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Abstract. Altitude profiles of temperature in the stratosphere
and lower mesosphere over Gadanki (13.5◦ N, 79.2◦ E),
based on lidar observations during the Equatorial Wave
Study campaign (29 February–2 April 2000), showed an
anomalous cooling of the stratosphere, lasting for about 4–
5 days. Immediately following this stratospheric cooling, a
prominent∼4-day period oscillation is observed in the zonal,
as well as meridional wind in the 30–50 km altitude region,
obtained from simultaneous rocketsonde and balloon wind
measurements. The amplitude of this wave is in the range
of 5–15 ms−1 in this altitude region. The altitude profiles of
phase of this 4-day oscillation show a constant phase with
height indicating that the wave is not propagating vertically.
The causative mechanism for the sudden cooling is investi-
gated by examining the day-to-day variation in the total at-
mospheric column ozone. Zonal and meridional wind com-
ponents of this oscillation are approximately in quadrature
phase, with zonal wind leading the meridional wind. Strik-
ingly, while the 4-day wave is clearly observable in the zonal
and meridional winds, it is almost absent in the temperature.

Keywords. Ionosphere (Wave propagation) – Meteorology
and atmospheric dynamics (Middle atmosphere dynamics;
Waves and tides)

1 Introduction

Atmospheric waves are excited either by thermal or dynamic
effects. The mechanism for the forcing of the atmospheric
wave, i.e. the generation of the initial disturbance in the at-
mospheric variables, can vary. The dynamical effects that
generate atmospheric waves include topography, wind shear,
wave-wave interaction, whereas the thermal effects include
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latent heat released by clouds, absorption of radiation by
water vapour and the ozone layer, temperature contrasts be-
tween continents and oceans and differential heating of the
atmosphere.

One aspect that makes the stratospheric studies important
is the presence of the ozone layer. The total amount of ozone
in a vertical column of the atmosphere is essentially deter-
mined by its lower-stratospheric content. Now it is well es-
tablished that 90% of the total atmospheric ozone is located
in the stratosphere. Ozone strongly absorbs ultraviolet (UV)
solar radiation and is a significant diabatic heat source for the
stratosphere. Reduction in stratospheric ozone leads to a re-
duction in solar ultraviolet heating and might produce a cool-
ing of this region (Ghazi, 1974; Imre, 1996; Ramaswamy,
1996; Ramaswamy et al., 2001; Hare et al., 2004; Stein-
brecht, 2006).

The thermal structure of the atmosphere is very impor-
tant for both the generation and propagation of atmospheric
waves. For example, the atmospheric heating produced by
the absorption of solar radiation by ozone and water vapor
generates atmospheric tides (Chapman and Lindzen, 1970).
The gravity wave generation due to differential heating dur-
ing solar eclipse has been addressed in a number of theoret-
ical and observational studies (Chimonas and Hines, 1970;
Anderson et al., 1972; Reddy, 1982; Fritts and Luo; 1993).
Chimonas and Hines (1970) explained that the atmospheric
region around 45 km, in which the daily heating rate due to
the absorption of solar UV radiation is a maximum, could
become cooled significantly during the solar eclipse because
of a reduction in the content of the UV radiation. They sug-
gested that the cooling of the stratospheric air mass could
generate acoustic gravity waves. All these studies suggested
that the cooling of the stratosphere due to ozone depletion
can act as a perturbation under the mean atmospheric condi-
tions, which can lead to the generation/modification of atmo-
spheric waves.
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In this paper, we present observational evidence for the in-
situ generation of atmospheric waves that is observed just
after a sudden cooling of the stratosphere over the trop-
ical middle atmosphere. For this study the altitude pro-
files of temperature derived from Rayleigh lidar (stratosphere
and mesosphere) and Mesosphere-Stratosphere-Troposphere
(MST) radar (troposphere) observations, and the zonal and
meridional winds in the 0–65 km altitude region obtained
from balloon and rocket measurements from 29 February to
2 April 2000 are used. The role of ozone in the causative
mechanism of the sudden cooling in the stratosphere is in-
vestigated based on total atmospheric column ozone observa-
tions obtained from satellite-based Total Ozone Monitoring
Spectrometer (TOMS) data. Section 2 provides the details
of data used for the present study, while the results are pre-
sented in Sect. 3. Section 4 has the discussion on observed
results and summary of findings is given in Sect. 5.

2 Data

Daily altitude profiles of temperature in the 3 to 65 km over
Gadanki (13.5◦ N, 79.2◦ E) and wind in the altitude region
of 0 to 65 km over a very nearby location, the Shriharikota
Range (SHAR) (13.7◦ N, 80.2◦ E), are used in the present
study. These observations were carried out as part of the
equatorial wave studies campaign (Sasi et al., 2003). The
temperatures in the 3 to 22 km altitude range are derived from
the vertical wind data of∼2-h duration (from 20:00 IST–
22:00 IST) following the method derived by Revathy et
al. (1996). The standard error of these measurements is 0.7 K
at 7 km and 1.6 K at 20 km (Revathy et al., 1998). The alti-
tude profiles of temperature in the altitude region of 27 to
65 km over Gadanki are obtained from the Rayleigh Lidar
observations (Parameswaran et al., 2000). Lidar employs
an Nd:YAG laser, operated at its harmonic wavelength of
532 nm, as the transmitter. The pulse energy is 0.4 J and
pulse width is 7 ns. The lidar is operated with an altitude res-
olution of 300 m and a pulse repetition frequency of 20 Hz.
The system provides backscattered signals, which are inte-
grated over 5000 transmitted pulses, corresponding to a tem-
poral averaging of 250 s and these form the basic raw data
for further analysis. Estimation of temperature from lidar
data and the sources of errors are explained in detail by
Parameswaran et al. (2000). The statistical error due to signal
variance is∼1 K in the lower altitudes (30–50 km) and it in-
creases with altitude (∼2.5 K at 65 km). In the present study,
the lidar raw data are integrated in height and time such that
the temperature profiles are derived with a height resolution
of 900 m and a time resolution of 12.5 min, in order to reduce
the statistical errors. The reference altitude required for the
lidar inversion is taken as 80 km (Sasi and Senguptha, 1986).
The lidar observations were made for∼3 h (from 20:00 IST
to 23:00 IST) from 29 February to 2 April 2000. From these
observations daily mean temperature profiles are obtained.

There is no lidar data on 5, 6 and 26 March 2000, due to bad
weather conditions. In order to minimize the uncertainty due
to various errors, lidar-derived temperature in the 27–65 km
altitude region only is used in the present study.

The daily horizontal wind data were collected using RH-
200 rockets and high altitude balloons over a nearby loca-
tion, SHAR, from 29 February to 2 April 2000. There were
daily rocket and balloon flights. The total number of rocket
and balloon flights is 34. The rocket measured wind data is
available in the 25–65 km altitude region with a vertical res-
olution of 1 km and balloon data is available from the surface
to 25 km, with a vertical resolution of 0.3 km.

Total atmospheric column ozone measurements are ob-
tained from Total Ozone Monitoring Spectrometer (TOMS)
data, which provide the total ozone values with a geo-
graphical resolution of 1◦ latitude×1.25◦ longitude. TOMS
ozone data are taken from the websitehttp://jwocky.gsfc.
nasa.gov/eptoms/ep.html. To obtain the mean total ozone
value around the region of study, these data are averaged over
3◦ latitude×3.75◦ longitude.

3 Results

The time-height variation of temperature fluctuations (daily
mean temperature minus the mean temperature during the pe-
riod of observation) during the period from 29 February to 2
April 2000 is shown in Fig. 1a. Temperature fluctuations are
available in the 3 to 65 km altitude region, except for a gap in
the altitude region of 22 to 27 km, where both MST radar and
lidar measurements of temperature are not possible. White
horizontal and vertical bands in Fig. 1a represent the gap in
the data. There are no lidar data on 5, 6 and 26 March 2000
and no radar data on 17 March 2000. A strong cooling (up to
∼5–20 K) is clearly observed in the 10–50 km altitude region
from day number 4 to 8 (i.e. from 3 March to 7 March 2000).
It may be noted that the temperature measurements in the al-
titude region, where cooling is observed, were carried out by
different observational techniques (i.e. MST radar in the tro-
posphere and Rayleigh lidar in the stratosphere/mesosphere).
The maximum anomaly with a magnitude of∼25 K is ob-
served on 7 March in the altitude region of 27–36 km.

The causative mechanism for the sudden cooling is inves-
tigated by examining the day-to-day variation in the total at-
mospheric column ozone over a 3◦

×3.75◦ geographical area
around Gadanki, which is shown in Fig. 1b. The total at-
mospheric column ozone value is less (∼255 Dobson Units)
during the first few days of observation (up to day number 8).
From day number 8 onwards, the total ozone values start
increasing and temperature fluctuations also become posi-
tive. The difference between the total ozone between day
number 8 and day number 16 is about 18 DU. In general,
a positive correlation can be observed between stratospheric
temperature and total atmospheric column ozone. Since the
major contribution to the total atmospheric column ozone
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Fig. 1. (a) Time-height variation of temperature fluctuations (b) Total atmospheric column 

ozone data (TOMS data) during February 29 to April 2, 2000. 
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Fig. 1. (a)Time-height variation of temperature fluctuations(b) Total atmospheric column ozone data (TOMS data) during 29 February to 2
April 2000.
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Fig. 2. Time-height section of (a) zonal and (b) meridional wind fluctuations during February 

29 to April 2, 2000. 
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Fig. 2. Time-height section of(a) zonal and(b) meridional wind fluctuations during 29 February to 2 April 2000.

is from the stratospheric ozone, the anomalous cooling ob-
served is likely to be a consequence of the reduction in the
absorption of solar ultra violet radiation due to the reduction
in the stratospheric ozone.

To study the effect of this anomalous cooling on the strato-
spheric dynamics, the zonal and meridional wind fluctuations
during the same period used for the observation of tempera-
ture are analysed and are shown in Figs. 2a and b, respec-
tively. Immediately following the period of cooling (3–7
March), oscillations with a periodicity of∼4 days are ob-
served in the zonal and meridional winds in the altitude re-
gion of 30–50 km. These oscillations are found to possess
almost the same phase over the entire altitude region where
they are observed. In order to study the characteristics of
these oscillations, the zonal and meridional wind fluctuations
are subjected to wavelet analysis. Significant amplitudes are
observed at wave periods 16-day and 12-day throughout the
period of observation in the case of zonal wind, while these
waves are almost absent in the meridional wind. This in-
dicates that these 16-day and 12-day oscillations are due
to Kelvin waves. Detailed characteristics of these equato-
rial waves observed during this period of observation are re-
ported elsewhere (Sasi et al., 2003) and hence are not repro-
duced here.

Following the period of cooling (3–7 March), prominent
oscillations with a periodicity of∼4 days are observed both
in zonal and meridional winds. These oscillations last for
at least 5 cycles. Since the zonal component of these os-
cillations is superimposed over a large background mean
zonal wind, it is less evident in the zonal wind than that
of the meridional wind. All these oscillations appear as
“pillar-like” with negligible altitude variation in phase. The
largest amplitude of this oscillation appears to be occurring
at ∼40 km. The absence of a short period fluctuation in the
zonal and meridional wind before the cooling period is re-
markable and the above-discussed “pillar-like oscillations”
appear suddenly after the cooling event.

Another important feature observed in Figs. 2a and b is
that the altitude region where the 4-day oscillation occurs
descends with time. In the beginning the 4-day oscillation
appears between 35 and 55 km, while towards the last phase
(around day number 24) this oscillation is prominently ob-
served in the 25–45 km altitude region. Strikingly, a clear
signature of any such 4-day wave is absent in the tempera-
ture fluctuations over this altitude region (Fig. 1a).

Since the “pillar-like” oscillations are most prominently
observed during 8 to 27 March, the zonal and meridional
wind fluctuations during this period are subjected to Fourier
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 Fig. 3.  Altitude-frequency plot of amplitudes of (a) zonal and (b) meridional wind 

fluctuations. 
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Fig. 3. Height-frequency plot of amplitudes of(a) zonal and(b) meridional wind fluctuations.
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Fig. 4. Vertical profile of amplitude and phase of 4-day wave (a) zonal wind and  

                 (b) meridional wind 
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Fig. 4. Vertical profile of amplitude and phase of 4-day wave(a) zonal wind and(b) meridional wind.

analysis, to clearly delineate the properties of these oscilla-
tions. Figures 3a and b show the contour plots of amplitudes
of the oscillations in zonal and meridional wind fluctuations,
respectively. In the zonal wind a 20-day periodicity is promi-
nent in the altitude region of 35 to 65 km. In the 45 to 60 km
region, a 6-day periodic oscillation is prominent. It can be
seen that in the altitude region of 30 to 45 km, 5- and 4-day
periodic oscillations are prominent. In the case of the merid-
ional wind, a 4-day periodicity in the altitude region of 30 to
50 km and a 3-day periodicity in the altitude region of 40 to
50 km are both prominent. The 4-day periodicity in the re-
gion of 30 to 50 km is observed in both zonal and meridional
winds.

The vertical profile of the amplitude and phase of the 4-
day oscillation observed in the zonal and meridional winds
is shown in Figs. 4a and b, respectively. The maximum am-
plitude of the zonal component of the 4-day oscillation is
14 ms−1, which is observed at an altitude of 40 km. A max-
imum amplitude of 8.5 ms−1 is observed for the meridional
component at 44 km. Both in the zonal and meridional com-
ponents, the phase is constant with height over the entire al-
titude region in which the wave has a significant amplitude
(30–45 km), indicating that the wave is not propagating ver-

tically. The zonal and meridional components are in quadra-
ture phase, with the zonal component leading the meridional
component.

4 Discussion

This study provides the observational evidence for the in-
situ generation of atmospheric waves by anomalous perturba-
tions in the temperature fields in the stratosphere. It is found
that a positive correlation exists between total atmospheric
column ozone and stratospheric temperature. A reduction
of about 18 DU is observed in the total atmospheric column
ozone during the period of occurrence of anomalous cooling.
There are a number of studies carried out using long-term to-
tal ozone observations from satellite-based ozone measure-
ments and stratospheric temperature, which reveal a positive
correlation between the two (Ghazi, 1974; Ramaswamy et
al., 1996, 2001; Steinbrecht et al., 2006). Ozone introduces
a nonuniform, space-time cooling (Ramswamy et al., 2001),
which can lead to differential heating of the various regions
of the atmosphere. This differential heating will generate at-
mospheric waves.
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Fig. 5. Vertical profiles of mean (a) zonal and (b) meridional winds during March 

08-17, 2000 and March 18-27, 2000 .  
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Fig. 5. Vertical profiles of mean(a) zonal and(b) meridional winds during 8–17 March 2000 and 18–27 March 2000.

Immediately following the anomalous cooling, a promi-
nent oscillation with a period of∼4-days is observed both
in the zonal and meridional winds in the altitude region of
30–45 km. The maximum amplitude of this 4-day oscillation
is 15 ms−1 in the zonal wind and 8.5 ms−1 in the meridional
wind, which occurs at∼40 km and at∼45 km, respectively.
There is a negligible phase change with altitude in the region
where a significant amplitude is observed. The zonal and
meridional components of these oscillations are in quadra-
ture phase, with the zonal component leading the meridional
component. It appears that the 4-day oscillation is generated
by the anomalous cooling in the stratosphere, which resides
in the source region itself without any vertical propagation.
Strikingly, the altitude of occurrence of this oscillation de-
scends with time.

The mean zonal and meridional winds obtained during the
first and second half of the period of occurrence of the 4-day
oscillation (i.e. mean wind during 8–17 March 2000 and 18–
27 March 2000) are shown in Figs. 5a and b, respectively.
Some of the characteristics of the 4-day oscillation observed
in the present study, such as the wave period, the quadra-
ture phase relationship and the amplitudes of the zonal and
meridional wind components, are similar to that of Rossby
Gravity (RG) waves. However, the absence of any prominent
signature of the wave in temperature and the absence of any
vertical propagation observed in this wave are not character-
istic of RG waves. It may also be noted that the “pillar-like”
structure descends with time (Fig. 2), despite the fact that the
mean wind in the 40–60 km altitude region during the second
half of observation is more eastward, which is favorable for
the sustenance and propagation of RG waves.

The localized cooling that occurred in the stratosphere and
troposphere over the region of study might have produced
differential heating in that area. This differential heating can
act as a perturbation for the generation of atmospheric os-
cillation. There are other possibilities for the generation of

the observed 4-day oscillation, such as horizontal transports
or intrusions in the subtropical barrier and equatorward re-
fraction of planetary waves. During northern fall through
spring, the regions of equatorial westerlies exist over the Pa-
cific and Atlantic Oceans. These westerly ducts will some-
times be responsible for the cross-equatorial propagation of
Rossby waves (Webster and Holton, 1982; Tomas and Web-
ster, 1994; Yang and Hoskins, 1996; Ortland, 1997; Waugh
and Polvani, 2000; Horinouchi et al., 2000). Another pos-
sibility is the equatorward refraction of planetary waves due
to an enhanced temperature gradient. The altitude and lat-
itudinal distribution of ozone depletion impacts the dynam-
ical response in the global stratosphere and is a major fac-
tor in determining the meridional distribution of temperature
changes. If the ozone changes are uniform with latitude,
there would be a radiatively-induced cooling of the lower
stratosphere, maximized in the tropics, with warming in the
higher latitudes (Ramaswamy et al., 2001). Earlier studies
present the possibility of refraction of planetary waves to-
wards the equator, due to enhanced meridional temperature
gradient (Hu and Tung, 2003; Hartman et al., 2000; Kodera,
1994; Kodera and Yamazaki, 1994). Hu and Tung (2003)
suggest that during late winter, due to ozone depletion in
the Arctic, there will be an enhanced meridional tempera-
ture gradient near the subpolar stratosphere, which leads to
a strengthening of westerly winds. The strengthened winds
refract planetary waves toward low latitudes and cause a re-
duction in wave activity of high latitudes. Studies of Kodera
(1994) and Kodera and Yamazaki (1994) show that the cool-
ing of the polar stratosphere can cause a meridional temper-
ature gradient and equatorward refraction of stationary plan-
etary waves. The absence of the horizontal wind data from
other locations in the same altitude region, in order to in-
vestigate the meridional cross section or variation of their
perturbation, prevents the further examination of these pos-
sibilities.
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However, the present study presents a rather rare case of
in-situ generation of a vertically nonpropagating atmospheric
wave that is clearly associated with a cooling of the atmo-
spheric region between 10–55 km, though the genesis of this
wave cannot be unambiguously identified. Further observa-
tional and modeling studies are required for the identification
of the causative mechanism of the observed waves.

5 Summary

An anomalous cooling, which lasted for 5 days, was ob-
served in the upper troposphere and stratosphere in the tem-
perature profiles obtained from Lidar and MST radar. The
cooling appears to have occurred as a consequence of a re-
duction in the total atmospheric column ozone. Immediately
following this anomalous cooling, a 4-day wave with little
vertical phase propagation was observed in both zonal and
meridional winds. While some of the characteristics of this
wave are similar to RG waves, the absence of the vertical
propagation and the absence of the temperature fluctuation
are uncharacteristic of RG waves. While these types of os-
cillations can also be manifested as a result of the horizontal
transport of the extratropical system, the absence of data to
study the meridional cross section of these waves prevents
further examination of this aspect. Strikingly, the period of
this oscillation corresponds to the period of anomalous cool-
ing in the 20–50 altitude region. This also suggests the pos-
sibility that in-situ generation of the wave is associated with
this large cooling. Further studies are required for the identi-
fication of the causative mechanism of the observed waves.
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