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Abstract. We analyze coupled Alfv́en and slow magne-
tosonic eigenmodes in a dipole geomagnetic field with dif-
ferent ionospheric conductivities in the framework of ideal
magnetic hydrodynamics (MHD) with finite pressure. We
use numerical and, if possible, analytical methods to describe
eigenmode frequencies, growth rates and eigenfunctions.
The spectrum of Alfv́en and slow magnetosonic modes is dis-
crete and equidistant. The frequencies of the first Alfvén and
slow magnetosonic eigenmodes are estimated as∼1 Hz and
∼1 mHz, respectively. In the case of finite conductivity, peri-
odic and aperiodic modes are separated and their interaction
analyzed. It was shown that periodic and aperiodic perturba-
tions can mutually transform into each other. A new flute sta-
bility criterion is derived (α∼4.25), which is stricter than the
Gold criterion (α=20/3). Here, as usual,α=−L/p dp/dL.
For flute perturbations, the deviations of transversal displace-
ment from a constant are calculated. An approximation for
longitudinal displacement is derived. We determined the po-
sition of the main longitudinal peak, which can be responsi-
ble for nonlinear structures observed by Freja. An influence
of nonlinear terms in pressure is estimated as well.

Keywords. Magnetospheric physics (Magnetosphere-
ionosphere interactions; MHD waves and instabilities)

1 Introduction

This article is dedicated to the analysis of the eigenmode
spectrum of transversally small-scale ULF MHD perturba-
tions in the inner magnetosphere of the Earth. This analysis
is an important part of the investigation of waves and insta-
bilities in the magnetospheric plasma. This investigation, in
turn, is important for understanding the processes which ac-
company the substorm onset (particularly, Pi1 and Pi2 pul-
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sations, which fall in the same frequency band as the con-
sidered processes). Such research can eventually lead to the
creation of “space weather” models.

Plasma confined by the geomagnetic field is in a thermo-
dynamical non-equilibrium like any other plasma with pres-
sure. Therefore, according to general theory of plasma in-
stabilities, it can spontaneously acquire collective degrees of
freedom, thus becoming unstable. Magnetospheric plasma
never occupies a low-energy state, due to the constant flow
of energy from outside. In trying to reach the minimum en-
ergy state, the magnetosphere constantly generates unstable
perturbations, which change its configuration and transport
properties.

Some instabilities are associated with motions of macro-
scopic volumes of plasma and can be described with MHD
equations. The other instabilities, which essentially depend
on the difference in motions of different groups of particles in
the same volume, are called kinetic instabilities. They are mi-
croscopic in comparison to large-scale slow MHD motions.
The greatest threat to plasma stability is posed by MHD in-
stabilities with large growth rates, which lead to a rapid re-
construction of the initial equilibrium. As magnetospheric
plasma pressure grows, the main role goes to MHD instabil-
ities, which are powered by plasma’s thermal energy. These
are flute and ballooning modes, which are driven by pressure
and magnetic field line curvature.

The first stability criterion for flute modes was intuitively
obtained in a pioneering paper (Gold, 1959) in the form
α
/
γ=4. The designations will be explained below. Note

that this criterion is analogous to the convective stability con-
dition of gas, compressed by a gravity field. Although be-
ing the main interchange criterion for a long time, the Gold
criterion became a very controversial subject, enlisting both
supporters and opponents. A very similar criterion was ob-
tained by Southwood and Kivelson (1989), who dealt with
finite pressure plasma. However, the Gold criterion was crit-
icized by Cheng (1985), who disputed the integrability of the
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energetic principle along the field lines, which would lead
to a completely different criterion. This statement was later
supported by Liu (1996), who also criticized the confirmation
of the Gold criterion by Rogers and Sonnerup (1986), stating
that it was only due to an incidental property of the toroidal
model used. We tend to agree with Liu (1996), because, as
it was shown by Chan et al. (1994), the dipole flux surface
is pushed outward by the finite pressure and taking this ef-
fect into account would lead, in our opinion, to a significant
distortion of the stability criterion. This statement is addi-
tionally proven by this article, as it shows that in the case of
curved magnetic field lines, the transversal amplitude of flute
perturbations deviates from the constant and is accompanied
by significant longitudinal displacements. The stability cri-
terion derived in the paper by Cheremnykh and Parnowski
(2006a) and later improved in the paper by Cheremnykh and
Parnowski (2006b) is by about one-third less than the Gold
criterion (∼4.25 against∼6.67). Given the problem that ra-
dial pressure gradients in the magnetosphere (Lui and Hamil-
ton, 1992; DeMichelis et al., 1999) are insufficient to break
the Gold criterion, it is crucial to determine which instabil-
ities can be triggered in the magnetosphere. Besides, inter-
change instability can explain the strong ejections of plasma
at the time of magnetospheric substorms (Swift, 1967).

Ballooning modes are well known in the magnetic fu-
sion literature as pressure driven instabilities, analogous to
the instability developing at a weak spot of a pressurized
elastic container. Ballooning perturbations are also some-
times called transversally small-scale modes. The assump-
tion of smallness of the transversal scale of perturbations has
a profound physical meaning: (fast) magnetosonic waves,
exhibiting themselves in compression and depression of field
lines and being suppressed by the stationary magnetic field
of the Earth at low plasma pressure, are thrown away and
only Alfv én and slow magnetosonic (acoustic) waves, which
are the most dangerous to the stability, are considered. So,
perturbations of plasma, submersed in a stationary magnetic
field, are a hybrid of Alfv́en and slow magnetosonic waves. It
is just these waves which form perturbations of the balloon-
ing type. In the case of the magnetosphere, such a stationary
field is the geomagnetic one, and in the case of fusion re-
search, the stationary field of a device. This is one of the
reasons why ballooning modes are so important in magneto-
spheric and fusion research.

This article is a further development of our earlier research
(Cheremnykh and Parnowski, 2004, 2006b), (Cheremnykh
et al., 2004). We omit the derivation of the equations for
the sake of brevity; those interested should consult either
Cheremnykh et al. (2004) or, preferably, Cheremnykh and
Parnowski (2006b). We would, however, indicate that this
derivation was identical in the sense that we did not use any
nonidentical operators, except for the ballooning approxima-
tion, so we believe that the eigenmode spectrum of our equa-
tions coincides with that of the original MHD equations for
ballooning perturbations.

The set of equations describing Alfvén, slow and fast mag-
netosonic waves, which took into account finite ionospheric
conductivity, was identically obtained from the MHD equa-
tions by Klimushkin (1997). However, he used a box model
of the magnetosphere and therefore missed an important phe-
nomenon of Alfv́en-magnetosonic coupling. He associated
the eigenmodes of the Alfvén resonator with Pc4 pulsations.
This was also pointed out by Mager and Klimushkin (2002),
who found out that Pc4 pulsations cannot exist in the absence
of plasma pressure due to the transparency region being too
narrow in this case. They came to the conclusion that mag-
netospheric MHD waves should be investigated only when
a field line curvature and plasma pressure are taken into ac-
count.

Lakhina et al. (1990) took into account the influence of
plasma co-rotation as a toroidal mass flow with an arbitrary
Mach number on arbitrary polarized ballooning perturba-
tions of plasma with arbitrary pressure. They managed to
obtain the equilibrium equation for this case. Using the ener-
getic principle, they obtained that toroidal flow does not gen-
erate ballooning modes, but rather stabilizes or destabilizes a
present stable or unstable situation. Thus, plasma co-rotation
does not affect stability.

Hameiri et al. (1991) also considered the gravitational
potential; however, they switched to the cold pressureless
plasma limit when calculating the ballooning frequencies.

Thus, the model used in this article, unlike others, takes
into account magnetic field line curvature, plasma pressure,
boundary conductivity and arbitrary polarization of perturba-
tions simultaneously.

2 The equations of small oscillations

We identically derived the equations of small oscillations
from ideal MHD equations using the definition of the mag-
netic label and the static plasma equilibrium∇p= [jB], pro-
vided by a dipole magnetic fieldB and a toroidal currentj ,
in terms of a plasma displacement vectorξ . Isotropic pres-
sure was assumed. We also neglected the convection and the
deviations from the dipole field due to the low-beta approx-
imation used. Applying ballooning approximation to them,
we obtain the Dewar and Glasser (1983) equations describ-
ing ballooning perturbations in an arbitrary geometry of the
magnetic field. Then we cast the dipole magnetic field into
them and rewrite them for an individual magnetic field line,
taking into account that ballooning perturbations are field-
line-driven. After that, we rewrote them in a dimensionless
form (Cheremnykh and Parnowski, 2006b)

�2c6b−1ξ
(
1 + λ2b

)
+ 4c4b−2

(
T0 + αβγ−1ξ

)
+

[(
1 + λ2b

)
b−1ξ ′

]′
= 0, (1)

η + λξ = 0, (2)
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�2τ + c−3T ′

0 = 0, (3)

T0 =

(
β−1

+ c6b−1
)−1

[
c−3

(
c6b−1τ

)′

− 4cb−2ξ

]
, (4)

where the prime indicates a derivative with respect to
x= sinθ along the field line,b=1+3x2, andc=1−x2. The
coordinate system is spherical (ϕ is the toroidal angle (ge-
omagnetic longitude),θ is the poloidal angle (geomagnetic
latitude), andr=L cos2 θ is the equation for the geocentric
radius of the field line) for the parameters and Cartesian (B

|B|
2

– longitudinal, ∇ψ

|∇ψ |
2 – poloidal, [B∇ψ ]

|B|
2 – toroidal) for the dis-

placement components. The term “poloidal displacement” is
used here in the same sense as in the article by Hameiri et
al. (1991), i.e. a displacement in a direction normal to the
magnetic surface. Note that when speaking about fields, it is
common to call this direction “scaloidal”, as proposed by El-
sasser (1946). Other quantities in Eqs. (1–4) are:�=fLc−1

A

is the dimensionless frequency,f is the actual frequency in
Hz, L is the McIlwain (1961) parameter,cA is the Alfvén
velocity, ξ=ξ

∇ψ

|∇ψ |
2 +η

[B∇ψ ]
|B|

2 +τ B

|B|
2 is the plasma displace-

ment vector,ξ=ξ∇ψ is the poloidal displacement (Alfvén),
η=ξ

[B∇ψ ]
|∇ψ |

2 is the toroidal displacement (Alfvén), τ=ξB is

the longitudinal displacement (slow magnetosonic),λ is the
polarization parameter (Cheremnykh and Parnowski, 2006b;
Dewar and Glasser, 1983),α=−

L
p
dp
dL

is the pressure profile,

β=γpB−2
0 is the plasma beta taken on the equatorial plane,

γ=5
/

3 is the ratio of specific heats,B0=ML
−3 is the value

of the magnetic field at the equator,M is the magnetic dipole
momentum of the Earth,T0=γpdivξ is the compressibility
of the perturbations,ρ is the mass density of plasma,p is the
plasma pressure.

Let us discuss the polarization parameterλ. The balloon-
ing approximation is mathematically equivalent to the appli-
cation of the transversal eikonal exp

(
−if t+iχ

/
ε
)
, where

ε�1 is the characteristic transversal scale, andχ is the
eikonal function, which satisfies the conditionB∇χ=0.
The dipole magnetic field can be represented in the form

B= [∇ψ∇ϕ], whereψ=
M cos2 θ

r
=
M
L

is the magnetic flux.
Thus, we can write[∇ψ∇ϕ] ∇χ=0, which is equivalent
to ∇χ=kψ∇ψ+kϕ∇ϕ, wherekψ=∂χ

/
∂ψ andkϕ=∂χ

/
∂ϕ

are constant on the field line. The polarization parameterλ,
defined asλ=kψ

/
kϕ , is therefore also constant on the field

line and is characteristic of the orientation of thek⊥=∇χ

vector, which was identified as a wave vector of the fast mag-
netosonic wave by Hameiri, Laurence and Mond (1991). For
Alfv én wavesξ⊥∇χ=k⊥ξ⊥=0, whereξ⊥=ξ−τ B

|B|
2 is the

transversal displacement. Thus, considering Eq. (2), when
λ=0, the perturbations are poloidal (ξ⊥=ξ

∇ψ

|∇ψ |
2 ), and when

λ=∞, the perturbations are toroidal (ξ⊥=η
[B∇ψ ]
|B|

2 ). In the

case of arbitrary polarizationξ⊥=ξ
(

∇ψ

|∇ψ |
2 −λ

[B∇ψ ]
|B|

2

)
.

Equation (1) describes Alfv́en modes (transversal), Eq. (2)
– their polarization, Eq. (3) – slow magnetosonic modes (lon-

gitudinal), Eq. (4) – Alfv́en-magnetosonic coupling (plasma
compressibility).

Note that in the finite pressure plasma with tied curved
magnetic field lines, there are no pure Alfvén or slow magne-
tosonic modes; both components are always present. We call
the eigenmodes “Alfv́en” or “slow magnetosonic” after the
dominant component. For the Alfvén eigenmode, a longitu-
dinal component is typically several percent of a transversal
one, and for a slow magnetosonic eigenmode, it is larger by
three to six orders.

The boundary conditions for Eqs. (1–4) in the case of
the resistive boundary have the form (Cheremnykh and
Parnowski, 2006b)

�bξ
(
1 + λ2b

)
+ iδ[

2x
(
1+λ2b

)
ξ ′

−c5
(
T0+αβγ

−1ξ
)]∣∣∣

x=±x0
=0, (5)

ξ + 2xcτ |x=±x0
= 0, (6)

whereδ= (6P cA)−1 is the dimensionless squared thickness
of the skin layer (6P=

4π
c2 6

(CGS)
P , where6(CGS)

P is the inte-
gral Pedersen conductivity of the ionosphere in Gauss units),
x0=

√
1−L−1 is the boundary value ofx. Boundary condi-

tion (5) states that the magnetospheric current closes on the
ionosphere, and Eq. (6) states that the perturbation does not
propagate in the atmosphere due to its neutrality and much
larger density.

Equations (1–4) can also be obtained from Eqs. (16a,
b) from the article by Hameiri (1999), and Eqs. (5),
(6) – from Eqs. (17a, b) ibid by substitutingX→ξ ,

Y→
c6

b
τ , N2

→c3 1+λ2b
b

, B2
→

b

c6 , K→
4c
b2 , ρXt t→−�2ξ ,

ρYt t→−
c6

b
�2τ , βB2

(
Y ′

−KX
)
→T0, ṗ→

αβ
γ

, p→
β
γ

,

β→
βc6

b+βc6 , Nn→ c2

b
, Bn→2x

c3 , 6⊥→
2
δ2 , ()′ → 1

c3 ()
′. Never-

theless, Eqs. (1–4) were obtained independently from the ar-
ticle by Hameiri (1999), by a different method, and are based
on a different model of the magnetosphere. Boundary condi-
tions (5), (6) are identical to those obtained by Hameiri and
Kivelson (1991), and later discussed by Hameiri (1999).

Let us consider even and odd linear combinations, such
as 1

2 (ξ (x)±ξ (−x)). These combinations satisfy Eqs. (1–3)
due to their linearity, as well as boundary conditions. Note
that even combinations forξ are connected only with odd
combinations forτ and vice versa. We determine the par-
ity of the solution by transversal amplitude (ξ) symmetry;
longitudinal amplitude (τ) will have an opposite symmetry.
We consider even and odd perturbations separately. Even
modes satisfy the additional conditionsξ ′

∣∣
x=0 =0, τ |x=0 =0

and the odd ones –ξ |x=0 =0, τ ′
∣∣
x=0 =0. In general, the so-

lutions of Eqs. (1–3) are a sum of odd and even eigenmodes.
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Figure 1a. Dependence of Alfvén spectrum on McIlwain number in cold plasma case with 

ideally conductive ionospheres. The finite width of spectral lines is due to different 

eigenmode polarizations (upper limit — toroidal, lower — poloidal). 
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Fig. 1a. Dependence of Alfv́en spectrum on McIlwain number in
the cold plasma case with ideal conductive ionospheres. The finite
width of the spectral lines is due to different eigenmode polariza-
tions (upper limit – toroidal, lower – poloidal).

3 Conductive boundary

In this case boundary conditions have the form

ξ |x=±x0
= 0, τ |x=±x0

= 0 (7)

and the solutions of Eqs. (1–3) are real. It follows from
Eqs. (1), (2) that frequencies of arbitrary polarized pertur-
bations fall between the frequencies of poloidal and toroidal
perturbations. Thus, we shall consider primarily these two
polarizations.

In the case of toroidal polarization (λ→∞) Eqs. (1), (2)
take the form

�2c6η + η′′
= 0, ξ = 0, (8)

and Eq. (3) holds. Equation (8) was derived by Cheng et
al. (1993). The eigenmode spectrum consists of two inde-
pendent branches. The first branch is determined by Eq. (8)
and the boundary condition (7). Its frequency is determined
only by the mode number and McIlwain parameter. The sec-
ond branch is determined by Eq. (3) and the boundary con-
dition (7). It also depends on plasma beta�∼

√
β. Several

lowest modes of each type are presented in Fig. 1a, b, cor-

respondingly in coordinates(L, �) and
(
L, �β−1/2

)
. In(

β, �2
)

coordinates the spectrum for fixedL consists of
horizontal lines (Alfv́en modes) and diagonal lines running
through the origin (slow magnetosonic modes). One can see
that the eigenmode spectrum is discrete. This suggests that
the observed ULF spectrum will also be discrete. Estimated

 

2 4 6 8
L

10
0

2

4

6

8

10
Ω/β1/2

 

 

 

Figure 1b. The spectrum of slow magnetosonic modes (solids — even, dashes — odd). 
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Fig. 1b. The spectrum of slow magnetosonic modes (solids – even,
dashes – odd).

frequencies of slow magnetosonic modes are about 10−3 Hz
(“low”), and of Alfv én ones – about 10−1–1 Hz (“high”).

In the case of poloidal polarization (λ=0) the Eqs. (1), (2)
take the form

�2c6b−1ξ + 4c4b−2
(
T0 + αβγ−1ξ

)
+

(
b−1ξ ′

)′

= 0,

η = 0, (9)

and Eq. (3) holds. The spectrum is similar to the previous
case except for one principal distinction. The intersection
points of different branches in the previous case contain de-
generation, while in this case this degeneration is lifted due
to the presence of perturbing term (4) in Eq. (9). This is
seen in the plots as “coupling” of spectral branches (Fig. 2).
In these points Alfv́en and slow magnetosonic modes mutu-
ally transform into each other, and the energy is transferred
between “high”- and “low”-frequency oscillations. Near the
“coupling” point the eigenmodes cannot be identified as ei-
ther Alfvén or slow magnetosonic – they are both at once.

The form of these curves can be calculated only numer-
ically. Note that only the spectra of the same parity cou-
ple; spectra of different parity intersect and such modes do
not interact. Forβ=0 poloidal frequencies are lower than
the toroidal ones (Fig. 1a). The inclination of these lines
at low β is determined byα. Figure 2 demonstrates an ar-
bitrary polarized spectrum, confirming that eigenmode fre-
quencies are bounded by poloidal and toroidal frequencies.
This plot has an interesting feature: there are three points,
β=0.1, 0.2, 0.6, where frequency does not depend on po-
larization.
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Fig. 2. Dependence of spectrum on beta and polarization for per-
fect conductivity (δ=0). Horizontal and near-horizontal lines cor-
respond to Alfv́en modes; lines running through the origin corre-
spond to slow magnetosonic modes. Captions near the curve indi-
cate a type of eigenmode (“A” – Alfv́en mode, “S” – slow magne-
tosonic mode), the number of the eigenmode and the polarization of
the eigenmode (“P” – poloidal (λ=0), “T” – toroidal (λ→∞), “I”
– intermediate (λ=1); absent for higher-order slow magnetosonic
modes due to a lack of space).

In the case of arbitrary polarization, eigenmode frequen-
cies fill the area between poloidal and toroidal frequencies.
This area is shaded in Fig. 1a. So, an external source with
fixed frequency� can generate oscillations on certain mag-
netic shells, as predicted by Leonovich and Mazur (1998).
Similarly, a given magnetic shellL=const can resonate with
external sources if their frequencies fall in a certain fixed
interval of frequencies, as was pointed out by Mager and
Klimushkin (2002). It also means that the observed discrete
spectrum will actually be a band-pass spectrum.

The physical frequency of the first Alfvén mode appears
to be about 0.1–1 Hz, depending onL; and the physical fre-
quency of the first magnetosonic mode is about 1 mHz.

Except for eigenmode spectra, we also investigated eigen-
functions. Numerical analysis has shown that transversal am-
plitudesξ andη have no peculiarities, but longitudinal ampli-
tudeτ has an interesting behavior near the boundary. When
a valueF=2β−1/2� is low, this behavior exposes itself in
the form of a large single peak, and when this value is high, a
single peak transforms into a series of positive and negative
peaks, which become larger when moving to the boundary
(Fig. 3). This was verified for several points with the same
value ofF . This effect is strongest at high values of the McIl-
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Figure 3. Third order even eigenfunctions for 10=α , 01.0=β . 
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Fig. 3. Third order even eigenfunctions forα=10,β=0.01.

wain parameter when a valueε=1−x becomes a small pa-
rameter. In this case we can decompose Eq. (1) into a series
of ε. As a result, we obtain one of the classical forms of the
Bessel equation:ε2τ ′′

−9ετ ′
+
(
12+ε2F 2

)
τ=1

4

(
ξ ′

−ξ
/
ε
)
.

Its solution has the formτ=τ1+τ2 with

τ1 = Cε−4 (Y2 (Fε)− AJ2 (Fε)) , (10)

τ2 =
π
8 ε

−4

[
Y2 (Fε)

ε∫
ε0

ζ 4
(
ζ ξ ′

+ ξ
)
J2 (F ζ ) dζ

−J2 (Fε)

ε∫
ε0

ζ 4 (ζ ξ ′
+ ξ

)
Y2 (F ζ ) dζ

 , (11)

where J2 and Y2 are second order Bessel functions of
type one and two correspondingly,C andA are constants,
ε0=1−x0, ζ is the integration variable, corresponding toε.
In most casesτ1�τ2. Then we can drop theτ2 term and
the constantA is determined from boundary conditions (7)
at x=x0 (ε=ε0): A=Y2 (Fε0)

/
J2 (Fε0). If we changeα

from 10 to 1, functionξ won’t change, and functionτ will
change its amplitude by 5 times. In any case, these functions
perfectly fit the approximation (10); therefore, coefficientC

significantly depends onα for both the single peak and the
series of peaks.

Using the obtained result, we can determine the position
xmax of the main peak ofτ . To do this we differentiate
Eq. (10) and equate the derivative to zero atx=xmax. This
gives us the value ofxmax in dependence fromx0 andF .
Choosing the values ofF , corresponding to diagonal spec-
tral lines, we determine the value ofxmax for magnetic shells
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Fig. 4. Stability thresholds of the magnetospheric MHD modes:
Flute modes (1 – nonlinear criterion (19), 2 – linear criterion (16),
3 – Gold criterion); Ballooning modes (4 – ballooning modes with
ideally conductive ionosphere, 5 – ballooning modes with resistive
ionosphere). The region of stability lies below the corresponding
boundary.

with McIlwain numbers 2...10. They lie in a narrow alti-
tude range, where plasma with a tied magnetic field experi-
ences strong longitudinal oscillations with different frequen-
cies simultaneously. As a result, one should expect the de-
velopment of nonlinear effects and structures, leading to the
excitation of higher-order harmonics. This effect should be
especially strong in high magnetic latitudes and can be con-
nected with nonlinear effects. Similar effects were observed
by Freja (Stasiewicz et al., 1997) at the altitude 1475 km at
L∼6, which falls in the said range.

This extraordinary behavior ofτ affectsξ negligibly, be-
cause all terms withτ in Eq. (1) contain a coefficientc7,
which is extremely small near the boundary.

4 Resistive boundary

In this case (0<δ<∞) boundary conditions (5), (6) are com-
plex, and so are the solutions, i.e. dimensionless variablesξ ,
η, τ , and�. However, one should remember that dimension-
less variables are related to actual physical quantities with
complex relations. For example, to obtain the actual dis-
placement one should multiply the dimensionless variables
τ and ξ by exp

(
−if t+iχ

/
ε
)
, whereχ

/
ε is a transversal

eikonal; see Cheremnykh et al. (2004); Cheremnykh and
Parnowski (2006b), and take a real part of the result. In par-

ticular, a solutionξ exp
(
−if t+iχ

/
ε
)

gives a real function
in the form

Re
(
ξ exp

(
−if t+iχ

/
ε
))

= |ξ |
∣∣expiχ

/
ε
∣∣

exp(−0ωAt) cos(ωωAt− argξ− arg (expiχ/ε)) .

Thus, the role of the dimensionless amplitude is held by|ξ |,
and argξ describes the phase shift between oscillations in
different parts of the field line. Because the cosine is an even
function, each actual real solution corresponds with two di-
mensionless complex solutions with different signs of fre-
quency and complex conjugate displacements. We shall give
only solutions with positive values of the frequency.

In this section, we consider primarily poloidal perturba-
tions, because the dependence of spectra on polarization is
nearly the same at any conductivity.

4.1 Aperiodic perturbations

Although the boundary condition (5) is complex, there is one
important case when it becomes real. It is the case of ape-
riodic perturbations whenω≡Re�=0,�=i0, i.e. the com-
plex frequency is purely imaginary and its imaginary part0

will be called the growth rate for both positive and negative
values. In the latter case it equals the decay rate with a nega-
tive sign. This class of solutions consists of flute (even) and
incompressible (odd) perturbations. Equations (2), (4), (6)
hold, and Eqs. (1), (3), (5) can be rewritten as

−02c6b−1ξ+
(
b−1ξ ′

)′

+4c4b−2
(
T0+αβγ

−1ξ
)

=0, (12)

− 02c3τ + T ′

0 = 0, (13)

0bξ + δ
[
2xξ ′

− c5
(
T0 + αβγ−1ξ

)]∣∣∣
x=±x0

= 0. (14)

We analyze the set (12–14) to determine the dependence of
the growth rate on parametersα, β, δ, andL. As before, we
also investigated eigenfunctions. Before going to numerical
results we shall give some analytical relations.

Let us consider the behaviour of the equations at low val-
ues ofβ. When0 andβ are small, Eq. (12) has two obvious
solutions: ξ=const (flute modes) andξ=const·(x+x3) (in-
compressible modes). We shall assume that these constants
equal one.

Even modes have solutions with0=kβ, k=const. For
themξ=1+βf (x). From the first order inβ of Eqs. (12),
(14) we obtain

k = δ
(
αγ−1R1 − R2

)
,

f ′
= b

x∫
0

(
16c5b−4

− 4c4b−2αγ−1
)
dx, (15)
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where R1=8x0

x0∫
0
c4b−2dx, R2=32x0

x0∫
0
c5b−4dx. From

Eq. (15) we see thatk∼δ andk grows whenα increases and
crosses zero at

αγ−1
= R2

/
R1, (16)

which corresponds to the stability threshold (2 in Fig. 4).
Note that substituting the integrals inR1 andR2 with 1, we
obtain the classical criterion of an interchange stability, ob-
tained by Gold (1959) (3 in Fig. 4). However, integralsR1
andR2 depend onx0 and thus from the McIlwain parame-
ter L. At high values ofL this dependence is very weak,
though. The values ofR1 andR2 in dependence onL are
given in Table 1.

For odd modesξ=x+x3
+O (β). Casting this into

Eq. (14), we obtain0
(
1+x2

0

)
+2δ=0, which is impossible

when0→0 atβ→0. Thus, odd modes cannot run through
the origin of the growth rate plot(0=0, β=0). Neverthe-
less, it is possible when0 tends to a finite value00 6=0
at β→0. Zeroeth order inβ of Eqs. (12), (14) gives us(
b−1ξ ′

)′
=02

0c
6b−1ξ , δ=−

1
2b0x

−1
0 00ξ (x0)

/
ξ ′ (x0).

For even modesξ ′ (0)=0, for odd onesξ (0)=0. The lat-
ter equation can be easily solved numerically for fixed values
of 00. The odd curve tends to zero atδ=0 and has a solution
at anyδ. For even modes there is a minimal valueδ=δ0, be-
low which a solution(0=00, β=0) is absent. The values of
δ0, depending onL, are given in Table 1. In any case00 is
negative, which corresponds to stability.

Now let us consider the behaviour of Eqs. (12–14) near
the stability threshold, i.e. at0→0. From Eq. (13) it
is seen thatT0→const. For even modesξ≈1+0np (x),
T0≈−αβγ−1

+0kq (x). At that Eq. (13) takes the form
02c3τ=0kq ′ (x), which immediately gives usk=2. Taking
this into account, Eq. (14) transforms into

0b0+δ
(
2x00

np′ (x0)−c
5
0

(
02q (x0)+αβγ

−10np (x0)
))

=0, (17)

whence n=1. Now we can determine the form ofτ
near the stability threshold. For this purpose let us
write the expression forT0 in the zeroeth order in0:
c−3

(
c6b−1τ

)′
=4cb−2

−αγ−1, whence taking into account
Eq. (5),

τ=bc−6

 x∫
x0

(
4c4b−2

−αγ−1c3
−αβγ−1c9b−1

)
dx−1

2c
5
0x

−1
0 b−1

0

 . (18)

The conditionτ (0)=0 gives us the expression for the stabil-
ity threshold

α

γ
=

∫ x0
0 4c4b−2dx +

1
2c

5
0x

−1
0 b−1

0∫ x0
0 c3dx + β

∫ x0
0 c9b−1dx

=
R3 (L)

1 + βR4 (L)
. (19)

The values ofR3 andR4 are presented in Table 1. To obtain
the functionτ for fixed β andL one should calculateα by
the formula (19) and cast it into Eq. (17).

Table 1. Values of coefficients.

L δ0 R1 R2 R3 R4 R5

2 2.555 1.632 5.028 2.602 0.515 5.759
3 2.522 1.887 5.806 2.541 0.506 5.853
4 2.495 2.002 6.159 2.533 0.504 5.861
5 2.478 2.068 6.361 2.531 0.504 5.863
6 2.465 2.111 6.492 2.530 0.504 5.863
7 2.456 2.141 6.584 2.530 0.504 5.863
8 2.450 2.163 6.652 2.530 0.504 5.863
9 2.444 2.180 6.705 2.530 0.504 5.863
10 2.440 2.194 6.746 2.530 0.504 5.863

It is easy to see from Eqs. (1–6) that Eq. (19) holds for
the insulating boundary (6P=0, δ→∞), as well. For this
reason the stability threshold in cases 0<6P<∞ and6P=0
will be the same. This result conforms to Theorem 2 from
the paper by Hameiri (1999), which states that “a ballooning
perturbation occurs for resistive bounding ends if, and only
if, it occurs when bounding ends are insulators”.

It is also interesting to determine the deviations ofξ
from the constant, given by functionp (x). It satisfies in
the first order inβ Eq. (12)

(
b−1p′

)′
+4αβγ−1c4b−2p=0

with given boundary conditions. They arep′ (0)=0 and the
condition following in the first order inβ from Eq. (17)
2x0p

′ (x0)=αβγ
−1c5

0p (x0)−b0δ
−1. Its solution has the

form p (x)=δ−1F (x). Thus,

ξ = 1 + 0δ−1F (x) .

In particular, this means that atδ→∞ (6P=0) ξ=const, and
at δ=0 (6P→∞) the deviations become infinite, i.e. flute
modes cannot exist.

For odd functionsT0=0. This is seen from the symmetry
and can be proven in the following way. Let us introduce
u (x)=ξ (x)

/
ξ (x0), A=T0

/
ξ (x0), t (x) = τ (x)

/
ξ (x0).

From Eqs. (4), (10) one can easily obtain

t=bc−6

(
−

1
2c

5
0x

−1
0 b−1

0 +

x∫
x0

(
4c4b−2u+Ac3

(
β−1

+c6b−1
))
dx

)
. (20)

The conditiont ′ (0)=0 can hold only whenA=0. This
result is also quite obvious from physical speculations:
T0=γp divξ determines the compressibility of perturbations
and the conditionT0=0 corresponds to incompressible per-
turbations. Equation (12) acquires the form(
b−1u′

)′

+ 4c4b−2αβγ−1u = 0. (21)

It has boundary conditions u (0)=0, u (x0)=1,
u′ (x0)=

1
2c

5
0x

−1
0 αβγ−1. This is possible only with a

certain product

αβγ−1
= R5 (L) . (22)
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Figure 5a. Spectrum of flute modes for 01.0=δ  (local noon). 
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Fig. 5a. Spectrum of flute modes forδ=0.01 (local noon). 
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Figure 5b. The same for  (dawn/dusk). 1=δ
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Fig. 5b. The same forδ=1 (dawn/dusk).

Its values are listed in Table 1. With a given value ofαβγ−1

we can calculateu (x) by Eq. (21) and casting into Eq. (20)
obtaint (x).

It can be seen from Table 1 that atβ<1 the values ofα cor-
responding to the stability threshold for flute perturbations
are much lower than for the incompressible perturbations.

Let us go to the numerical results. They are presented on
Figs. 5a–e in the form of0 (β) plots at constant values ofα
andδ. We have chosen the somewhat unrealistic valueL=10
to emphasize some effects, which are nearly unnoticeable at
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Figure 5c. The same for  (slightly below the 35.2=δ 0δ  value). 

 30

Fig. 5c. The same forδ=2.35 (slightly below theδ0 value). 
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Figure 5d. The same for  (slightly above the 5.2=δ 0δ  value). 
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Fig. 5d. The same forδ=2.5 (slightly above theδ0 value).

low L values. We considered odd and even modes separately.
Special attention was paid to valuesδ=10−2, 1, 102,
which correspond to day, dawn/dusk, and night sectors. For
even modes we also considered valuesδ=2.35 andδ=2.5,
which fall slightly above and belowδ0.

The corresponding dependences are shown in Fig. 5. For
odd modes, similar plots have no interesting features. In
all cases the intersections with theβ axis are described by
Eq. (19) for even modes and Eq. (22) for odd ones. For the
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Figure 5e. The same for  (local midnight). 100=δ
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Fig. 5e.The same forδ=100 (local midnight).

curves running through origin, Eq. (18) also holds true. The
values of00 differ slightly from those given in Table 1, which
can be caused by a dropped term withτ .

We also investigated the eigenfunctions. Near the stability
threshold, both even and odd functions completely coincide
with the above-mentioned analytical predictions. In the gen-
eral case, far from the stability threshold, it is possible to
obtain an approximate expression forτ whenx∼1. This is
possible only for large McIlwain numbers. Functionτ in this
case can be expressed in the formτ=τ1+τ2+τ3, where

τ1 = Rε−4 (K2 (Gε)− AI2 (Gε)) ,

τ2 = −
1
4ε

−4ε3
0ξ (x0) I2 (Gε)

/
I2 (Gε0),

τ3 =
1
4ε

−4

[
K2 (Gε)

ε∫
ε0

ζ 4
(
ζdξ

/
dζ + ξ

)
I2 (Gζ) dζ

− I2 (Gε)

ε∫
ε0

ζ 4 (ζdξ/dζ + ξ
)
K2 (Gζ) dζ

 .
HereI2, K2 are modified second order Bessel functions of
type one and three, correspondingly,A=K2 (Gε0)

/
I2 (Gε0),

G=2β1/20. Functionsτ1 andτ3 vanish atx=x0, and func-
tion τ2 ensures the satisfaction of boundary condition (5).
Boundary condition (6) can be satisfied by scaling the coef-
ficientR in τ1. Termτ3 influencesτ weakly.

4.2 Periodic perturbations

Numerical calculations show thatω and 0 significantly
depend onδ. At low values of δ the dependence of
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Figure 6. Dependence of spectrum on beta and profile of pressure for 01.0=δ . Captions near 

the curve indicate type of eigenmode (“A” — Alfvén mode, “S” — slow magnetosonic mode, 

“F” — flute mode), number of eigenmode for periodic modes or growth rate sign for 

aperiodic modes and value of α  in parentheses. 
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Fig. 6. Dependence of spectrum on beta and profile of pressure for
δ=0.01. Captions near the curve indicate the type of eigenmode
(“A” – Alfv én mode, “S” – slow magnetosonic mode, “F” – flute
mode), number of eigenmode for periodic modes or growth rate
sign for aperiodic modes and value ofα in parentheses.

Re�2
=ω2

−02 on β for periodic perturbations, shown in
Fig. 6, is very similar to the dependence of�2 onβ at δ=0,
shown in Fig. 2. Note that at fixed parameters the eigenmode
spectrum is discrete. It contains harmonics with both zero
and non-zero frequencies. The spectrum in this case consists
of curves describing Alfv́en and slow magnetosonic modes,
which intersect atλ=∞, and couple at finite values ofλ.

Numerical calculations demonstrate that the inclination of
the spectral lines in the (ω, β) plane does not depend on
δ. This effect can be explained in the following way. In
Fig. 6 one can see that slow magnetosonic modes at lowβ

are straight lines�2
=pβ. It follows from Eq. (6) thatRep

does not depend onδ andRep�Imp, because|ω| � |0| for
periodic perturbations. Earlier we mentioned that in the con-
ductive boundary case longitudinal displacementτ is larger
than transversal displacementξ by several orders. Numer-
ical calculations show that this property holds for bound-
ary conditions (5), (6) as well. Considering this, let us find
the values ofRep for even modes. Note that odd frequen-
cies are higher and thus are less interesting. Dropping terms
∼ξ in Eq. (3), we obtain an equation forτ for even modes:(
c−3

(
c6b−1τ

)′)′

+pτc3
=0. It follows from this equation

thatRep does not depend on polarization. Numerical solu-
tions of the eigenvalue problem give us discrete valuesp (L)

for different even harmonics of slow magnetosonic modes.
For L=10 they equal: for the first harmonics 14.6, for the
second – 38.2, for the third – 72.3. Taking into account that
for L=10 τ/ξ>∼103, for realistic conductivity the main
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Figure 7. Dependence of spectrum on ionospheric conductivity for 01.0=β . The first Alfvén 

mode exists only at 35.2<δ  (in day sector). 
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Fig. 7. Dependence of spectrum on ionospheric conductivity for
β=0.01. The first Alfv́en mode exists only atδ<2.35 (in day sec-
tor).

terms in Eq. (5) are proportional toδ, thus this condition in
main terms does not depend onδ.

At small values ofβ Alfv én frequencies do not depend
on α, but depend onδ. For harmonics of second order and
higher these frequencies decrease with the growth ofδ (for
second even mode fromω=9 at δ≤1 to ω=8.3 at δ≥100;
growth rate0 is negative and its absolute value does not ex-
ceed 0.002). The frequency of the first mode quickly de-
creases, reaching zero atδ∼2.3 for β=0.01, then it disap-
pears (Fig. 7). This means that this mode can be observed
only in the day sector. At lowβ values, the inclination of the
Alfv én spectral lines is determined byα in the same way as
for conductive boundary.

At ω=0 this mode laces with aperiodic flute modes. The
lacing point contains a bifurcation: rightwards from this
point there are two F− flute modes. This effect is not visible
clearly enough in Fig. 6, so we present it in detail in Fig. 8a.
Figures 8a–c show a dependence of the growth rate0 from
β. Leftwards from the lacing point, there is a coupling of
Alfv én mode B with flute mode F+, which determines the
stability threshold. Thus, rightwards from the lacing point
the growth rate of the F+ mode rapidly increases.

In the previous section, we considered the behaviour of
flute modes F+ and F−. In particular, the calculations show
that for low δ mode F+ becomes unstable whenβ exceeds
a certain value, which depends onα. However, at lowδ the
growth rate of mode F+ between the mentioned point and the
coupling point is so small that the characteristic development
time of instability exceeds the characteristic variation time
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Figure 8a. Growth rate spectrum for 01.0=δ  (local noon). Note that F+ mode becomes 

unstable right before ballooning mode B splits into two F– modes. 
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Fig. 8a. Growth rate spectrum forδ=0.01 (local noon). Note that
the F+ mode becomes unstable right before the ballooning mode B
splits into two F− modes.
 

0 0.2 0.4 0.6 0.8 1

β
-2

-1.5

-1

-0.5

0

0.5

1
Γ, ω

δ = 2.35

F- (3.5)

F- (3.5)

F+ (3.5)

F (3.2)

B (3.2)

F (3.2)

F (3.2)

B (3.5)

B (3.2)

B

ω(β) for B (3.2)

ω(β) for B (3.2)

ω(β) for B (3.5)

ω(β) for B

 

 

 

Figure 8b. Growth rate spectrum for 35.2=δ  (dawn/dusk). Note that flute modes F+ (3.5) 

and F (3.2) become unstable exactly when ballooning modes B (3.5) and B (3.2) split. 
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Fig. 8b. Growth rate spectrum forδ=2.35 (dawn/dusk). Note that
flute modes F+ (3.5) and F (3.2) become unstable exactly when the
ballooning modes B (3.5) and B (3.2) split.

of the equilibrium processes. For this reason, we should con-
sider the coupling point to be the practical stability threshold.

Calculations show that growth ofδ essentially changes the
coupling of Alfvén and slow magnetosonic modes. Figure 9
shows the plots of the coupling point for different values of
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Figure 8c. Growth rate spectrum for 10=δ  (local midnight). Flute mode F (3.5) becomes 

unstable right after ballooning mode B splits. Flute mode F+ (4.2) is always unstable. 
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Fig. 8c. Growth rate spectrum forδ=10 (local midnight). Flute
mode F (3.5) becomes unstable right after ballooning mode B splits.
Flute mode F+ (4.2) is always unstable.

δ. It is seen that atδ=0.01 coupling is usual. Whenδ grows
the spectral lines deform and tend closer. Finally, at largeδ

coupling transforms into intersection. This means that en-
ergy transfer between “high”- and “low”-frequency oscilla-
tions disappears.

The behaviour of Alfv́en modes is closely related to the be-
haviour of aperiodic perturbations. In the region of the disap-
pearance of the first even mode, i.e. atδ∼2÷3, aperiodic flute
modes show complicated behaviour in the (0, β) plane, fea-
turing closed circles and S-shaped arcs. Calculations show
that at every point of these plots, where∂0

/
∂β tends to in-

finity, the aperiodic mode laces with the periodic mode. At
that point, the periodic mode is directed by the outward nor-
mal to the aperiodic mode. Examples of such behaviour are
shown in Fig. 8b. In the same figure the frequenciesω of
Alfv én modes are also plotted. One can see that the growth
rates are considerably negative. Whenδ grows further, the
lacing of the Alfv́en and flute modes features a bifurcation,
but the growth rates are much lesser.

At largeδ values|0| ∼δ−1. An example of such behaviour
is shown in Fig. 8c. At lowδ values|0| ∼δ. Thus, perturba-
tions develop in the day and night sectors, and decay in dawn
and dusk sectors.

In Figs. 8a–c one can see an important feature: when the
flute growth rate becomes positive and significant in value,
an Alfvén-ballooning mode with non-zero frequency disap-
pears or reappears. Thus, it is possible to discover a flute
instability (which is aperiodic and is very hard to be discov-
ered directly) by monitoring the frequency of the first Alfvén
mode. When this frequency becomes small, it indicates that
flute instability is about to develop.
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Figure 9. Alfvén-magnetosonic coupling for different ionospheric conductivities. At high 
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mode, “S” — slow magnetosonic mode. 
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Fig. 9. Alfv én-magnetosonic coupling for different ionospheric
conductivities. At high conductivity these modes “couple” and at
low conductivity they intersect. “A” – Alfv́en mode, “S” – slow
magnetosonic mode.

5 On the influence of nonlinear terms in pressure

Now let us discuss the accuracy of the obtained results.
In our earlier papers (Cheremnykh et al., 2004; Cherem-
nykh and Parnowski, 2006b), we pointed out that the ac-
curacy of the equations of small oscillations should not ex-
ceed the accuracy of the equation of equilibrium, which was
linear in β. Thus, we should have replaced the coefficient(
c6b−1

+β−1
)−1

in Eq. (4) withβ, thus dropping the nonlin-
ear term inβ. From the physical point of view this means that
we neglect the plasma pressure in comparison with magnetic
pressure. Nevertheless, we see that whenβ is not very small,
this correction is significant in the equatorial region, where
c6b−1

∼1. Thus, all of the given above results were obtained
with this correction. To estimate its influence we additionally
calculated flute eigenmode spectra without it (incompress-
ible modes are not affected by it, becauseT0=0 for them).
The most prominent difference is the flute stability threshold
(1 in Fig. 4). The threshold Eq. (19) with correction appears
lower than the threshold without correction. These facts in-
dicate the importance of taking into account nonlinear terms
in β.

6 Conclusion

Using both numerical and analytical methods, we analyzed
the eigenmode spectra and eigenfunctions for ballooning per-
turbations in a dipole model of the inner magnetosphere of

www.ann-geophys.net/25/1391/2007/ Ann. Geophys., 25, 1391–1403, 2007



1402 A. S. Parnowski: Eigenmode analysis of ballooning perturbations in the inner magnetosphere of the Earth

the Earth for a conductive and resistive boundary. In the lat-
ter case, perturbations are divided into periodic and aperiodic
ones (having zero frequency). The main results are:

1. The eigenmode spectrum is discrete and equidistant and
consists of Alfv́en (transversal) and slow magnetosonic
(longitudinal) modes, which couple due to a field line
curvature, plasma pressure and plasma compressibility.
The frequencies of the first eigenmodes of each type are
∼1 Hz for Alfvén modes and∼1 mHz for slow magne-
tosonic modes. In the case of a resistive boundary, there
are also flute and incompressible modes with zero fre-
quency.

2. Alfv én and slow magnetosonic modes decay in dawn
and dusk sectors of the magnetosphere much stronger
than in day or night sectors. This means that the Pc
pulsations’ spectrum should be more intense in day and
night sectors than in dawn and dusk sectors.

3. MHD stability is defined by flute modes. The cor-
responding stability criterion (19) was derived. Slow
magnetosonic modes are always stable. Flute instability
is accompanied by the disappearance or reappearance of
the Alfvén-ballooning mode with non-zero frequency,
which can be used for diagnostic purposes.

4. Alfv én and flute modes can mutually transfer into each
other. This phenomenon can strongly affect plasma sta-
bility.

5. Longitudinal displacements have a large peak near the
boundary, which can cause the development of non-
linear structures. The position of the peak is deter-
mined and can be associated with nonlinear structures
observed by Freja. Transversal displacements of flute
perturbations deviate from the constant along the field
line due to the field line curvature. The value of the
deviations is calculated.

6. An influence of nonlinear terms in pressure was esti-
mated. They affect both the stability and spectra of the
perturbations. Incompressible modes are unaffected,
since the nonlinear term appears in term (4), which van-
ishes in this case.

Now let us mention possible observational manifestations of
results listed above. Observed spectrum should be a band-
pass spectrum, with Alfv́en modes of about 1 Hz and slow
magnetosonic modes of about 1 mHz. The overall spectral
power in the day and night sectors should be larger than in
the dawn and dusk ones. Flute instability can be detected by
observing extremely low-frequency oscillations; appearance
or disappearance of such modes indicates that flute instability
is about to develop. The first Alfvén mode can be observed
only in the day sector. At altitudes about 1500 km at L=6
there are small-scale structures with large amplitudes (con-
firmed by Freja observations).
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