Ann. Geophys., 25, 1391403 2007 ~ "*
www.ann-geophys.net/25/1391/2007/ G Ann_ales
© European Geosciences Union 2007 Geophysicae

Eigenmode analysis of ballooning perturbations in the inner
magnetosphere of the Earth

A. S. Parnowski
Space Research Institute NASU-NSAU, Kyiv, Ukraine

Received: 4 January 2007 — Revised: 10 April 2007 — Accepted: 31 May 2007 — Published: 29 June 2007

Abstract. We analyze coupled Al&n and slow magne- sations, which fall in the same frequency band as the con-
tosonic eigenmodes in a dipole geomagnetic field with dif- sidered processes). Such research can eventually lead to the
ferent ionospheric conductivities in the framework of ideal creation of “space weather” models.

magnetic hydrodynamics (MHD) with finite pressure. We  Plasma confined by the geomagnetic field is in a thermo-
use numerical and, if possible, analytical methods to describelynamical non-equilibrium like any other plasma with pres-
eigenmode frequencies, growth rates and eigenfunctionssure. Therefore, according to general theory of plasma in-
The spectrum of Alfén and slow magnetosonic modes is dis- stabilities, it can spontaneously acquire collective degrees of
crete and equidistant. The frequencies of the firsté&ifand  freedom, thus becoming unstable. Magnetospheric plasma
slow magnetosonic eigenmodes are estimatedlallz and  never occupies a low-energy state, due to the constant flow
~1mHz, respectively. In the case of finite conductivity, peri- of energy from outside. In trying to reach the minimum en-
odic and aperiodic modes are separated and their interactiogrgy state, the magnetosphere constantly generates unstable
analyzed. It was shown that periodic and aperiodic perturbaperturbations, which change its configuration and transport
tions can mutually transform into each other. A new flute sta-properties.

bility criterion is derived ¢~4.25), which is stricter thanthe ~ Some instabilities are associated with motions of macro-
Gold criterion ¢=20/3). Here, as usuak=—L/pdp/dL.  scopic volumes of plasma and can be described with MHD
For flute perturbations, the deviations of transversal displaceequations. The other instabilities, which essentially depend
ment from a constant are calculated. An approximation foron the difference in motions of different groups of particles in
longitudinal displacement is derived. We determined the po-the same volume, are called kinetic instabilities. They are mi-
sition of the main longitudinal peak, which can be responsi-croscopic in comparison to large-scale slow MHD motions.
ble for nonlinear structures observed by Freja. An influenceThe greatest threat to plasma stability is posed by MHD in-

of nonlinear terms in pressure is estimated as well. stabilities with large growth rates, which lead to a rapid re-
Keywords. Magnetospheric  physics  (Magnetosphere- construction of the initial equilibrium. As magnetospheric
ionosphere interactions; MHD waves and instabilities) plasma pressure grows, the main role goes to MHD instabil-

ities, which are powered by plasma’s thermal energy. These
are flute and ballooning modes, which are driven by pressure
and magnetic field line curvature.

The first stability criterion for flute modes was intuitively

This article is dedicated to the analysis of the eigenmodeObt"’lined in a pioneering paper (Gold, 1959) in the form

spectrum of transversally small-scale ULF MHD perturba-a/V:A" The designations will be explained below. Note

tions in the inner magnetosphere of the Earth. This analysiéhat this criterion is analogous to the convective stability con-

is an important part of the investigation of waves and insta—fj't'on of gas, compressed by a gravity field. Although be-

bilities in the magnetospheric plasma. This investigation, in'N9 the main interchange criterion for a long time, the Gold

turn, is important for understanding the processes which accriterion became a very controversial subject, enlisting both

: . : supporters and opponents. A very similar criterion was ob-

company the substorm onset (particularly, Pil and Pi2 pul-"". . .
pany 3 (particularly, Pi '~ Pu tained by Southwood and Kivelson (1989), who dealt with

Correspondence toA. S. Parnowski finite pressure plasma. However, the Gold criterion was crit-

(dyx@ikd.kiev.ua) icized by Cheng (1985), who disputed the integrability of the
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1392 A. S. Parnowski: Eigenmode analysis of ballooning perturbations in the inner magnetosphere of the Earth

energetic principle along the field lines, which would lead The set of equations describing A&, slow and fast mag-
to a completely different criterion. This statement was laternetosonic waves, which took into account finite ionospheric
supported by Liu (1996), who also criticized the confirmation conductivity, was identically obtained from the MHD equa-
of the Gold criterion by Rogers and Sonnerup (1986), statingions by Klimushkin (1997). However, he used a box model
that it was only due to an incidental property of the toroidal of the magnetosphere and therefore missed an important phe-
model used. We tend to agree with Liu (1996), because, asomenon of Alfien-magnetosonic coupling. He associated
it was shown by Chan et al. (1994), the dipole flux surfacethe eigenmodes of the Alén resonator with Pc4 pulsations.
is pushed outward by the finite pressure and taking this ef-This was also pointed out by Mager and Klimushkin (2002),
fect into account would lead, in our opinion, to a significant who found out that Pc4 pulsations cannot exist in the absence
distortion of the stability criterion. This statement is addi- of plasma pressure due to the transparency region being too
tionally proven by this article, as it shows that in the case ofnarrow in this case. They came to the conclusion that mag-
curved magnetic field lines, the transversal amplitude of flutenetospheric MHD waves should be investigated only when
perturbations deviates from the constant and is accompanied field line curvature and plasma pressure are taken into ac-
by significant longitudinal displacements. The stability cri- count.
terion derived in the paper by Cheremnykh and Parnowski Lakhina et al. (1990) took into account the influence of
(2006a) and later improved in the paper by Cheremnykh anclasma co-rotation as a toroidal mass flow with an arbitrary
Parnowski (2006b) is by about one-third less than the GoldMach number on arbitrary polarized ballooning perturba-
criterion (~4.25 against-6.67). Given the problem that ra- tions of plasma with arbitrary pressure. They managed to
dial pressure gradients in the magnetosphere (Lui and Hamilebtain the equilibrium equation for this case. Using the ener-
ton, 1992; DeMichelis et al., 1999) are insufficient to break getic principle, they obtained that toroidal flow does not gen-
the Gold criterion, it is crucial to determine which instabil- erate ballooning modes, but rather stabilizes or destabilizes a
ities can be triggered in the magnetosphere. Besides, intepresent stable or unstable situation. Thus, plasma co-rotation
change instability can explain the strong ejections of plasmadoes not affect stability.
at the time of magnetospheric substorms (Swift, 1967). Hameiri et al. (1991) also considered the gravitational
Ballooning modes are well known in the magnetic fu- potential; however, they switched to the cold pressureless
sion literature as pressure driven instabilities, analogous tglasma limit when calculating the ballooning frequencies.
the instability developing at a weak spot of a pressurized Thus, the model used in this article, unlike others, takes
elastic container. Ballooning perturbations are also someinto account magnetic field line curvature, plasma pressure,

times called transversally small-scale modes. The assummoundary conductivity and arbitrary polarization of perturba-
tion of smallness of the transversal scale of perturbations hagons simultaneously.

a profound physical meaning: (fast) magnetosonic waves,

exhibiting themselves in compression and depression of field

lines and being suppressed by the stationary magnetic fiel@ The equations of small oscillations

of the Earth at low plasma pressure, are thrown away and

only Alfvén and slow magnetosonic (acoustic) waves, whichWe identically derived the equations of small oscillations

are the most dangerous to the stability, are considered. Sdrom ideal MHD equations using the definition of the mag-

perturbations of plasma, submersed in a stationary magnetinetic label and the static plasma equilibrizsdp=[ j B], pro-

field, are a hybrid of Alfién and slow magnetosonic waves. It vided by a dipole magnetic fielB and a toroidal currenf,

is just these waves which form perturbations of the balloon-in terms of a plasma displacement vecforlsotropic pres-

ing type. In the case of the magnetosphere, such a stationaisure was assumed. We also neglected the convection and the

field is the geomagnetic one, and in the case of fusion redeviations from the dipole field due to the low-beta approx-

search, the stationary field of a device. This is one of theimation used. Applying ballooning approximation to them,

reasons why ballooning modes are so important in magnetowe obtain the Dewar and Glasser (1983) equations describ-

spheric and fusion research. ing ballooning perturbations in an arbitrary geometry of the
This article is a further development of our earlier researchmagnetic field. Then we cast the dipole magnetic field into

(Cheremnykh and Parnowski, 2004, 2006b), (Cheremnykithem and rewrite them for an individual magnetic field line,

et al., 2004). We omit the derivation of the equations for taking into account that ballooning perturbations are field-

the sake of brevity; those interested should consult eitheline-driven. After that, we rewrote them in a dimensionless

Cheremnykh et al. (2004) or, preferably, Cheremnykh andform (Cheremnykh and Parnowski, 2006b)

Parnowski (2006b). We would, however, indicate that this

derivation was identical in the sense that we did not use any2?c%» ¢ (1 + Azb) + 4ctp2 (To + aﬁyfls)

nonidentical operators, except for the ballooning approxima-

/
tion, so we believe that the eigenmode spectrum of our equa- + [(1 + Azb) bflé/] =0, Q)
tions coincides with that of the original MHD equations for
ballooning perturbations. n+rE =0, (2
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Q% + ¢ 315 =0, (3)  gitudinal), Eq. (4) — Alfien-magnetosonic coupling (plasma
1 , compressibility).
-1, 6,1 —3( 6,1 2
To= (ﬁ +cb ) [C (C b f) —4cb 5] Q) Note that in the finite pressure plasma with tied curved

magnetic field lines, there are no pure Afvor slow magne-
tosonic modes; both components are always present. We call
the eigenmodes “Alfén” or “slow magnetosonic” after the
dominant component. For the Am eigenmode, a longitu-
dinal component is typically several percent of a transversal
one, and for a slow magnetosonic eigenmode, it is larger by
three to six orders.

—Iongitudinal,%—poIoidaI,[?lflg’] —toroidal) for the dis- The boundary conditions for Egs. (1-4) in the case of
placement components. The term “poloidal displacement” isthe resistive boundary have the form (Cheremnykh and
used here in the same sense as in the article by Hameiri é?arnowski, 2006b)
al. (1991), i.e. a displacement in a direction normal to the

magnetic surface. Note that when speaking about fields, it is ) _

common to call this direction “scaloidal”, as proposed by El- Qb§ (1 + A b) +id
sasser (1946). Other quantities in Eqs. (1-4) &xe:f chl

where the prime indicates a derivative with respect to
x=sing along the field linep=1+3x2, andc=1—x2. The
coordinate system is spherical {s the toroidal angle (ge-
omagnetic longitude) is the poloidal angle (geomagnetic
latitude), and-=L cog 6 is the equation for the geocentric
radius of the field line) for the parameters and Cartesliglg (

2 ;5 -1 —
is the dimensionless frequency,is the actual frequency in [Zx <1+)‘ b)é ¢ <T°+“ﬁy E)] x=txo =0. (5
Hz, L is the Mcllwair[1 (19]61) parameter, is the Alfven
velocity, §=¢ Vo481 7 B is the plasma displace-
wyl2 B T B £+ 2xcT| iy, =0, (6)

ment vectorf =&V is the poloidal displacement (Alén),
n:g% is the toroidal displacement (Alén), 7=£B is
the longitudinal displacement (slow magnetosonicls the ~ wheres= (Zpc4) ! is the dimensionless squared thickness
polarization parameter (Cheremnykh and Parnowski, 2006bpf the skin layer Epz%”E}CGS, Whereg;CGS is the inte-
Dewar and Glasser, 1983’)F_%Z—[Z is the pressure profile, gral Pedersen conductivity of the ionosphere in Gauss units),
B=ypB;? is the plasma beta taken on the equatorial plane}o=+'1—L~! is the boundary value of. Boundary condi-
y:5/3 is the ratio of specific heat8y=M L3 is the value _t|on (5) states that the magnetospheric current c!oses on the
of the magnetic field at the equatat, is the magnetic dipole |onosphere., and Eq. (6) states that th_e perturbaﬁon does not
momentum of the Earthfp=y pdivé is the compressibility propagate in the atmosphere due to its neutrality and much
of the perturbationsy is the mass density of plasmajsthe ~ larger density.
plasma pressure. Equations (1-4) can also be obtained from Egs. (16a,
Let us discuss the polarization parameteiThe balloon- b) from the article by Hameiri (1999), and Egs. (5),
ing approximation is mathematically equivalent to the appli- (6) — from Egs. (17a, b) ibid by substituting—&,
cation of the transversal eikonal efpift+iy /¢), where Y—>Cb—6t, N2_>C31+TK217, B2b K X, —Q%,
ekl is the characteristic transversal scale, gnds the 82 2 (o g " B B
eikonal function, which satisfies the conditiaBV x=0. pY”_:WQ v, BBA(Y'-KX)—>To, p=>5, p=y,
The dipole magnetic field can be represented in the formﬂaﬁﬁ, Nn—>§, Bn—>§§, El_ﬂ?zi’ ()/—>;1§ (. Never-
B=[Vy/ V], whereszCT“Z":% is the magnetic flux. theless, Egs. (1-4) were obtained independently from the ar-
Thus, we can writd Vi V] V x=0, which is equivalent ticle by Hameiri (1999), by a different method, and are based
to Vx=ky Vir+k, Vo, Wherek,,,zax/aw andk(p=8)(/8g0 on a different model of the magnetosphere. Boundary condi-
are constant on the field line. The polarization parameter tions (5), (6) are identical to those obtained by Hameiri and
defined as\=ky, /k,, is therefore also constant on the field Kivelson (1991), and later discussed by Hameiri (1999).
line and is characteristic of the orientation of the=V x Let us consider even and odd linear combinations, such
vector, WhICh was |dent|f|¢q as a wave vector of the fast mag—as% (£ (x) ££ (—x)). These combinations satisfy Egs. (1-3)
netosonic wave by Hameiri, Laurence and Monc; (1991). Forgue to their linearity, as well as boundary conditions. Note
Alfvén waves | Vx=k 1§ 1=0, where§ | =§— 7 iSthe  ihat even combinations fay are connected only with odd
transversal displacement. Thus, considering Eq. (2), wheombinations forr and vice versa. We determine the par-
A=0, the perturbations are poloid#l (=& ), and when ity of the solution by transversal amplitude)(symmetry:

IVy |2 L . : :
»=00, the perturbations are toroidzﬂj(zn[w;“). In the longitudinal amplitude 1) will have an opposite symmetry.
v Iglv We consider even and odd perturbations separately. Even
case of arbitrary polarizatioh, =& (\walz —al ‘Bl’f]>. modes satisfy the additional conditioaé*x:0 =0, 7|,_0=0

Equation (1) describes Alén modes (transversal), Eq. (2) and the odd ones &|,_q =0, r’|x:0 =0. In general, the so-
—their polarization, Eq. (3) — slow magnetosonic modes (lon-lutions of Egs. (1-3) are a sum of odd and even eigenmodes.
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. , . . Fig. 1b. The spectrum of slow magnetosonic modes (solids — even,
Fig. 1a. Dependence of Alfén spectrum on Mcllwain number in dashes — odd)

the cold plasma case with ideal conductive ionospheres. The finite
width of the spectral lines is due to different eigenmode polariza-

tions (upper limit — toroidal, lower — poloidal). ) .
frequencies of slow magnetosonic modes are about Ha

(“low”), and of Alfvén ones — about 18-1 Hz (“high”).
In the case of poloidal polarization£0) the Egs. (1), (2)
take the form

3 Conductive boundary

In this case boundary conditions have the form

Tly=tn =0 (7)

and the solutions of Egs. (1-3) are real. It follows from 7 =
Egs. (1), (2) that frequencies of arbitrary polarized pertur- L. )
bations fall between the frequencies of poloidal and toroidai2"d Ed- (3) holds. The spectrum is similar to the previous

perturbations. Thus, we shall consider primarily these twocase except for one principal distinction. The intersection
polarizations points of different branches in the previous case contain de-

In the case of toroidal polarization{oco) Egs. (1), (2) generation, while in this case this degeneration is Iifteq dge
take the form to the presence of perturbing term (4) in Eq. (9). This is
seen in the plots as “coupling” of spectral branches (Fig. 2).
In these points Alfén and slow magnetosonic modes mutu-

§=0, 8

. . ally transform into each other, and the energy is transferred
and Eq. (3) hOIdS.' Equation (8) was derlv_ed by Cheng etbetween “high”- and “low"-frequency oscillations. Near the
al. (1993). The mgenmo_de spectrum con5|st_s of two InOIe"‘coupling” point the eigenmodes cannot be identified as ei-
pendent branches. The first branch is determined by Eq. (8 er Alfvén or slow magnetosonic — they are both at once
and the boundary condition (7). Its frequency is determined The form of these curves can be calculated onl num.er—
only by the mode number and Mcllwain parameter. The sec- v, N h v th £ th Y i
ond branch is determined by Eq. (3) and the boundary contcaly- ote that only the spectra of the same parity cou

dition (7). It also depends on plasma beta/B. Several ple; spectra of different parity intersect and such modes do

lowest modes of each type are presented in Fig. 1a, b, corlot interact. For8=0 poloidal frequencies are lower than

) . . 1, the toroidal ones (Fig. 1a). The inclination of these lines
respondingly in coordinateeL, 2) and (L’ 8 ) IN" atlow 8 is determined byr. Figure 2 demonstrates an ar-
(B, QZ) coordinates the spectrum for fixed consists of

2% + 4% 2 (To + oy %) + (b—lg:’)/ —0,
0, )

slx::txo =0,

chﬁn + n// — 0’

bitrary polarized spectrum, confirming that eigenmode fre-

horizontal lines (Alfien modes) and diagonal lines running quencies are bounded by poloidal and toroidal frequencies.
through the origin (slow magnetosonic modes). One can se&his plot has an interesting feature: there are three points,
that the eigenmode spectrum is discrete. This suggests th#=0.1, 0.2, 0.6, where frequency does not depend on po-

the observed ULF spectrum will also be discrete. Estimatedarization.
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Fig. 3. Third order even eigenfunctions fae=10, 8=0.01.

Fig. 2. Dependence of spectrum on beta and polarization for per-

fect conductivity §=0). Horizontal and near-horizontal lines cor-

respond to Alfién modes; lines running through the origin corre- Wain parameter when a value=1—-x becomes a small pa-
spond to slow magnetosonic modes. Captions near the curve indiFameter. In this case we can decompose Eq. (1) into a series
cate a type of eigenmode ("A’ — AlBn mode, “S” — slow magne-  of ¢. As a result, we obtain one of the classical forms of the
tosonic mode), the number of the eigenmode and the polarization oBessel equation:e?r”—9et’+ (12+32F2) T:% (g’_g/g)_

the eigenmode (“P” - pOlOIdaREO), “T" — toroidal (}»—)OO), “” Its solution has the formz-[1+f2 with
— intermediate X=1); absent for higher-order slow magnetosonic
modes due to a lack of space). 1= Ce 4 (Ya(Fe) — Az (Fe)), (20)

In the case of arbitrary polarization, eigenmode frequen-;, — %8—4 Y2 (Fe) [ ¢4 (&' +&) 2 (F)dg

cies fill the area between poloidal and toroidal frequencies. €0

This area is shaded in Fig. 1a. So, an external source with e

fixed frequency2 can generate oscillations on certain mag- —Jy (Fe) / I (;_g/ + E) Yo (FO)de |, (11)
netic shells, as predicted by Leonovich and Mazur (1998).

Similarly, a given magnetic shell=const can resonate with
external sources if their frequencies fall in a certain fixedwhere J, and Y, are second order Bessel functions of
interval of frequencies, as was pointed out by Mager andype one and two correspondinglg, and A are constants,
Klimushkin (2002). It also means that the observed diSCI'etQ;O:l_xo, ¢ is the integration variable, Correspondinggto
spectrum will actually be a band-pass spectrum. In most cases1>>1>. Then we can drop the; term and
The physical frequency of the first ABn mode appears the constantd is determined from boundary conditions (7)
to be about 0.1-1 Hz, depending dnand the physical fre-  at x=xq (s=¢eg): A=Y> (Fgo)/Jz (Fep). If we changex
quency of the first magnetosonic mode is about 1 mHz. from 10 to 1, functioré won't change, and function will
Except for eigenmode spectra, we also investigated eigenchange its amplitude by 5 times. In any case, these functions
functions. Numerical analysis has shown that transversal amperfectly fit the approximation (10); therefore, coefficiént
plitudest andn have no peculiarities, but longitudinal ampli- significantly depends oa for both the single peak and the
tudet has an interesting behavior near the boundary. Wherseries of peaks.
a value F=28-12¢ is low, this behavior exposes itself in Using the obtained result, we can determine the position
the form of a large single peak, and when this value is high, armax of the main peak ofr. To do this we differentiate
single peak transforms into a series of positive and negativeEq. (10) and equate the derivative to zerocatrnay. This
peaks, which become larger when moving to the boundarygives us the value ofmax in dependence fromg and F.
(Fig. 3). This was verified for several points with the same Choosing the values af, corresponding to diagonal spec-
value of F. This effect is strongest at high values of the Mcll- tral lines, we determine the value afax for magnetic shells

www.ann-geophys.net/25/1391/2007/ Ann. Geophys., 25, 13913-2007
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50— ticular, a solutiorg exp(—ift+ix /¢) gives a real function
o in the form

Re (s exp(—ift+ix/e)) = 1&] |expix /¢
40—

exp(—T'wat) cos(wwat— argé — arg (expix /€)) .

30— Thus, the role of the dimensionless amplitude is heldgtyy

and arg describes the phase shift between oscillations in
different parts of the field line. Because the cosine is an even
function, each actual real solution corresponds with two di-
20 mensionless complex solutions with different signs of fre-
guency and complex conjugate displacements. We shall give
only solutions with positive values of the frequency.

10— . In this section, we consider primarily poloidal perturba-
tions, because the dependence of spectra on polarization is
nearly the same at any conductivity.

20/3

0 ' I ' I ' I ' I ' B | 4.1 Aperiodic perturbations
0] 0.2 0.4 0.6 0.8 1

Although the boundary condition (5) is complex, there is one
Fig. 4. Stability thresholds of the magnetospheric MHD modes: important case when it becomes real. It is the case of ape-
Flute modes (1 — nonlinear criterion (19), 2 — linear criterion (16), riodic perturbations whem=ReQ2=0, Q=iT, i.e. the com-
3 — Gold criterion); Ballooning modes (4 — ballooning modes with plex frequency is purely imaginary and its imaginary gart
Ideally conductive ionqsphere, 5 " baIIooning modes with resist_ivewm be called the growth rate for both positive and negative
ionosphere). The region of stability lies below the correspondlngvalues_ In the latter case it equals the decay rate with a nega-
boundary. tive sign. This class of solutions consists of flute (even) and
incompressible (odd) perturbations. Equations (2), (4), (6)

hold, and Egs. (1), (3), (5) can be rewritten as
with Mcllwain numbers 2...10. They lie in a narrow alti- as- (1), 3). )

tude range, where plasma with a tied magnetic field experi-
ences strong longitudinal oscillations with different frequen-
cies simultaneously. As a result, one should expect the de-
velopment of nonlinear effects and structures, leading to the— 1'2c3¢ 4- 74 = 0, (13)
excitation of higher-order harmonics. This effect should be

especially strong in high magnetic latitudes and can be con- /5 -1
nected with nonlinear effects. Similar effects were observed res +9 [ng —¢ (TO +aby E)]

by Freja (Stasiewicz et al., 1997) at the altitude 1475km at
L~6, which falls in the said range. We analyze the set (12-14) to determine the dependence of

the growth rate on parameters g, §, andL. As before, we
also investigated eigenfunctions. Before going to numerical
results we shall give some analytical relations.

Let us consider the behaviour of the equations at low val-
ues ofg. WhenI" andg are small, Eq. (12) has two obvious
solutions: é=const (flute modes) ang=const(x+x3) (in-
compressible modes). We shall assume that these constants
) . equal one.

In this case (&:6 <oo) boundary conditions (5), (6) are com- Even modes have solutions with=kf8, k=const. For

plex, and so are the solutions, i.e. dimensionless \_/arI&bI_es them&=1+8f (x). From the first order ing of Egs. (12),
n, T, and2. However, one should remember that d|men5|on-(14) we obtain

less variables are related to actual physical quantities with
complex relations. For example, to obtain the actual dis-
placement one should multiply the dimensionless variables

28, 1e 4 (lflé/)/ +4c*h? (Totapy ') =0, (12)

=0. (14

x==xq

This extraordinary behavior af affects¢ negligibly, be-
cause all terms with in Eq. (1) contain a coefficient’,
which is extremely small near the boundary.

4 Resistive boundary

k=5§6 <(X)/_1R1 — Rg) ,

T and¢ by exp(—ift+ix/e), wherey /e is a transversal x
eikonal; see Cheremnykh et al. (2004); Cheremnykh andf’ = b/ (16c5b‘4 — 4c4b_2ay_1> dx, (15)
Parnowski (2006b), and take a real part of the result. In par- 0
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X0 X0
where R1=8xo [ ¢*b=2dx, R,=32x0 [ ®b~*dx. From  Table 1.Values of coefficients.
0

0

Eqg. (15) we see thdt~§ andk grows whenx increases and % Ry Ry Rs Ra Re
crosses zero at

2555 1.632 5.028 2.602 0.515 5.759
2522 1887 5806 2541 0.506 5.853
2495 2002 6.159 2533 0.504 5.861
2478 2.068 6.361 2531 0.504 5.863
2465 2111 6.492 2530 0.504 5.863
2456 2141 6.584 2530 0.504 5.863
2450 2.163 6.652 2530 0.504 5.863
2444 2180 6.705 2530 0.504 5.863
2440 2.194 6.746 2.530 0.504 5.863

ay~t=Ra/Ry, (16)

which corresponds to the stability threshold (2 in Fig. 4).
Note that substituting the integrals Ry and Ro> with 1, we
obtain the classical criterion of an interchange stability, ob-
tained by Gold (1959) (3 in Fig. 4). However, integréls
and R depend oneg and thus from the Mcllwain parame-
ter L. At high values ofL this dependence is very weak,
though. The values oR; and R; in dependence od are
given in Table 1.

For odd modesté=x+x3+0 (). Casting this into _
Eq. (14), we obtail (1+x§) +25=0, which is impossible It is easy to see from Egs. (1-6) that Eq. (19) hold_s for
whenT'—0 at B—0. Thus, odd modes cannot run through the insulating boundaryX(p=0, §—o0), as well. For this
the origin of the growth rate plat"=0, f=0). Neverthe- reason the stability threshold in casesYp <oco andX p=0
less, it is possible whef" tends to a finite valud o0 will be the same. This result conforms to Theorem 2 from

at B—0. Zeroeth order ing of Egs. (12), (14) gives us the paper by Hameiri (1999), which states that “a ballooning
(b—ls/)/ —I2c8p-1¢ 8=—lbox*lro§ (XO)/é’ (x0). perturbation occurs for resistive bounding ends if, and only
For evenomodes’,(O) :02 foroodd oneg (0) =0. The lat- if, it occurs when bounding ends are insulators”.
ter equation can be easily solved numerically for fixed values, 't 1S @IS0 interesting to determine the deviations tof
of T'o. The odd curve tends to zerost0 and has a solution 1OM the constant, given by fulnct|9p (x). It 1s;1t|s£|es in
at anys. For even modes there is a minimal vafiseso, be-  the first order ing Eq. (12) (b™*p') +4apy *c*h=2p=0
low which a solution =Ty, 8=0) is absent. The values of With given boundary conditions. They ape(0) =0 and the
8o, depending orL, are given in Table 1. In any cag is  condition foIIowmlgsln the first olrder ing from Eq. (17)
negative, which corresponds to stability. 2xop’ (x0) =afy~"cgp (x0) —bod™". Its solution has the
Now let us consider the behaviour of Egs. (12—14) nearform p (x) =5~1F (x). Thus,
the stability threshold, i.e. al—-0. From Eq. (13) it _ 1
is seen thatTp—const. For even modes~1+I'"p (x), §=14T6"F().
T%“;“ﬁ);_/l"‘rkq (x). At that Eq. (13) takes the form |n particular, this means that &> oo (X p=0) £=const, and
[“c®r=I""¢’ (x), which immediately gives us=2. Taking  at s=0 (£ p—o0) the deviations become infinite, i.e. flute
this into account, Eq. (14) transforms into modes cannot exist.
For odd functiongp=0. This is seen from the symmetry
and can be proven in the following way. Let us introduce

whencen=1. Now we can determine the form of %)=& (X)/& (x0), A=To/& (x0), 1 (x) = T (x) /& (x0).
near the stability threshold. For this purpose let us From Eas. (4), (10) one can easily obtain

BHoo~N~ouobwn| ™

Pbo+8 (20l p' (v0) ~c§ (g (x0) +aBy T"p (50)) ) =0, (17)

write the expression foffy in the zeroeth order irT: L
=3 (c%17) =4ch—2—ay 1, whence taking into account 1=b¢”" (‘%C(S)xo bo+/ (4c*b™2u+Ac® (ﬂ1+c‘6bl))dX> -(20)
Eq. (5), ’

. The conditiont’ (0) =0 can hold only whenA=0. This
r—beb /<4C4b727ay710370[/3)/716%71)dxf%cho_lbgl . (18) result is_ also quitg obvious from phy_sical speculatipns:
To=y p divé determines the compressibility of perturbations

and the conditiorfp=0 corresponds to incompressible per-
The conditionr (0) =0 gives us the expression for the stabil- turbations. Equation (12) acquires the form
ity threshold

0

1.7\ 4,-2 o 1
« Bt St R o (7)ot ey =0 &
v fyPc3dx + B [° % tdx 14 BRa(L)’ It has boundary conditions u (0)=0, u (xg)=1,
. ' (x0)=2cdxg Byt This is possible only with a
The values ofR3 and R4 are presented in Table 1. To obtain cgrtain product
the functionz for fixed g and L one should calculate by

the formula (19) and cast it into Eq. (17). afy t=Rs(L). (22)
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Fig. 5b. The same fo6=1 (dawn/dusk).

Its values are listed in Table 1. With a given valuexgfy —1
we can calculate (x) by Eq. (21) and casting into Eq. (20)
obtainz (x).

It can be seen from Table 1 that@t 1 the values of cor-
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Fig. 5d. The same fos=2.5 (slightly above th&g value).

low L values. We considered odd and even modes separately.
Special attention was paid to valugs102, 1, 10%
which correspond to day, dawn/dusk, and night sectors. For

responding to the stability threshold for flute perturbationseven modes we also considered valde®.35 and§=2.5,
are much lower than for the incompressible perturbations. which fall slightly above and belovs.
Let us go to the numerical results. They are presented on The corresponding dependences are shown in Fig. 5. For

Figs. ba—e in the form df (8) plots at constant values af
ands. We have chosen the somewhat unrealistic valgd 0

odd modes, similar plots have no interesting features. In
all cases the intersections with tigeaxis are described by

to emphasize some effects, which are nearly unnoticeable d&q. (19) for even modes and Eq. (22) for odd ones. For the

Ann. Geophys., 25, 1391403 2007

www.ann-geophys.net/25/1391/2007/



A. S. Parnowski: Eigenmode analysis of ballooning perturbations in the inner magnetosphere of the Earth

2 -
r
- =100

1 —
0

4.2
-1+
-2 T I T I T I T | T |

0 0.2 0.4 0.6

Fig. 5e.The same fo6=100 (local midnight).

curves running through origin, Eq. (18) also holds true. The
values ofl"g differ slightly from those given in Table 1, which
can be caused by a dropped term with

. : . . ... R
We also investigated the eigenfunctions. Near the stability ¢
threshold, both even and odd functions completely coincide
with the above-mentioned analytical predictions. In the gen-

eral case, far from the stability threshold, it is possible to
obtain an approximate expression fowhenx~1. This is
possible only for large Mcllwain numbers. Functioim this
case can be expressed in the fargr;+12+13, where

71 = Re ™% (K2 (Ge) — AL (Ge)),

_1
2

3= 3¢74 [Kz (Ge) [ ¢*(¢dE /dg + &) I (Gy) dg
€0

T2

%6 (x0) 12 (Ge) [ 12 (Geo),

&€
- I (Gs)fz“(cds/d;* + &) K2(G¢)d¢
)
Here I, K, are modified second order Bessel functions of
type one and three, correspondingly-K» (G80)/12 (Gep),

G=2BY2T". Functionsr; andts vanish atc=xp, and func-
tion 72 ensures the satisfaction of boundary condition (5).

Boundary condition (6) can be satisfied by scaling the coef-

ficient R in 1. Termts influencesr weakly.
4.2 Periodic perturbations

Numerical calculations show thab and I' significantly
depend ons. At low values of § the dependence of
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Fig. 6. Dependence of spectrum on beta and profile of pressure for
8§=0.01. Captions near the curve indicate the type of eigenmode
(“A" — Alfv én mode, “S” — slow magnetosonic mode, “F” — flute
mode), number of eigenmode for periodic modes or growth rate
sign for aperiodic modes and valuemfn parentheses.

Q2=w?—T2 on g for periodic perturbations, shown in

Fig. 6, is very similar to the dependenceset on g at5=0,
shown in Fig. 2. Note that at fixed parameters the eigenmode
spectrum is discrete. It contains harmonics with both zero
and non-zero frequencies. The spectrum in this case consists
of curves describing Alfén and slow magnetosonic modes,
which intersect at=00, and couple at finite values af
Numerical calculations demonstrate that the inclination of
the spectral lines in thew, B) plane does not depend on
8. This effect can be explained in the following way. In
Fig. 6 one can see that slow magnetosonic modes aplow
are straight line22=pg. It follows from Eq. (6) thatRep
does not depend ahand Rep>>>Imp, becauséw| > |T'| for
periodic perturbations. Earlier we mentioned that in the con-
ductive boundary case longitudinal displacemeid larger
than transversal displacemenby several orders. Numer-
ical calculations show that this property holds for bound-
ary conditions (5), (6) as well. Considering this, let us find
the values ofRep for even modes. Note that odd frequen-
cies are higher and thus are less interesting. Dropping terms
~¢& in EqQ. (3), we obtain an equation ferfor even modes:
(c‘3 (c6b‘1r)/>/ +ptc3=0. It follows from this equation
that Rep does not depend on polarization. Numerical solu-
tions of the eigenvalue problem give us discrete vajuék)
for different even harmonics of slow magnetosonic modes.
For L=10 they equal: for the first harmonics 14.6, for the
second — 38.2, for the third — 72.3. Taking into account that
for L=10 t/&>~10®, for realistic conductivity the main
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Fig. 8a. Growth rate spectrum fa¥=0.01 (local noon). Note that
Fig. 7. Dependence of spectrum on ionospheric conductivity for the F+ mode becomes unstable right before the ballooning mode B
B=0.01. The first Alf\en mode exists only &t<2.35 (in day sec-  splits into two ~ modes.

tor).
1 —

terms in Eq. (5) are proportional & thus this condition in i I o
main terms does not depend &n 5=235

At small values ofg Alfvén frequencies do not depend  0-5 o) g BBEA
ona, but depend or. For harmonics of second order and 1/ v - NG
higher these frequencies decrease with the growth (6br '
second even mode from=9 at§<1 to w=8.3 at§>100; 0 N | F+ (35
growth ratel” is negative and its absolute value does not ex- 1 &3 >

ceed 0.002). The frequency of the first mode quickly de- 05—
creases, reaching zero &t2.3 for $=0.01, then it disap- !
pears (Fig. 7). This means that this mode can be observed hl
only in the day sector. At lov values, the inclination of the 14 F-(35)
Alfv én spectral lines is determined byin the same way as "
for conductive boundary. 1

At =0 this mode laces with aperiodic flute modes. The -1.5 — -

lacing point contains a bifurcation: rightwards from this {ENF- 65

point there are two £ flute modes. This effect is not visible F(3.2)

clearly enough in Fig. 6, so we present it in detail in Fig. 8a. -2 ' I ' I

Figures 8a—c show a dependence of the growthIFai®m 0 0.2 0.4 0.6 0.8 1

B. Leftwards from the lacing point, there is a coupling of
Alfvén mode B with flute mode F+, which determines the Fig. 8b. Growth rate spectrum fa¥=2.35 (dawn/dusk). Note that
stability threshold. Thus, rightwards from the lacing point flute modes F+ (3.5) and F (3.2) become unstable exactly when the
the growth rate of the F+ mode rapidly increases. ballooning modes B (3.5) and B (3.2) split.

In the previous section, we considered the behaviour of
flute modes F+ andF. In particular, the calculations show
that for low 8 mode F+ becomes unstable whgrexceeds  Of the equilibrium processes. For this reason, we should con-
a certain value, which depends en However, at lows the sider the coupling point to be the practical stability threshold.
growth rate of mode F+ between the mentioned point and the Calculations show that growth éfessentially changes the
coupling point is so small that the characteristic developmentoupling of Alfvén and slow magnetosonic modes. Figure 9
time of instability exceeds the characteristic variation time shows the plots of the coupling point for different values of
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Fig. 8c. Growth rate spectrum fo8=10 (local midnight). Flute Fi Alfy & . lina for diff . heri

mode F (3.5) becomes unstable right after ballooning mode B splits. 9. 9. o en-magnetosonlc coupiing for di erent lonospheric

Flute mode F+ (4.2) is always unstable conductivities. At high conductivity these modes “couple” and at
' ' low conductivity they intersect. “A” — Alfén mode, “S” — slow

. L. magnetosonic mode.
8. Itis seen that a8=0.01 coupling is usual. Whehgrows

the spectral lines deform and tend closer. Finally, at large
coupling transforms into intersection. This means that en5 On the influence of nonlinear terms in pressure
ergy transfer between “high”- and “low"-frequency oscilla-
tions disappears. Now let us discuss the accuracy of the obtained results.
The behaviour of Alfen modes is closely related to the be- In our earlier papers (Cheremnykh et al., 2004; Cherem-
haviour of aperiodic perturbations. In the region of the disap-nykh and Parnowski, 2006b), we pointed out that the ac-
pearance of the first even mode, i.edaR--3, aperiodic flute  curacy of the equations of small oscillations should not ex-
modes show complicated behaviour in tite (8) plane, fea-  ceed the accuracy of the equation of equilibrium, which was
turing closed circles and S-shaped arcs. Calculations showinear in 8. Thus, we should have replaced the coefficient
that at every point of these plots, wherE /98 tends to in- (Cebfl_}_lgfl)—l in Eq. (4) with8, thus dropping the nonlin-
finity, the aperiodic mode laces with the periodic mode. At ggrterm inB. From the physical point of view this means that
that point, the periodic mode is directed by the outward nor-e neglect the plasma pressure in comparison with magnetic
mal to the aperiodic mode. Examples of such behaviour argyressure. Nevertheless, we see that whénot very small,
shown in Fig. 8b. In the same figure the frequenciesf  this correction is significant in the equatorial region, where
Alfv én modes are also plotted. One can see that the growtpe,—1.1 Thus, all of the given above results were obtained
rates are considerably negative. Whegrows further, the  ith this correction. To estimate its influence we additionally
lacing of the Alfven and flute modes features a bifurcation, -giculated flute eigenmode spectra without it (incompress-
but the growth rates are much lesser. ible modes are not affected by it, becaise=0 for them).
Atlarges valuesiI'| ~5~1. An example of such behaviour The most prominent difference is the flute stability threshold
is shown in Fig. 8c. At lows values|I'| ~3. Thus, perturba- (1 in Fig. 4). The threshold Eq. (19) with correction appears
tions develop in the day and night sectors, and decay in dawfpwer than the threshold without correction. These facts in-

and dusk sectors. dicate the importance of taking into account nonlinear terms
In Figs. 8a—c one can see an important feature: when they g.

flute growth rate becomes positive and significant in value,

an Alfvén-ballooning mode with non-zero frequency disap-

pears or reappears. Thus, it is possible to discover a flut§¢ Conclusion

instability (which is aperiodic and is very hard to be discov-

ered directly) by monitoring the frequency of the first Adfv ~ Using both numerical and analytical methods, we analyzed
mode. When this frequency becomes small, it indicates thathe eigenmode spectra and eigenfunctions for ballooning per-
flute instability is about to develop. turbations in a dipole model of the inner magnetosphere of
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