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Abstract. An operational assimilation system incorporating
significant wave height observations in high resolution nu-
merical wave models is studied and evaluated. In particu-
lar, altimeter satellite data provided by the European Space
Agency (ESA-ENVISAT) are assimilated in the wave model
WAM which operates in two different wave climate areas:
the Mediterranean Sea and the Indian Ocean. The first is a
wind-sea dominated area while in the second, swell is the
principal part of the sea state, a fact that seriously affects the
performance of the assimilation scheme. A detailed study
of the different impact is presented and the resulting fore-
casts are evaluated against available buoy and satellite ob-
servations. The corresponding results show a considerable
improvement in wave forecasting for the Indian Ocean while
in the Mediterranean Sea the assimilation impact is restricted
to isolated areas.

Keywords. Oceanography: general (Numerical modeling) –
Oceanography: physical (Surface waves and tides; Instru-
ments and techniques)

1 Introduction

Coastal and ocean areas are nowadays exposed to an increas-
ing pressure from ship traffic, aqua culture, offshore explo-
ration and tourism globally. On the other hand, improved
knowledge and monitoring capabilities for coastal and off-
shore regions are highly required with respect to wind and
wave climates. One of the most reliable ways to accomplish
such a goal is the use of operational numerical wave models.
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Indeed, a significant part of operational and research activ-
ities is based today on such models, to provide regional or
global forecasts. However, the quality of the final outputs
strongly depends on local characteristics, initial conditions,
as well as atmospheric data used as input (Lionello et al.,
1995).

A widely known development in this framework is the
use of assimilation techniques for the correction of wave
model initial fields. However, the lack of a sufficient num-
ber of wave observations was always a serious drawback for
such efforts, not only operationally but also for the estab-
lishment of the necessary background information (Bouttier
and Courtier, 1999). A recent advancement that contributes
to the solution of this problem is the use of satellite records.
Ocean wind and wave measurements from satellites, com-
bined with global wave and atmospheric numerical models
have changed the way of obtaining ocean wave information,
for both operational and climatological purposes. Through
data assimilation in operational numerical models, satellite
sea-surface observations are contributing to improved short-
term wave forecasts. On the other hand, satellite wind obser-
vations assimilated into atmospheric models contribute indi-
rectly, by improving the atmospheric forecast and, hence, the
wind forcing into the wave models.

In this work, the results from the implementation of the
assimilation techniques suggested by Breivik and Reistad,
1994 at the Norwegian Meteorological Institute, as utilized
in the framework of the EU project ENVIWAVE1, are pre-
sented. The adopted method is based on a modification of the
traditional successive correction methods (Cressmann, 1959)
for the implementation of wave height measurements into
numerical wave models. The satellite data used as input to

1http://www.oceanor.no/projects/enviwave/index.htm
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the assimilation scheme are coming from the ENVISAT-ESA
RadarAltimeter2 (RA-2) instrument.

Previous work on assimilation of satellite data into numer-
ical wave models can be found, among others, in Janssen et
al. (1987), Lionello et al. (1992, 1995), Greenslade (2001),
Aarnes (2003), Abdalla et al. (2005), Skandrani et al. (2004),
where the theoretical aspects as well as the general benefits
of such methods are presented. The main aim of this pa-
per is the investigation of the specific performance of an op-
erational assimilation system in two different wave climate
regions: the Mediterranean Sea, a wind sea dominated area
with complicated topographic characteristics, and the North-
ern Indian Ocean (referred from now on as the Indian Ocean),
an open swell-dominated sea. These differences in the do-
main characteristics result in a qualitatively different assim-
ilation impact, both spatially and temporally. A second, but
also important novelty of the present work is the use of high
resolution atmospheric and wave models, which lead to ana-
lytical and detailed conclusions for each area of interest.

The paper is organized as follows: Sect. 2 briefly describes
the wave model and the assimilation method. In Sect. 3, de-
tails of the domain characteristics and satellite data are pre-
sented. Analytical impact studies as well as statistical results
of the assimilation scheme performance in both areas of in-
terest are discussed in Sect. 4, while the main conclusions are
summarized in Sect. 5.

2 Model description

The wave model used in this study is WAM cycle 4 (WAMDI
group, 1988; Komen et al., 1994). This is a third generation
wave model which solves the wave transport equation ex-
plicitly without any assumptions on the shape of the wave
spectrum. It represents the physics of the wave evolution in
accordance with our knowledge today for the full set of de-
grees of freedom of a 2-D wave spectrum. Details of the
model configuration used in the present work are described
in Sect. 3.

Corrected analysis fields for WAM are provided by an as-
similation method developed by Breivik and Reistad (1994)
at the Norwegian Meteorological Institute. The analysis
scheme is based on the method proposed by Bratseth (1986),
which is an improvement of the “classical” successive cor-
rection methods (Cressmann, 1959). The basic idea is the
same as that for the so-called statistical interpolation (SI),
which is widely used in atmospheric and wave models in
several meteorological centers (e.g. ECMWF, Meteo-France,
UK Met. Office, Hellenic National Meteorological Service,
etc.). Bratset’s scheme converges toward the results of SI
by setting a proper choice of parameters for the analysis
weights. This scheme is very cost efficient and easy to im-
plement.

The analysis starts with the direct numerical model output
for Significant Wave Height (SWHp) as a first guess field.

This is corrected by the use of any available corresponding
observations (SWHo). The method is based on the following
two iterative equations:

SWHA
i (k + 1) = SWHA

i (k) +

N∑
j=1

aij (SWHO
j − SWHA

j (k)),

SWHA
x (k + 1) = SWHA

x (k) +

N∑
j=1

axj (SWHO
j − SWHA

j (k)),

where aij=(mij+dij )/Mj , axj=mxj/Mj are the analysis
weights. Here, subscriptsi, j refer to observation points,
x to grid points, superscriptsO, P andA to observed, first
guess, and analyzed values.N is the number of observations
andk an iteration counter.

The iterations start by setting

SWHA
x (1) = SWHP

x and SWHA
i (1) = SWHP

x

(spatial interpolated, based on a bilinear method, applied
only to analysis). The coefficientsmij and dij are model
and observation error covariances, respectively, which are as-
sumed to be uncorrelated to each other.Mj is a function of
mij anddij , calculated for each observation, so that the above
system of equations converges. More precisely,mij are cal-
culated by:

mij = EP
i aP (rij )E

P
j ,

where EP
i is the standard deviation of the model

first guess. The parameteraP is assumed to be
aP (rij )= exp(−0.5·r2

ij/b
2), where rij is the distance be-

tween the observation points andb the horizontal scale of the
first guess field error correlation determining the scale of the
observation’s influence. The observational error covariances
have the form:

dij = EO
i aO(rij )E

O
j ,

whereEO
i is the standard deviation of the observations. In

most of the cases, the matrixaO(rij ) is assumed to be uni-
tary, accepting in this way that the observations are unbiased
and uncorrelated.

The described method leads to a corrected SWH field. To
take advantage of this in the model, one needs to update the
total wave model spectrum. This is attained by the division
of the wave spectra into a swell and a wind sea part, which
are scaled according to the analysed SWH. This separation is
achieved by checking if the wave energy is generated by local
winds or propagated from remote grid points. We note that
the updating of the model spectra is based on the assumption
that the first guess relation between windsea and swell is cor-
rect. However, we have to mention that this hypothesis is a
limiting factor in altimeter wave height assimilation. More-
over, to avoid imbalance in the model, the wind at the analy-
sis time is updated accordingly. A more detailed description
of the method is given in Breivik and Reistad (1994).
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Table 1. Wave model configuration and input data.

Grid Area covered Resolution
(degrees)

Wind input
and resolution

Bathymetry data

1. Global 180 W–180 E
80 S–80 N

1.0×1.0 GFS (6-h)
1.0×1.0 degrees

Naval Oceanographic Office, USA
(1.0 degrees)

2. Indian Ocean 40 E–100 E
0 N–30 N

0.25×0.25 Skiron (3-h)
0.25×0.25 degrees

Naval Oceanographic Office, USA
(0.25 degrees)

3.Mediterranean 6 W–42 E
30 N–48 N

0.1×0.1 Skiron (hourly)
0.1×0.1 degrees

Naval Oceanographic Office, USA
(0.1 degrees)

3 The case study

In this work, WAM is used in two different wave-climate re-
gions: the Mediterranean Sea, a wind sea dominated area,
and the Indian Ocean, a swell dominated one. The two
model domains are illustrated in Fig. 1. A global version
of the model is used in order to initialize and nudge the lat-
eral boundaries of the Indian Ocean domain. All the versions
ran on high resolution set up, in a deep water mode without
refraction, providing operationally daily forecasts.

For the integration in the global domain, 28 frequencies
and 24 directions were used, while the first integration fre-
quency was 0.05 Hz and the propagation time step 1200 s.
The same configuration holds for the nested domain of the
Indian Ocean, with a propagation time step of 600 s. On the
other hand, for the Mediterranean Sea, taking into account
the shorter scale of the prevailing atmospheric and wave sys-
tems, the number of frequencies was limited to 25 and the
first one was set to 0.1 Hz. The time step in this case was
300 s.

Different atmospheric inputs (wind speed and direction
10 m above surface) were used for the above domains. The
global model is driven by wind fields of the NCEP/GFS
model that has a horizontal grid resolution 1.0×1.0 degrees.
The nested Indian Ocean as well as the Mediterranean Sea
use SKIRON/ETA weather prediction system (Kallos, 1997;
Papadopoulos et al., 2001) which runs operationally once
a day (with 12:00 UTC initial conditions) at the University
of Athens, providing 5-day forecasts2. This system uses
NCEP/GFS 1.0×1.0 degree resolution fields for the initial
and boundary conditions. The necessary surface boundary
conditions over the sea are interpolated from the 0.5×0.5 de-
gree SST (Sea Surface Temperature) field analysis retrieved
from NCEP on a daily basis. Vegetation and topography data
are applied at a resolution of 30 s and soil texture data with
resolution of 2 min. Further details of the models’ configura-
tion are summarized in the Table 1.

Both the atmospheric and wave models use the same high
resolution in order to avoid interpolation issues and to ensure
a better description of short scale atmospheric and wave phe-

2http://forecast.mg.uoa.gr
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Figure 3.1. Mediterranean Sea and Indian Ocean bathymetry (m). 

 Fig. 1. Mediterranean Sea and Indian Ocean bathymetry (m).

nomena (e.g. local coastal atmospheric circulations, island
wave effects, etc.).

The assimilation scheme described in Sect. 2 was applied
to both areas of interest. The number of iterations used was
k=5 (as defined in Sect. 2) and the de-correlation radiusb

(grid distances) was defined to be 4. The maximum influence
radius of assimilation was 8 grid points (this is only a prac-
tical limit, set when the correlation following this expression
is close to zero). The maximum influence and decorrelation
radius are compatible with the wave model resolution, since
they are defined as grid point distances. In our case, these
parameters are chosen so as to reflect the scales of the atmo-
spheric forcing wind field at the sea surface and to be rep-
resentative of the wave system characteristics prevailing and
influencing each area. More precisely, according to the above
definitions, for the Mediterranean Sea the decorrelation ra-
dius was 40 km and the maximum influence radius 80 km,
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Table 2. ENVISAT technical characteristics.

Launch 2002
Altitude 800 km
RF power 50 W
Beam width 1.3 deg
Footprint 1.7 km
Pulse width 3 ns
Spatial sampling ∼7 km along track
Geometric resolution 19 km
Track period 35 days

where in the Indian Ocean they were 100 and 200 km, re-
spectively. The standard deviation of the model was set to
Ep=1.0 m and the observation error to E0=0.5 m. These val-
ues were set based on the assumption that synoptic wind sys-
tems and the generated wave ones are of similar scale. This
assumption is required due to the operational status of the
present study.

Observations from the Ku-band of ENVISAT-ESARadar
Altimeter2 (RA-2) were used in the assimilation cycle. This
instrument determines the two-way delay of the radar echo
from the Earth’s surface to a very high precision (less than
a nanosecond) with a footprint size of 1.7 km. In this way,
the determination of wind speed and significant wave height
is achieved. In particular, the significant wave height is cal-
culated from the radar echo leading edge slope, which refers
to the gradient of the leading edge of the echo. According
to previous studies, the expected accuracy for the measure-
ment of wave height is better than 0.25 m (see ESA SP-1224;
Soussi, 2006). Some basic technical characteristics of this
platform are presented in Table 2.

In both areas of interest the altimeter data were quality
controlled according to Brattli (2003). More precisely, the
basic filtering criteria used were the following:

– Significant wave height observations should be between
0.5 and 20 m.

– Altimeter data standard deviation should not exceed a
given interval (0.01–1 m).

– The difference between the model first guess and the
RA2 record must be less than 5 m.

The restricted standard deviation interval (second criterion)
ensures that extremely variable measurements will be ex-
cluded. The remaining variability of the altimeter data is
desirable and necessary in order to better exploit the high
resolution simulations.

For the Mediterranean Sea the average number of assim-
ilated observations per forecasting cycle, passing this qual-
ity control, was between 250 and 300. The corresponding
number for the Indian Ocean was 550–650. It is obvious
that such an amount of “information” in open seas or oceans,

where other types of observations are rare, is a valuable tool.
The assimilation window in both areas was determined to
be 12 h. More precisely, all observations available between
12:00–24:00 UTC are used. Note that the assimilation of
these records is not taking place at a specific time. Since our
system is running operationally, the assimilation procedure is
active during the whole 12-h window, so that every recorded
observation is assimilated at the closest model time step. In
this way, corrected fields at 00:00 UTC are obtained which
are used as analysis for the forecasting period from 00:00 to
12:00 UTC of the next day.

4 Results

The wave forecasting systems, described in the previous
section, ran for a period of two months during November–
December 2004 for the Indian Ocean and December 2004–
February 2005 for the Mediterranean Sea. Some separate test
cases were also performed in order to study the impact of the
assimilation scheme under different weather conditions and
will be described in the following. The first five days were
used so as to reach a well established sea state.

The statistical analysis used in the present work was based
on the following parameters:

– Mean Difference and Root Mean Square Error of the
Difference (RMSE) calculated between WAM, with and
without assimilation,

– Mean Difference, RMSE, Correlation Coefficient and
Standard Deviation between the two versions of WAM
(with and without assimilation) and satellite (RA2)
measurements.

In this way, the quantitative impact of the assimilation in
wave forecasts, as well as the quality of the analyzed wave
fields, are estimated. The same statistical parameters were
also employed for model evaluation against buoy observa-
tions.

Before proceeding with the discussion of the results, it
is important to undeline that the two domains selected (the
Mediterranean Sea and the Indian Ocean) are characterized
by different physiographic characteristics, synoptic weather
conditions and wave climatology. The long period waves
(swell) are the dominant mode of the sea state in the In-
dian Ocean, since it can receive waves that have travelled
even from Antarctica. On the other hand, in the Mediter-
ranean Sea, wind-generated waves are significant and the
wind regime in winter is more unstable. These facts are il-
lustrated in Fig. 2, where the swell percentage of the total sea
state, as well as the mean wave (spectral) period at each grid
point for the experiment time, is presented. It becomes ob-
vious that the maximum simulated mean wave period in the
Mediterranean Sea is less than 6 s while this value is the min-
imum one for the Indian Ocean, where a typical wave period

Ann. Geophys., 25, 581–595, 2007 www.ann-geophys.net/25/581/2007/
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(a) 
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Figure 4.1.  Mean wave period in seconds (a) and Swell percentage (b) of total 

wave energy. 

 

 

 

 

 

 

 

Fig. 2. Mean wave period in seconds(a) and swell percentage(b) of total wave energy.
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Figure 4.2. Linear correlation between wave model (no data assimilation) and 

satellite significant wave height over all forecasting hours.   
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Fig. 3. Linear correlation between wave model (no data assimilation) and satellite significant wave height over all forecasting hours.

fluctuates between 7–10 s. This difference between the two
areas is further supported by the fact that the swell percent-
age in the Indian Ocean exceeds 80%, reaching in several
cases even 100% of the total wave energy, whereas in the
Mediterranean it is always less than 80%.

However, it has to be noted that during the boreal winter,
for a large portion of the time, relatively steady northeast-
erly winds are prevailing in the northern Indian Ocean. This
generates well developed windsea, which is more evident at
the eastern coast of India. The model interprets such situa-
tions as swell. This fact creates problems in the identification

of young windsea when swell is present (see Janssen et al.,
2005; Bidlot et al., 2007) contributing also in the state repre-
sented at Fig. 2.

These different characteristics in the two domains, along
with the fact that the assimilation analysis does not correct
the wind input from the atmospheric model but directly the
significant wave height, favors a limited influence of the as-
similation scheme in the Mediterranean Sea (see also Li-
onello et al., 1992).

Concerning the initial relation between satellite data and
the wave model with no data assimilation, it is worth noticing

www.ann-geophys.net/25/581/2007/ Ann. Geophys., 25, 581–595, 2007
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Figure 4.3. Linear correlation between wave model with assimilation (corrected 

forecasts) and satellite significant wave height over all forecasting hours. 
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Fig. 4. Linear correlation between wave model with assimilation (corrected forecasts) and satellite significant wave height over all forecasting
hours.
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Figure 4.4. Significant wave height time series for one assimilated observation in the 

Mediterranean Sea (WAM direct output = 0.7m, Observation = 0.9 m).  

 

Fig. 5. Significant wave height time series for one assimilated ob-
servation in the Mediterranean Sea (WAM direct output = 0.7 m,
Observation = 0.9 m).

that it differs significantly in the two areas of interest. In
particular, in the Mediterranean Sea, the corresponding lin-
ear correlation is significantly higher than that of the Indian
Ocean. However, significant wave height is strongly under-
estimated at high values in the first area (Fig. 3). This is a
reason that potentially may limit the impact of the assimila-
tion scheme in the first domain. Indeed, the corresponding
results for the wave model with the assimilation module ac-
tivated show a trivial influence in the Mediterranean area (cf.
Table 3).

Focusing now on the results of the assimilation, the way
that it modifies the model energy spectrum is investigated.
For this reason, several cases of single-observation inputs in
WAM were studied. The corresponding results were almost
identical in all tests and a typical case is presented here as an
example. More specifically, a grid point was selected where
the WAM first-guess was 0.7 m, whereas the analyzed wave
height was estimated to 0.9 m. In this case, the directional
and the frequency energy distribution remained unchanged
after the data assimilation, increasing, however, the total en-
ergy amount (Figs. 6–8). This was an expected outcome,

since only significant wave height is assimilated and there-
fore no other directional or frequencial information is avail-
able. The assimilation impact lasted almost 6 h, as clearly
indicated in Figs. 5–7. However, this period becomes longer
for higher differences between model outputs and satellite
records while the general attribute remains similar.

In the sequel, an assimilation impact factor is derived by
comparing the deviations between the results of WAM with
the data assimilation and the reference run – no assimilation
– denoted as ASSIMDIF (y-axis), to the deviations between
satellite measurements and the model with no data assimila-
tion – SATDIF (x-axis), as shown in Fig. 9. The large number
of low values for ASSIMDIF in the first plot (Mediterranean)
is partly due to the previous mentioned high correlation be-
tween satellite measurements and the model’s results without
data assimilation. Moreover, some extreme differences be-
tween satellite data and model outputs seem to be smoothed
by the assimilation. On the contrary, in the area of the In-
dian Ocean, the adjustment of the values to the diagonal line
indicates that the activation of the assimilation module re-
duces the initial differences emerging between observations
and forecasted results.

A detailed study concerning the assimilation impact at
each model grid point, as well as its evolution in time fol-
lows. More precisely, in Figs. 10 and 11, the average RMSE
and mean difference between the results of the two models
(with and without the assimilation) for the whole testing pe-
riod and for different forecasting hours are presented. Con-
cerning the time evolution of assimilation impact, the maxi-
mum deviations seem to emerge at 18:00 UTC in the Indian
Ocean and at 00:00 UTC in the Mediterranean (“assimila-
tion time” for each domain, respectively), due to the different
time that satellite tracks pass over these areas. This influence
in the Mediterranean Sea is reduced after a period of less than
12 h, while in the Indian Ocean it remains significant for the
whole forecasting period as a result of the “longer memory”
of swell waves. Moreover, this impact seems to be translated

Ann. Geophys., 25, 581–595, 2007 www.ann-geophys.net/25/581/2007/



G. Emmanouil et al.: Assimilation of radar altimeter data in numerical wave models 587

(a)

 

 
a. 
 
 
 
 
 
b.  

 
c.  
 
 
 
 
 
d.  
 

                WAM  (no data assimilation)                             WAM + assimilation  
 

Figure 4.5. Frequency (Hz) - Energy density (m2) diagrams for different times after 

the assimilation: a. analysis time,  b. 2h-forecast,  c. 4h-forecast, d. 6h-forecast. 
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Fig. 6. Frequency (Hz)-Energy density (m2) diagrams for different times after the assimilation:(a) analysis time,(b) 2-h-forecast,(c)
4-h-forecast,(d) 6-h-forecast.

Table 3. Statistical evaluation of the two versions of WAM (no data assimilation and corrected forecasts) vs. RA 2 measurements for the
whole study period.

Mean difference St. Deviation Cor. Coefficient
Medit. Indian Medit. Indian Medit. Indian

RA2 – Model (no data assimila-
tion)

−0.37 0.12 0.49 0.67 0.88 0.20∗

RA2 – Model (corrected forecast) −0.39 −0.11 0.49 0.43 0.88 0.53

∗ 0.6 if the low quality forecasting period is subtracted, see also the comments in Sect. 4

www.ann-geophys.net/25/581/2007/ Ann. Geophys., 25, 581–595, 2007
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Figure 4.6. Direction (deg) - Energy density (m2) diagrams for different times after 

the assimilation: a. analysis time,  b. 2h-forecast,  c. 4h-forecast, d. 6h-forecast. 
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Fig. 7. Direction (degrees)-Energy density (m2) diagrams for different times after the assimilation:(a) analysis time,(b) 2-h-forecast,(c)
4-h-forecast,(d) 6-h-forecast.

to northern latitudes due to the usually prevailing southerly
waves.

On the other hand, it is clear that in the Mediterranean
Sea the assimilation influence is quite local, while the whole
Indian Ocean domain is affected. Additionally, the max-
imum values of both statistical parameters used are lower
in the Mediterranean (RMSE<0.3 m,−0.2 m< Mean Dif-
ference<0.1 m) compared to those of the Indian Ocean
(RMSE<1.4 m, 0 m< Mean Difference<1.0 m). This is
mainly due to the local characteristics of the Mediterranean

basin: closed sea with well separated sections where a pos-
sible correction in one area remains restricted there and does
not propagate. On the contrary, the fact that the Indian Ocean
is swell-dominated, as well as the increased initial differ-
ences between RA2-altimeter and model results without as-
similation, led to an extended impact in this area. At the
same time, a number of extreme differences which emerged
between the model without assimilation and satellite records
in the Indian Ocean (as shown in Fig. 3) were reduced and
the corresponding coefficient of the linear regression line was
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Figure 4.7. Energy spectrum distribution (polar diagrams) at the assimilation time.  

 

Fig. 8. Energy spectrum distribution (polar diagrams) at the assimilation time. 

 

           MEDITERRANEAN SEA                       INDIAN OCEAN 

              
 

Figure 4.8. Deviations of assimilated results and satellite data against predictions. 

ASSIMDIF (y-axis) denotes the difference between the results of WAM with and 

without data assimilation, while SATDIF (x-axis) stands for the deviations between 

satellite measurements and model results.  
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Fig. 9. Deviations of assimilated results and satellite data against predictions. ASSIMDIF (y-axis) denotes the difference between the results
of WAM, with and without assimilation, while SATDIF (x-axis) stands for the deviations between satellite measurements and model results.

almost doubled (Fig. 4). These differences were due to a 3-
day failure in the atmospheric and wave forecasting as a re-
sult of a misplaced forecasted storm. However, the use of the
assimilation scheme reduced these differences, thus leading
to the conclusion that the data assimilation has made up for
the shortcomings in the wave model results.

Focusing now on the average statistical results concerning
the entire domain of each case, Table 3 illustrates that altime-
ter data assimilation procedure had no obvious impact in the
Mediterranean Sea. Note that the statistical parameters used
refer to RA2 observations against the closest WAM grid point
at the assimilation time. On the contrary, in the Indian Ocean,

the initially observed differences between satellite measure-
ments and model outputs were reduced and their correlation
becomes remarkably higher. It is also worth noticing that
the low initial correlation between RA2 measurements and
WAM outputs in the Indian Ocean is partly due to the short
period of model failure which was referred earlier.

In order to further evaluate the wave model forecasts, a de-
tailed comparison against available buoys is presented. For
the Mediterranean Sea, the buoy data have been provided by
the Spanish Puertos del Estado (P.E.) and the Hellenic Cen-
ter for Marine Research (HCMR). Their location is shown
in Figs. 12, 13 and Table 4. These data were processed and
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Figure 4.9. Average RMSE (m/10) of significant wave height between WAM  

with and without assimilation per grid point. 

 

Fig. 10. Average RMSE (m/10) of significant wave height between WAM, with and without assimilation per grid point.
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Figure 4.10. Mean Difference (m/100) of significant wave height between WAM  

with and without assimilation per grid point. 

Fig. 11. Mean Difference (m/100) of significant wave height between WAM, with and without assimilation per grid point.
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Figure 12. Aegean Sea buoy locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Aegean Sea buoy locations.

 

 

Figure 4.11. Aegean Sea buoy locations. 

 

Figure 4.12. Spanish buoy locations. 
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Fig. 13. Spanish buoy locations.

quality controlled by the providing institutes. Each buoy was
collocated with the closest model grid point and the corre-
sponding significant wave height values were compared in

3-h intervals. In both cases (Spain and Greece) the neg-
ligible effect of the assimilation procedure in the Mediter-
ranean Sea is reconfirmed. This is mainly due to the fact
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Figure 14. Time series of significant wave height of buoy, WAM and 

WAM+assimilation. 

 
 
 
 
 
 
 

Fig. 14. Time series of significant wave height of buoy, WAM and
WAM + assimilation.

Table 4. Mediterranean buoy coordinates.

Buoy Latitude Longitude

1. Athos 40.0 24.7
2. Lesvos 39.2 25.8
3. Mikonos 37.5 25.5
4. Santorini 36.3 25.5
5. Avgo 36.0 25.6
6. Alicante 38.2 −0.4
7. Gata 36.6 −2.3

 
 

 

DS 1

DS 3

 

Figure 15. Indian Ocean buoy locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Indian Ocean buoy locations.

Table 5. Indian buoy coordinates.

Buoy Latitude Longitude

DS1 15.60 69.19
DS3 12.15 90.74

that the number of satellite measurements passing the assim-
ilation quality control is limited for areas close to coasts or
islands, as in the Aegean Sea. However, whenever sufficient
altimeter measurements are available, the benefit from the
assimilation impact is clear, although temporary (as shown
in Fig. 14), significantly improving the underestimated – in
general – WAM forecasts.

For the domain of the Indian Ocean, two buoys have been
employed, as provided by the National Institute of Ocean and
Technology (NIOT) of India. Their position and geographic
coordinates are illustrated in Fig. 15 and Table 5, respec-
tively. The comparison between the two versions of WAM
(with and without assimilation) and these buoys show a clear
improvement in the performance of the model. More pre-
cisely, the mean error of the results is reduced significantly
by the use of altimeter data. The relatively low correlation
coefficient may be attributed to the small significant wave
heights dominating during the analysis period. The corre-
sponding time-series, along with statistical results are pre-
sented in Fig. 16.

5 Conclusions

The performance of a data assimilation scheme using
altimeter-RA2 records in high resolution versions of the
WAM model has been tested in two different wave climate
regions: the Mediterranean Sea and the Indian Ocean. The
local characteristics of these domains affect the quality as
well as the amplitude of the assimilation impact. More
precisely, the influence of the assimilation scheme in the
Mediterranean Sea is limited mainly due to:
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Figure 16. Time series and statistical results of significant wave height for buoys, 

WAM and WAM+assimilation. 
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Fig. 16. Time series and statistical results of significant wave height for buoys, WAM and WAM + assimilation.

– the lack of a sufficient number of observation data. This
is a result of the fact that satellite measurements in
coastal areas are usually of low quality and, therefore,
fail to pass the quality controls,

– the fact that the assimilation analysis scheme does not
correct the wind input from the atmospheric model but
directly the forecasted significant wave height. This is a
disadvantage of the method in wind-sea dominated ar-
eas, like the Mediterranean Sea,

– the local characteristics of the Mediterranean basin: it is
a closed sea with complicated coast line, several islands
and well separated sections where a possible (assimila-
tion) impact in one area remains restricted and dimin-
ishes there,

– the high correlation of the filtered satellite records with
model first guess.

However, the final forecasting quality of the wave system
(WAM+assimilation module) is at a very satisfactory level.

On the other hand, for the Indian Ocean, the large num-
ber of available satellite observations, combined with the fact

that this is a swell dominated area, leads to an increased as-
similation impact extended to the entire domain. In particu-
lar, the assimilation of altimeter data leads to:

– the reduction of model error,

– the elimination of any possible significant differences
between the WAM first guess and satellite records.
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