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Abstract. A regional reference model of total electron con-
tent (TEC) was constructed using data from the GPS Earth
Observation Network (GEONET), which consists of more
than 1000 Global Positioning System (GPS) satellite re-
ceivers distributed over Japan. The data covered almost one
solar activity period from April 1997 to June 2007. First,
TECs were determined for 32 grid points, expanding from
27 to 45◦ N in latitude and from 127 to 145◦ E in longitude
at 15-min intervals. Secondly, the time-latitude variation av-
eraged over three days was determined by using the surface
harmonic functional expansion. The coefficients of the ex-
pansion were then modeled by using a neural network tech-
nique with input parameters of the season (day of the year)
and solar activity (F10.7 index and sunspot number). Thus,
two-dimensional TEC maps (time vs. latitude) can be ob-
tained for any given set of solar activity and day of the year.

Keywords. Ionosphere (Mid-latitude ionosphere; Modeling
and forecasting; Instruments and techniques)

1 Introduction

One of the important effects of the ionosphere on radio waves
is a propagation delay in the ionosphere. This delay de-
pends on the frequency and the total electron content (TEC)
along the propagation path. Several attempts have been made
to specify the ionospheric electron density using theoretical
(see Anderson et al., 1998) and empirical approaches. Con-
siderable effort has resulted in the continuous development
and improvement of the International Reference Ionosphere
(IRI) (Bilitza, 2001), which describes the density at various
heights for any specified geophysical conditions, based on
long-term observations. TEC can be derived by integrating
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the height profile of the electron density. The contribution
of the plasmaspheric electron density to TEC cannot be ne-
glected (Gulyaeva and Titheridge, 2006; Gulyaeva and Gal-
lagher 2007; Cueto et al., 2007; Reinisch et al., 2007). How-
ever, observations of the electron density to construct a reli-
able model are limited in the topside ionosphere and plasma-
sphere compared with the bottomside and the F-layer peak
(Bilitza and Williamson, 2000).

Direct measurements of TEC using radio waves transmit-
ted from the Global Positioning System (GPS) satellites have
been collected in this decade. Thus, GPS-based TEC data are
now available to construct empirical models of TEC. Mean-
while, artificial neural network (NN) techniques have been
applied to a variety of topics in the study of the upper at-
mosphere. Multilayer feed-forward networks (Rumelhart et
al., 1986; Haykin, 1994) are used to specify the ionosphere
by approximating a relationship between geophysical condi-
tions (seasons, solar activities, local times, longitude/latitude
etc.) and observed ionospheric parameters (foF2, h’F2,
hmF2, etc.) (Williscroft and Poole, 1996; McKinnell and
Poole, 2004; Oyeyemi et al., 2005), short-term forecasting
of ionospheric conditions (Altinay et al., 1997; Cander et al.,
1998; Kumluca et al., 1999; Wintoft and Cander, 2000; Poole
and McKinnell, 2000; Oyeyemi et al., 2006), and long-term
trend analyses (Poole and Poole, 2002; Yue et al., 2006).
Because of the input-output mapping features of NNs, they
could be used to generate reference ionospheric models for
possible incorporation into the IRI (McKinnell and Friedrich,
2007). For this purpose, a so-called training data set must
cover a whole range of possible input parameter variations,
say, a data period longer than one solar cycle.

In Japan, a dense GPS receiver network, GEONET (GPS
Earth Observation Network) has been developed, and data
from more than 1000 locations have been available since
April 1997, close to a solar minimum. An algorithm that
simultaneously determines satellite/receiver biases and verti-
cal TEC using GEONET data has been developed by Ma and
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Figure 1

Fig. 1. 32 grid points on which TECs were determined at 15-min
intervals.
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Figure 2

Fig. 2. Observed daily solar flux (upper trace with left scale) and
daily sunspot number (lower trace with right scale) from April 1997
to June 2007.

Maruyama (2003). By using this algorithm, we constructed a
TEC database that nearly covered one solar cycle from 1997
to 2007.

The data set used to develop the regional reference TEC
model and the NN technique are described in Sect. 2. The
performance of the trained network is evaluated in Sect. 3.
Section 4 summarizes the work.

2 Data set and methodology

About 300 GEONET receivers were chosen for this study to
ensure uniform coverage over Japan. The major issues in
deriving TECs from GPS radio signal observations are the
instrumental biases both in the satellites and receivers, and
the conversion process from the observed TECs along the
slant path to the vertical ones. In this paper, the slant TECs
were converted to vertical TECs (vTEC) at the piercing point
where the ray path crossed a shell at a height of 400 km (thin
shell model). Assuming that the vTECs in a small cell 2×2◦

in longitude and latitude were the same in a short period of
time, we calculated the daily instrumental biases and vTEC
in each cell with a 15-min period, using the least-squares fit-
ting method for a data set that covered 24 h. More details
of the method are described elsewhere (Ma and Maruyama,
2003). The vertical TEC obtained in this way is referred to as
the grid TEC (gTEC). The original TEC grid consisted of 32
grids, as shown in Fig. 1 (the southern most two grids were
not used when constructing the actual model because gaps of
a few hours in the data occurred, depending on the change in
the satellite constellation).

The major factors that determine the TEC are the solar
activity, season, local time, and geographic and geomag-
netic coordinates. Our process to generate a model con-
sists of three steps: Step 1 is the procedure described in the
previous paragraph in which the gTECs at the grid points
are determined at 15-min intervals. Step 2 is the procedure
where variations in time and latitude are expressed as a two-
dimensional distribution map for three consecutive days. Be-
cause the data grid is limited to a narrow longitudinal extent
and geomagnetic conditions do not change greatly among the
east-west aligned grids, the longitudinal dependence is as-
sumed to be equivalent to the local mean time (LMT) in this
step. Step 3 is the procedure where the solar activity and sea-
sonal changes in the TEC map are modeled by using a neural
network technique.

To generate TEC maps from the gTECs, we used the
surface harmonic expansion method based on the associ-
ated Legendre function, as shown in (1), taking the LMT
(hour) at each grid point as the azimuth parameter, i.e.φ =

2π(LMT/24),

TEC =

M∑
m=0

N∑
n=m

(Anm cosmφ + Bnm sinmφ)P m
n (cosθ), (1)

whereθ is the colatitude; we took the degree and order up to
7 (N=M=7). As the grid point distributes at only northern
mid-latitudes, dummy data were set, for mathematical conve-
nience, in the Southern Hemisphere as a mirror image of the
Northern Hemisphere with respect to the equator. The func-
tional fitting was performed to determine coefficientsAnm

andBnm in (1). As dummy data were set in the Southern
Hemisphere, the whole global distribution map is symmetri-
cal with respect to the equator (resultant map data outside the
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latitude range from 29 to 45◦ N were disregarded). In other
words,Anm andBnm with the odd number ofn+m are equal
to zero. Thus, a total of 36 target parameters needed to be
determined.

The solar activity expressed by two proxies, the F10.7 so-
lar flux (sfu = 10−22 W m−2 Hz−1) and the sunspot number,
R, for the whole data period is shown in Fig. 2. The figure
shows that both proxy parameters vary in a similar way but
are not exactly the same. For example, from the latter half
of 2001 to 2002, the solar flux reached a maximum, but the
sunspot number reached a maximum in 2000. Thus, both
parameters were included in the input parameters of the net-
work. To successfully separate the seasonal and solar activity
dependence of the TEC after training a neural network, the
combination of both parameters must be homogeneously dis-
tributed in the training data set. Figure 3 shows the seasonal
distribution of the solar activity proxies from 1997 to 2007,
which indicates a homogeneous distribution in the range be-
tween 75 and 200 for F10.7 and between 0 and 150 forR.
Within this range, a neural network is expected to separate
the seasonal and solar activity dependence of the TEC.

We adopted the multilayer feed-forward network (Rumel-
hart et al., 1986; Haykin, 1994) that consisted of the input
layer, one hidden layer, and the output layer. The schematic
diagram of the network is shown in Fig. 4. The input layer
had 8 nodes for solar activity (F10.7 andR averaged over
three days, a week, and three solar rotations (81 days), in-
cluding the days in which the TEC was specified and prior
to those days) and season (sin and cos components of day
of the year). The number of nodes in the hidden layer was
chosen to be 200. The output parameters were the 36 Leg-
endre coefficients, as described in this section. For the first
several tenths of the epochs in the back-propagation learning
process, weight updating was performed by the pattern mode
in which weights were updated after the presentation of each
training example (Haykin, 1994). The order of the presenta-
tion of training examples was randomized from one epoch to
the next. After the weights were coarsely determined, weight
updating was continued by the batch mode in which weights
were updated after the presentation of all the training exam-
ples that constituted an epoch (Haykin, 1994).

3 Results

To evaluate the performance of the neural network mapping,
we ran the network learning for the data set, excluding a par-
tial data set for 2003. After the learning was completed, the
network outputs were compared with observations for 2003.
The results for the four typical seasons are shown in Figs. 5
to 8. The upper panel of Fig. 5 is the TEC distribution map
(local mean time vs. latitude) for the March equinox 2003,
reconstructed using the coefficient vector predicted by the
network. The lower panel of Fig. 5 is the mean TEC dis-
tribution map generated using observations over the 27-day
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Fig. 3. Seasonal distribution of observed daily solar flux (upper
panel) and daily sunspot number (lower panel) from April 1997 to
June 2007.
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Fig. 4. Schematic diagram of NN. For solar activity indices, [n]
denotes an average over n days.

period centered on 21 March 2003. These two panels resem-
ble each other very well, even though the observed values
(lower panel) are slightly higher than the predicted values
(upper panel). The diurnal maxima are at around 13:00 LT
at the lowest latitude (29◦ N) and at around 12:30 LT at the
highest latitude (45◦ N) in both maps. Also, a small bulge in
the contour near sunset at latitudes 35–40◦ N is common in
both maps.
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Figure 5

Fig. 5. Local time-latitude distribution of TEC;(a) predicted by
trained NN for March equinox in 2003 and(b) mean TEC averaged
over a 27-day period centered on March equinox 2003 constructed
using gTEC data.

 25 

 20 

 15 

 15 

 15 

22 June 2003

 25 

 20  15 

 15 

40

30

20

10

45

40

35

30

45

40

35

30

24211815129630

Local Time (hr)

T
E
C

 u
n
it

L
a
ti

tu
d
e
 (

d
e
g
. 

N
)

(a)

(b)

Figure 6

Fig. 6. Same as Fig. 5 but for June solstice 2003.

Figure 6 is the same as Fig. 5, except for the June sol-
stice. The two maps have quite similar diurnal and latitudinal
patterns and absolute TEC values. A distinct feature of this
season was the formation of three diurnal peaks of TEC and
a small day-night difference. The morning peaks are cen-
tered at 07:30 LT in both maps, even though the amplitude
is small for the observed 27-day means (lower panel). The
times of the afternoon peaks shifted slightly earlier in the
network predicted map (upper panel) than in the observed
map. However, their trend of an earlier appearance at higher
latitudes is common in both maps. The times of the evening
peaks are almost the same for both maps. Figures 7 and 8 are
the same as Fig. 5, but they are for the September equinox
and the December solstice, respectively. In these figures,
the network predicted (upper panels) and the observed (lower
panels) maps are very similar in many features and absolute
values.
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Fig. 7. Same as Fig. 5 but for September equinox 2003.
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Fig. 8. Same as Fig. 5 but for December solstice 2003.

For more comparisons, the TECs at noon at grid point 14
(35◦ N, 137◦ E) near central Japan, as denoted by the asterisk
in Fig. 1, were calculated and are shown in Fig. 9. The top
panel is the solar activity inputs, F10.7 (upper traces) andR

(lower traces), averaged over three days (dots connected with
thin lines) and three solar rotations (solid lines). The middle
panel is the grid TECs (circles connected with thin line) and
network outputs (thick solid line). Not only seasonal varia-
tions, but also solar activity dependences are reproduced by
the network. Interestingly, at the end of October, the solar
flux was quite large, but the grid TEC did not increase very
much. This was well reproduced by the network. When the
solar activity indices averaged over three solar rotations were
not incorporated into the input parameter, this moderate in-
crease in TEC against the extremely intense solar activity at
the end of October was not successfully reproduced. On the
other hand, the enhanced grid TEC found in the latter half
of May was not reproduced by the network. In this period,
the solar activity was not so high as compared with the so-
lar activity in the solar rotation before and after this period.
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Fig. 9. (a) Solar activity variation of three-day mean (dots con-
nected with line) and 81-day mean (solid lines) for 2003.(b) Com-
parison of TEC predicted by NN and gTEC at grid number 14
(35◦ N, 137◦ E), 12:00 LT.(c) Ap index. TheAp index was not
incorporated into the input parameter.

This suggests that the solar activity indices we used are not
entirely accurate proxies of solar EUV flux.

In our model, TEC variations associated with magnetic
storms were not considered, while magnetic activities largely
affect values of TEC. Discrepancy between the observed
TECs and network predictions, as seen in the middle panel of
Fig. 9, could be partly due to TEC variations caused by mag-
netic storms. The bottom panel of Fig. 9 shows theAp index.
Corresponding to the geomagnetic disturbances on 29 May,
17 September, 14 October, the observed TEC values nega-
tively departed from the network predictions, as denoted by
the asterisks. While on 18 August, the observed TEC value
was much larger than the network prediction. On the other
hand, the two largest storms on 29 October (the Halloween
storm) and 20 November did not cause large TEC distur-
bances in the Japan’s sector. In the February–April period,
no clear correspondence was found between the large TEC
discrepancy and magnetic disturbances. Thus theAp index
alone is not sufficient to predict storm effects on TEC, and
incorporating storm effects into the model is a future prob-
lem.

Total performance of the constructed model over a year
is shown in Fig. 10. The left panel is a scatter diagram of
the hourly values of the network outputs for grid number 14
(35◦ N, 137◦ E) against corresponding TECs obtained from a
data set similar to that used in network training, i.e. spherical
harmonic functional fitting of three consecutive days (step
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Fig. 10. Total performance of NN prediction. Scatter plots of NN-
predicted hourly TEC for 2003 vs. TEC after functional fitting(a)
and grid TEC before functional fitting(b).

2) in 2003. Thus, this gives the performance of network
learning only (step 3). In this comparison, the root mean
square error (RMSE) was 3.29 TEC units. The right panel
is a scatter diagram of the predicted hourly values against
the grid TEC (step 1) at the same grid point. The RMSE is
slightly higher than that for the functional fitting results and
was 4.52 TEC units, because the functional fitting averaged
unpredictable day-to-day variability, including magnetic dis-
turbance effects, over three days.

4 Summary

A large amount of GPS-derived total electron content data
has been collected in this decade covering almost one solar
cycle, which now allows for an empirical model of TEC to
be constructed. We constructed a regional reference TEC
model over Japan based on the dense GPS receiver network,
GEONET. The process consisted of three steps: (1) deter-
mining vertical TECs at grid points separated by 2◦ in lat-
itude and longitude (gTECs), (2) approximating by using
surface harmonic functional fitting (time-latitude maps), and
(3) using neural network mapping to relate the solar activ-
ity and season with the pattern of the time-latitude map. In
the first step, instrumental biases were simultaneously deter-
mined and vTECs were averaged in 2×2◦ longitude/latitude
cells. Averaging and smoothing were also performed in step
2 by using limited degree and order of the surface harmonic
function to approximate gTEC over three days. Step 3 suc-
cessfully worked to separate the solar activity and seasonal
dependences of the TEC distribution pattern with respect to
time and latitude.
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