changing
from mP =�PN/ωd to mT =�T N/ωd . But this dependence
is rather weak due to a small difference between toroidal and
poloidal eigenfrequencies in cold plasma.

Much more important is a strong time dependence
of the wave vector radial component. Near the line
�t−ϕ(l/x1)2

=0, this value is very small,kr�ka . As the
source is moving away from the points on this curve, the ra-
dial component increases (Fig. 3). But according to Eqs. (6)
and (25), the ratio betweenkr andka defines the wave polar-
ization: |Ea/Er |=ka/kr . Thus, just after the generation the
wave has a mixed polarization, and as the wave moves far-
ther and farther away from the source, it becomes poloidally-
polarized (Er�Ea). Further, the wave finally transforms

Fig. 4. The wave electric field radial and azimuthal components at
fixedx1 andϕ coordinates.

into a toroidally-polarized one (Er�Ea). The characteris-
tic transformation time is

τ = 2
m0l

�0L
. (30)

It is during this time span that the wave remained poloidally-
polarized. An analogous transformation takes place also in
the case of impulsive excitation (see, e.g.Klimushkin and
Mager(2004)) with a similar transformation timeτ∼m/ω.

Such a double change of polarization was absent in the
model where the drift velocity does not depend on the radial
coordinate (Mager and Klimushkin, 2007). In the model con-
sidered in the present paper the particle drift velocity grows
with distance from the Earth. Consequently, the source
stretches into strips at an acute angle to the surfacex1

=const
(as usual, the angle is measured counter-clockwise). Directly
near the source the lines of the constant phase are parallel to
the source (see Fig. 3). This means the presence of both ra-
dial azimuthal components of the wave vector, that is, mixed
wave polarization. Further evolution is accompanied by turn-
ing of the lines of the constant phase counter-clockwise. At
some time instant, there appears a point on a line of the con-
stant phase where this line is tangent to thex2

=const axis.
At this point, the wave vector radial component equals zero,
that is, the mode is poloidally polarized. Thus, the mode is
poloidally polarized on the line passing through these points.
Further, at a given point the constant phase line becomes in-
clined at an obtuse angle to thex1

=const surface, that is, the
wave vector radial component appears again. In the course of
time, the angle is increasing, i.e. the ratio|kr/ka| is increas-
ing too and the wave becomes more and more toroidal. The
above mentioned features are illustrated in Fig. 4, where the
temporal evolution of the radial and azimuthal components
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Fig. 5. The radial component of the electric field.

of electric field is shown, and also in Figs. 5–7, where the
full wave structure is depicted. To compute these figures,
wave attenuation due to finite ionospheric conductivity was
taken into account.

With damping taken into account, Eq. (17) is written as

∂

∂x1
(x1

− x1
T N (ω) + i

lγ

�0
)

∂

∂x1
RN − (31)

−
m2

L2
(x1

− x1
PN (ω) + i

lγ

�0
)RN = mq(ω, m),

whereγ is a decrement of ionospheric damping. Having per-
formed the manipulations described above, we obtain that in
this case the expression (25) obtains one additional factor,
namely

RN = A0 e
−

γ
ωd

(ωd t−ϕ)
ei90. (32)

Based upon this expression, we evaluate the width of the lo-
calization region across magnetic shells. It is evident that
the amplitude will be highest just near the source, i.e. in the
vicinity of the curveωd(x1)t−ϕ=0. Thus, atγ t>1 the width
of the localization region will be

1L =
L

γ t − 1
.

As is seen from this expression, the wave becomes more
localized with time. For example, for the shellL=6, at
γ=0.1ω and t=10T (whereT is wave period), the width
of the localization region is1L≈1RE . As observations
show, high-m Alfv én waves often have a localization width
of ∼1RE .

Let us evaluate the wave amplitude. On the basis of the
Eqs. (18, 21, and25), we obtain

8 ∼
2πeL2

c2µ
〈n0

√
gTN 〉TN ∼

2πen0L
2A2

c2µ
.

Fig. 6. The azimuthal component of the electric field.

Fig. 7. The full electric field of the wave.

For this ordering, we used the normalization condition (12)
for the eigenfunctionTN , which implies thatTN∼A/L and
〈n0

√
gTN 〉∼n0AL. Further, from Eq. (6) we find the wave

electric and magnetic fields:

E ∼
µ

L
8 ∼

2πen0LA2

c2
, (33)

b ∼
c

A
E ∼

2πen0LA

c
. (34)

Now, using Eq. (34), we can find which proton number den-
sity n0 in the drifting cloud is necessary for the generation of
Alfv én waves with observed magnetic field amplitudesb:

n0 ∼
bc

2πeLA
.

The amplitude of azimuthally-small scale Alfvén waves in
the magnetosphere can reach values ofb∼40×10−5 Gs, their

www.ann-geophys.net/26/1653/2008/ Ann. Geophys., 26, 1653–1663, 2008



1660 P. N. Mager and D. Yu. Klimushkin: Alfvén ship waves

periods are of the order of 100 s, azimuthal wave numbers
m∼20−100, they are frequently observed in the vicinity of
L∼6 magnetic shell (Chisham et al., 1992). The characteris-
tic value of the Alfv́en speed isA∼1000 km/s. To generate
Alfv én waves with such properties the number density must
ben0∼10−2 sm−3, which is much less than the background
(cold) plasma density; the particle energyε determining the
velocity of proton drift in an inhomogeneous magnetic field
(the source speed�) must be about 50 keV (the azimuthal
wave number of the generated wavem∼ω/�). The particles
with such energies are often observed simultaneously with
high-m oscillations.

7 Conclusions

Let us outline the general picture of the Alfvén wave gen-
eration by the moving plasma inhomogeneity. At a given
point in the azimuthal coordinate, the wave appears just af-
ter the source arrival. Under the realistic assumptions of the
particle energy and density in the moving source, the ampli-
tudes of the generated oscillations are close to those really
observed. The direction of the wave propagation coincides
with the direction of the source movement, the wave polar-
ization is intermediate between poloidal and toroidal. As the
source moves off the given point, the wave transforms first
into a poloidal and then into toroidal wave. Note the oscil-
latory structure of the wave field behind the source, which is
a consequence of the finite size of the cloud along the field
line (as we assumed the source to be distributed between the
conjugated points of the ionosphere). Earlier,Zolotukhina
(1974) and Neubauer(1980) showed that the Alfv́en wave
excited by a compact moving cloud (that is, by a source much
shorter than the field line) constituted current (Alfvén) wings,
spreading from the source. Since a finite source can be repre-
sented as a superposition of many compact sources, the oscil-
latory structure obtained in this paper can be viewed as a re-
sult of the interference of such wings. Just after the injection
of the cloud, when the cloud is continuing to spread along
the field line (within few first bounce periods), the wave field
probably resembles pure Alfvén wings. However, the evo-
lution just after the injection has not been considered in this
paper.

The mechanism considered in the paper provides a way
for explaining the features of the observed azimuthally small
scale waves mentioned in the Introduction:

1. The azimuthal wave numberm is fully determined by
the eigenfrequency of the wave standing between iono-
spheres,ω∼�T N (x1), and the drift velocity of the
source,ωd : m∼ω/ωd . This explains why observed
waves have well-definedm values.

2. In accordance with the observations, the phase velocity
of the poloidal Alfv́en waves coincides with the direc-
tion of the proton drift.

3. Despite its transformation from poloidal to toroidal, at
a given point in azimuth the wave remains poloidal dur-
ing a rather large time spanτ∼m/ω∼ω−1

d , which cor-
responds to a sufficiently large angular distance from
the sourceφ=�τ∼1. Besides, in some sense the wave
is always poloidal, because the source continues its az-
imuthal movement, generating the poloidal wave at new
points.

4. If the wave attenuation is taken into account (for ex-
ample, due to finite conductivity of the ionosphere or
wave-particle interaction), then the wave does not have
enough time to transform into toroidal, and the maxi-
mum wave amplitude will correspond to a mixed polar-
ization, depending on the observation point.

5. Besides, the wave damping leads to a localization across
the magnetic shells, which corresponds to observational
data for the high-m waves. If the azimuthal coordinate
is fixed, in the course of time the localization region will
shift toward the Earth.

As was mentioned in the Introduction, some of these fea-
tures of the high-m waves cannot be explained by the theory
of drift-bounce instability. It must be noted, however, that
the wave-particle energy exchange can lead to a further am-
plification or attenuation of the wave. Besides, a ponderomo-
tive force can appear, which governs feedback of the gener-
ated field upon the generating particles, which can result in
the formation of the stationary ring current. However, these
questions are far beyond the topic of the present paper.

The most intriguing feature of the wave evolution is the
double change of the wave polarization, resulting from the
supposed growth of the drift velocity with the radial coordi-
nate; in this case the source is stretched into strips at an acute
angle to the magnetic shells. This feature can be used for
the verification of the generation of the wave by a moving
source as it represents a trademark signature of this mech-
anism. Certainly, the opposite case, when the drift velocity
decreases with the L-shell, seems to be more common. But
in this case the evolution is not so interesting, because the
angle of the source to the magnetic shells is obtuse now, and
the wave polarization is toroidal from the very beginning and
remains toroidal till the wave disappears, as in the simplest
case of the impulse-generated waves (see, e.g.Klimushkin
and Mager, 2004). Thus, in this case we do not have a sim-
ple key to distinguish our mechanism from the drift-bounce
instability.
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Appendix A

The derivation of Eq. (7)

Fourier-transformation of Eq. (7):

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕLA8 =

= −
1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ 4π

c2

√
g

∂

∂x2

∂

∂t
j2

ext.

We replacex2 by ϕ in LA and the right side of this equation.
Sinceg1,2 andg are independent ofϕ andt then for the left
side of this equation we have

−
∂

∂x1

√
g

g1

1

A2

∂

∂x1

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ ∂2

∂t2
8

+
∂

∂x1

∂

∂x3

g2
√

g

∂

∂x3

∂

∂x1

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ8

−

√
g

g2

1

A2

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ ∂2

∂t2

∂2

∂ϕ2
8

+
∂

∂x3

g1
√

g

∂

∂x3

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ ∂2

∂ϕ2
8.

After integrating by parts we obtain:

∂

∂x1

√
g

g1

ω2

A2

∂

∂x1

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ8

+
∂

∂x1

∂

∂x3

g2
√

g

∂

∂x3

∂

∂x1

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ8

− m2
√

g

g2

ω2

A2

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ8

− m2 ∂

∂x3

g1
√

g

∂

∂x3

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ8.

Here 1/(2π)2
+∞∫
−∞

dϕ
+∞∫
−∞

d t eiωt−imϕ8 ≡ 8mω.

For the right side, after substitutingj2
ext in the explicit form

(9) we have

−
4π

c2

√
ge n0 ωd

1

(2π)2

+∞∫
−∞

dϕ

+∞∫
−∞

d t eiωt−imϕ

×
∂

∂ϕ

∂

∂t
δ(ϕ − ωd t) 2(t)

= −mω
4π

c2

√
ge n0 ωd

1

(2π)2

+∞∫
−∞

d t 2(t)eiωt−imωd t
≡ q̃mω.

Appendix B

The derivation of Eq. (19)

We solve Eq. (17) by means of the Fourier transform. Let us
put

RN (x1) =

+∞∫
−∞

eikx1
RN (k) dk, (B1)

then

RN (k) = im

k∫
−∞

dk′
iq(k′)√

(k′2 + k2
y)(k

′2 + k2
y)

× exp[i(k − k′)x1
T N + iky1N (arctan

k

ky

− arctan
k′

ky

)],

whereky=m/L,

q(k′) =
1

2π

+∞∫
−∞

e−ikx1
q(x1) dx1

=

=
q0

(2π)2

+∞∫
−∞

dt ′eiωt ′2(t ′)

+∞∫
−∞

dx1e−ik′x1
−im�dxt ′

=

=
q0

2π

+∞∫
−∞

dt ′eiωt ′2(t ′)δ(k′
+ m�d t ′).

Then we integrate overk′, substitute the expression obtained
into Eq. (B1) and introduce new variablesx1

=lξ , k=κ/l. As
a result we obtain Eq. (19).

Appendix C

The derivation of Eq. (23)

After substitution of Eq. (19) into Eq. (22) we obtain the ex-
pression forRN as the integral

RN = iq0L

+∞∫
−∞

dκ

+∞∫
−∞

dm

+∞∫
−∞

dt ′

+∞∫
−∞

dω
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×
2(κ + m�t ′) 2(t ′)√

(κ2 + m2 l2

L2 )(L2

l2
�2t ′2 + 1)

× exp

[
iω(t ′ +

m�

�0
t ′ +

κ

�0
) − im�t ′ + iκ(ξ − 1)

+imδN

l

L
(arctan

κL

ml
+ arctan�t ′

L

l
)

]
. (C1)

First we integrate overω, which gives usδ(t ′+m�
�0

t ′+ κ
�0

)

in the subintegral function, then we integrate the expression
obtained overt ′. As a result, Eq. (C1) reduces to the simpler
form (23) with only two integrations.

Appendix D

The stationary phase method

Let us introduce the large parametersµ=�0/��1 (Since
the drift angular velocity is assumed to be much less than the
toroidal and poloidal eigenfrequencies), and small parame-
ter δN=1N/l�1 (since the distance between toroidal and
poloidal surfaces1N is much less that the scale of the mag-
netosphere). Let us find the point of the stationary phase
(m0, κ0) through the conditions

∂9

∂κ

∣∣∣∣
m0,κ0

= 0,
∂9

∂m

∣∣∣∣
m0,κ0

= 0.

After we neglect the terms proportional to the small param-
eterδN , we obtain two equations, which determine the posi-
tion of this point:

ξ − 1 +
m0

m0 + µ
= 0, (D1)

ϕ − µ
�0t − κ0

(m0 + µ)2
= 0. (D2)

We find from these equations that

m0 = µ
1 − ξ

ξ
,

κ0 = µ(�t − ϕξ−2).

Thus, we find the wave phase: Eq. (26). Further, following
the stationary phase method, we find the expression deter-
mining the wave amplitude:

A0 = Ã0

+∞∫
−∞

dκ

+∞∫
−∞

dm exp[i
1

2
A(κ − κ0)

2

+i
1

2
B(m − m0)

2
+ iC(κ − κ0)(m − m0)],

where

Ã0 =
iq0Lµ2(κ0 + m0�t)2(�0t − κ0)√(

L2

l2
(�0t − κ0)2 + (µ + m0)

2
) (

κ0 + m0
l2

L2

) ,

A =
∂29

∂κ2

∣∣∣∣∣
m0,κ0

∼
δN

µ
,

B =
∂29

∂m2

∣∣∣∣∣
m0,κ0

≈ 2
ξ

µ
,

C =
∂29

∂κ∂m

∣∣∣∣∣
m0,κ0

≈
ξ2

µ
ϕ.

It is seen thatA�C, B. Thus, we have

A0 = Ã0

+∞∫
−∞

dm e
i

ξ
µ

(m−m0)
2

+∞∫
−∞

dκ e
i

ξ2

µ
ϕ(κ−κ0)(m−m0)

=

= Ã0

+∞∫
−∞

dme
i

ξ
µ

(m−m0)
2
2π

µ

ξ2
δ(m − m0) = Ã02π

µ

ξ2
.

As a result, after some algebra, we obtain the expression (27)
for the wave amplitude.
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