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Abstract. In this paper, the ten-year (1996–2005) total ion
densityNi measurements from the Defense Meteorological
Satellite Program (DMSP) spacecraft in the morning and
evening (09:30 and 21:30 LT) sectors have been analyzed
to explore the dependence of plasma densities in the topside
ionosphere at middle and low latitudes on the solar activity
level. Results indicate that there is a strong solar activity de-
pendence of DMSPNi at 848 km altitude, which has latitudi-
nal and seasonal features. The plasma density in the topside
ionosphere has an approximately linear dependence on daily
F107 and a strongly nonlinear dependence on SEM/SOHO
EUV, such that the change rate ofNi becomes greater with
increasing solar EUV. This is quite different from the de-
pendence ofNi near the F-Region peak (NmF2), at which
the rate of change ofNmF2 decreases with increasing solar
EUV. The rate of change ofNi at the DMSP altitude is great-
est in the latitude range whereNi is greatest during high so-
lar activity. We suggest that this greater rate of change (or
amplification effect) ofNi at the DMSP altitude is mainly
a consequence of the solar activity variations of the topside
scale height. The changes in the height of the F-Region peak
(hmF2) and the densityNmF2 play a secondary role.

Keywords. Solar physics, astrophysics, and astronomy (Ul-
traviolet emissions) – Ionosphere (Plasma temperature and
density; Solar radiation and cosmic ray effects)

1 Introduction

It is well known that the temporal variations of the Earth’s
ionosphere are ultimately linked to those of solar activity,
because the main source of the ionospheric plasma is pho-
toionization of neutrals by solar extreme ultraviolet (EUV)
and X-ray radiations. Previous studies have shown that elec-
tron density in the ionosphere varies with solar activity in a
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rather complicated way (e.g. Balan et al., 1996; Kane, 2003;
Liu et al., 2003; Richards, 2001; Sethi et al., 2002; Su et
al., 1999; West et al., 1997). Considerable progress has been
achieved in understanding the solar cycle variations of the F
layer (e.g. Kane, 2003; Lei et al., 2005; Liu et al., 2006b;
Sethi et al., 2002), while limited analyses have been applied
to the topside ionosphere (e.g. Rich et al., 2003; Su et al.,
1999; West et al., 1997; Zhao et al., 2005). Evidence in-
dicates that ionospheric variations have altitude dependen-
cies (Rich et al., 2003; Su et al., 1999). For example, Su et
al. (1999) found strong altitude dependencies in the solar ac-
tivity variations of electron densities, which were observed
with the Japanese incoherent scatter radar. Recently, Rich et
al. (2003) revealed that the 27-day effect is much more pro-
nounced in the topside plasma density than that in the total
electron content (TEC).

Topside plasma densities have been being continuously
measured by the Defense Meteorological Satellite Program
(DMSP) spacecraft since 1987. This database is ideally
suited for studies of the climatology of the topside iono-
sphere. At the same time, since 1996, the solar EUV fluxes in
26–34 nm and 0.1–50 nm wavelength bands have been being
continuously monitored by the Solar EUV Monitor (SEM)
spectrometer on board the Solar Heliospheric Observatory
(SOHO) (Judge et al., 1998). There are few comparable
records in history, especially the solar EUV observations
(Kane, 2003). In this analysis, data from both measurements
are collected to investigate the solar cycle variations of the
topside ionosphere. We will focus on the effects in the morn-
ing and evening (09:30 and 21:30 LT) sectors at middle and
low latitudes. The most striking new feature is that DMSPNi

increases at a higher rate with increasing SEM/SOHO EUV.
This is contrary to the saturation effects of the peak electron
density of the F layer (NmF2) and TEC (e.g. Balan et al.,
1994, 1996; Liu et al., 2003, 2006b). This feature is pro-
nounced in a broad range of latitudes, which has not been
reported yet.
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Fig. 1. Periods of DMSPNi , and SEM/SOHO EUV in the 0.1–
50 nm wavelength band with corresponding solar index F107.

2 Data source

The series of the DMSP spacecraft are designated with let-
ter F and the flight number. The fleet of DMSP spacecraft
are in Sun-synchronous polar orbits at a constant altitude of
about 848 km. The period of an orbit is around 101 min,
and consecutive orbits are separated in longitude by 25.5◦.
The nearly constant local time of the DMSP orbital planes
makes their ionospheric measurements unique for allowing
other drivers of the plasma characteristics to be more notice-
able. The overlapped operational time of the spacecraft en-
sures the data’s integrity. The spacecraft carries a “Special
Sensor-Ions, Electrons and Scintillation” (SSIES) package to
monitor the behavior of thermal plasma in the topside iono-
sphere since 1987. This package has been described in many
works (e.g. Rich et al., 2003; West et al., 1997). The sum of
plasma densities over all species (referred to as the total ion
density, orNi) is measured with the onboard Scintillation
Meter at a resolution of 24 Hz.

In this paper, only data in the morning and evening (09:30
and 21:30 LT) sectors from the spacecraft F12, F14, and F15
were chosen. TheNi data are archived and provided at the
University of Texas, Dallas (UTD) website as a 4-s average.
At each local time sector, values ofNi in each day from
1996 to 2005 between±50◦ geomagnetic latitude are aver-
aged in 51 latitude bins. The geomagnetic coordinates we
used are provided by UTD. The magnetic latitudes are the
corrected geomagnetic coordinates of the sub-spacecraft lo-
cations. Each bin includes data points over all longitudes, is
centered at even latitudes (50◦ N, 48◦ N, . . . , 48◦ S, 50◦ S),
and spans 2.5◦ in extent (some overlap with neighbor bins).
Irregularity structures, e.g. equatorial plasma density bub-
bles, may appear in the post-sunset topside ionosphere. Ir-
regularities in the data set have been removed before taking
the average. The seasons are defined as December solstice
(±45 days centered on 21 December), March equinox (±30
days centered on 23 March), June solstice (±45 days cen-

tered on 21 June), and September equinox (±30 days cen-
tered on 23 September). Moreover, Zhao et al. (2005) exam-
ined the storm effects for more than one hundred cases during
1996–2004 and found that Ni is enhanced during the main
phases of storms and depressed during the recovery phases
of storms. As a matter of fact, since the topside ionosphere
is largely controlled by solar EUV, the geomagnetic effect is
less statistically evident. It is found that there is no obvious
statistical relationship betweenNi and geomagnetic distur-
bances. Therefore, we ignore the geomagnetic activity ef-
fects on the plasma densities in this analysis.

Since 1996, solar EUV fluxes in 26–34-nm and 0.1–50-nm
wavelength bands have been being continuously monitored
by SEM/SOHO (Judge et al., 1998). The daily values of the
SEM/SOHO EUV fluxes are available at the websitehttp:
//www.usc.edu/dept/spacescience/semdatafolder/long/. We
only use the 0.1–50-nm EUV flux data (denoted asI in the
following sections for brevity) in this study, since there is a
strong linear cross-correlation between these two bands (Liu
et al., 2006b). The 10.7-cm solar radio flux, F107, is of-
ten used as a standard proxy for solar activity. In this paper,
we adopt the adjusted values of F107 provided at the SPIDR
website in accord with the work of Liu et al. (2006b), since
different F107 values (the observed, adjusted and absolute
values) do not affect our conclusions. Figure 1 shows the
variations of F107 and the intensities of EUV in the 0.1–50-
nm wavelength band. The time coverage of DMSPNi is also
displayed in Fig. 1.

3 Results

As an example, Fig. 2 shows scatter plots of DMSPNi

againstI , and F107 in every day during December solstices at
5 magnetic latitude bins (40◦ S, 16◦ S, 0◦, 16◦ N, and 40◦ N).
Due to the page limitation, we only show data in the morning
sector here, although this feature presents at both local time
sectors (21:30 and 09:30 LT). Readers may consult the gen-
eral differences between both local time sectors in the work
of Zhao et al. (2005). A complete picture over the latitudinal
coverage is illustrated in Fig. 3. The solid curves in Fig. 2
show the corresponding fits with the piecewise linear least-
squares method. To obtain the nonlinear trend, we choose
11 pieces of fitted bits in each latitudinal bin in this analy-
sis. Although the detailed response in each latitude bin is
slightly different, the overall results show thatNi increases
with increasing F107 orI . Plasma densities increase almost
linearly with F107 when F107 lies in the range 100 to 250.
The variation ofNi at an altitude of 848 km with F107 is gen-
erally similar to that at 600 km (Su et al., 1999). The differ-
ent manifestations ofNi with F107 andI may be understood
when a nonlinear statistical relationship between F107 andI
is taken into account. Results illustrated in Fig. 2 of Liu et
al. (2006b) show that the increase in SEM/SOHO EUV with
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Fig. 2. Variations of the morning (09:30 LT) DMSPNi with F107 and SEM/SOHO EUV during December solstices. The variations of
piecewise least-squares fit are shown by the solid curves.

Fig. 3. The piecewise linear least-square fitted values of DMSPNi (in 105 cm−3) as functions of magnetic latitude and solar EUV in four
seasons.

F107 is much steeper at low and moderate F107 values than
at high ones.

What is important to be noticed here is contrary to the sat-
uration effect in the F region (that is, plasma densities near

the F peak tend to increase much less or even negatively for
higher F107 or EUV) (e.g. Balan et al., 1996; Liu et al., 2003,
2006b), DMSPNi increases at a higher rate with increas-
ing EUV. This feature of a greater rate of change (we call it
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Fig. 4. The change rates ofNi with respect to solar EUV, dNi /dI (in 105 cm−3 per 1010 photons cm−2 s−1), as functions of magnetic latitude
and solar EUV in four seasons.

an amplification effect) is more significant in the Southern
Hemisphere and at lower magnetic latitude in the December
solstice months. This noticeable feature also exists in other
seasons (see Figs. 3 and 4).

Figure 3 illustrates the latitudinal variations and solar ac-
tivity dependences of the piecewise fittedNi in the four sea-
sons in the morning sector. Adjusting the size of the fitting
pieces does not change the general feature, while these tests
indicate some influences on the corresponding change rates
of Ni with I , dNi /dI . It is clearly seen in Fig. 3 that DMSP
Ni has distinct seasonal and latitudinal variations and strong
solar activity dependencies.

The plasma densities at 848-km altitude have highest val-
ues within a broad range of latitudes around the magnetic
equator, which shifts with season. At higher latitudes, plasma
densities are found to decrease with increasing latitude in
both hemispheres and plasma density is higher in the sum-
mer hemisphere.

The corresponding change rates ofNi with I , dNi /dI (in
unit of 105 cm−3 per 1010 photons cm−2 s−1), in the four sea-
sons are plotted in Fig. 4. As illustrated in Fig. 4, dNi /dI
varies with latitude and season. Moreover, the values of
dNi /dI tend to increase with increasing solar EUV. For exam-
ple, at 20◦ S magnetic latitude in the September equinox the
value of dNi /dI increases from lower than 104 cm−3 per 1010

photons cm−2 s−1 to higher than 7×104 cm−3 per 1010 pho-
tons cm−2 s−1. In other words, the increase ofNi becomes
stronger at high EUV values than at low values. This fea-
ture is more distinct in December solstice (the top-left panel

of Fig. 4) and September equinox (the bottom-right panel of
Fig. 4).

Figures 3 and 4 show that the maximum ion density in
the Southern Hemisphere during the December solstices is
larger than that in the Northern Hemisphere during the June
solstices. The hemispheric asymmetry becomes stronger
with increasing solar activity. The latitudinal features of the
DMSP plasma densities are obviously modulated by solar ac-
tivity and season, that is, the latitudinal structure becomes
more significant at higher solar activity and at seasons other
than equinoxes. As we know, the latitudinal changes in the
solar zenith angle (SZA) could have some effects on the lat-
itudinal pattern shown in Figs. 3 and 4. The local sunrise
time could change by 2 h from 50◦ N to the geographic equa-
tor; over the same latitude range SZA could change up to
45◦ in winter. Moreover, the movement of the ionosphere
due to neutral winds may also be a primary cause of the lati-
tudinal and seasonal variations of the topside plasma density
(Venkatraman and Heelis, 2000). Equinoctial asymmetries
seen in the MU radar observations (Balan et al., 1998) are
also found in DMSPNi . Readers can consult the work of
Liu et al. (2007b) on the hemispheric and annual asymme-
tries of DMSP Ni. Furthermore, a statistical model of DMSP
Ni has been developed by Zhao et al. (2005) using an empir-
ical orthogonal function analysis.
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4 Discussion

The topside ionosphere at DMSP altitude is mainly com-
posed of ions O+, H+, and He+. The abundances of these
ions are dominated by transport and chemical processes (e.g.
Chandra and Rangaswamy, 1967; West et al., 1997; Zhao et
al., 2005). The plasma distribution of the equatorial and mid-
latitude ionosphere is subject to a number of transport pro-
cesses involving thermospheric neutral winds,E×B drifts,
and field-aligned diffusions (Venkatraman and Heelis, 2000).
During the daytime, photoionization of O+ in the F-region
creates an upward pressure gradient force in the topside iono-
sphere. As a result, the newly-created O+ diffuses upward
along the magnetic field lines. The plasma also undergoes an
upwardE×B drift motion during the daytime. The upward
diffusion andE×B drift of plasma during the daytime cause
the O+ ion to become the dominant species at the DMSP al-
titudes, especially at high solar activity (West et al., 1997).
At night, rapid recombination of the ion species in the iono-
sphere decreases the upward diffusion of the topside plasma
along the field line. Above the F-layer peak, the transport
processes become more and more dominant in controlling
the plasma distribution. As a result, it is expected that, to
first approximation, plasma density (Ne) in the topside iono-
sphere is under diffusive equilibrium (Rishbeth and Garriott,
1969):

Ne(h) = NmF2 exp
[
0.5

(
1 − z − e−z

)]
,

z = (h − hmF2)/H(h) . (1)

HerehmF2 is the peak height andH(h) the topside plasma
scale height at an altitudeh. Thus, variations of plasma den-
sities in the topside ionosphere are closely coupled with those
in the F-region, as well as with the topside scale height, al-
though the behavior in the topside ionosphere is rather dif-
ferent from that in the F-region.

Based on Eq. (1), a qualitative explanation for different
manifestations of the solar activity variations in the topside
and the F-region ionosphere is made by taking into account
the variations of (1)NmF2, (2)hmF2, and (3) topside scale
height with increasing solar activity.

When solar activity becomes more active, the photoion-
ization production rate increases due to the enhancement of
both solar EUV flux and the concentration of atomic oxy-
gen (e.g. Ivanov-Kholodny and Mikhailov, 1986; Richards,
2001). This will contribute to the increase of O+ and total
ion concentrationNi (or electron density) at a fixed altitude
in the ionosphere or aroundhmF2, although the saturation
effect may occur or becomes significant at some locations
(Balan et al., 1996; Liu et al., 2003, 2006b; Richards, 2001;
Su et al., 1999).

At the same time, the height of theF peak is closely re-
lated with solar activity, that is, theF2 peak also moves to
higher altitude at higher solar activity (e.g. Buonsanto, 1990;
Lei et al., 2005; Liu et al., 2006b; Pandey et al., 2003; Zhang
et al., 2005). HigherhmF2 will lead to a smaller reduced

Fig. 5. Typical electron density profiles over Arecibo under solar
maximum (April 1989) and solar minimum conditions (April 1986).

heightz in Eq. (1), thus also giving rise to plasma density at
the DMSP altitude.

Moreover, the shape of the topside plasma density profiles
or the scale height may also vary with solar activity (Chuo,
2007; Kutiev et al., 2006; Kutiev and Marinov, 2007; Liu et
al., 2007a; Luan et al., 2006; Stankov and Jakowski, 2006).
With measurements from incoherent scatter radar, digisonde,
topside sounder, and radio occultation techniques, the plasma
scale heights around theF peak and the topside ionosphere
are found to become larger at higher solar activity (Kutiev et
al., 2006; Lei et al., 2005; Liu et al., 2006a, 2007a; Stankov
and Jakowski, 2006), which will also increase plasma density
at the DMSP altitude as a key role by further decreasing the
reduced heightz in Eq. (1).

The aforementioned three related variations are schemati-
cally illustrated in Fig. 5 with typical electron density profiles
observed with the Arecibo incoherent scatter radar under so-
lar minimum and maximum conditions. A complete statis-
tical analysis on the scale heights from the Arecibo ISR ob-
servations is reported by Liu et al. (2007a). Since DMSPNi

observations are made at an altitude of several scale heights
above theF2 peak, variations in density near theF2 peak may
be amplified in DMSP plasma density through the “pivot ef-
fect” (Rich et al., 2003), e.g. the 27-day variation. The “pivot
effect” occurs when a variation in density is amplified by a
factor ofe (=2.71828) at an altitude of a scale height above
theF2 peak. Because DMSP observations come from more
than 3 scale heights above theF2 peak, Rich et al. suggested
that this effect is contributed to by scale height. As a result,
even in a situation where the solar activity dependency of
the electron density near theF2 peak is weak, with increas-
ing altitude, the variation of plasma density will be amplified
and a stronger solar activity dependency will be present at
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the DMSP altitude. On the basis of Eq. (1), the amplifica-
tion comes from the exponential term, which is mainly con-
tributed from the solar activity variations of scale height. As
illustrated in Fig. 5, the contributions from the larger scale
heights, as well as higher F layer and enhanced ionization in
the F-region causes the amplification effect of the topsideNi

at a fixed altitude.
On the other hand, the amplification feature of DMSP

Ni is not due to altitude changes because the mean of the
altitude of the DMSP spacecraft remains almost constant.
The altitude of the DMSP spacecraft decreases by approx-
imately 0.25 km/year during solar minimum and approxi-
mately 0.50 km/year at solar maximum. Over a ten-year
span the altitude change would be insignificant compared to
a scale height of more than 100 km.

5 Summary

In this paper the dependence of plasma densities in the top-
side ionosphere on solar activity level has been investigated
by analyzing the DMSP total ion density, the SEM/SOHO
EUV, and solar proxy F107 from 1996 to 2005. The present
investigation reveals that DMSPNi at 848 km is rather sensi-
tive to solar EUV flux, which has latitudinal and seasonal fea-
tures. The most noticeable feature is that the topside plasma
density is approximately linear against F107, but it is nonlin-
ear with the intensities of the SEM/SOHO EUV. The change
rate of Ni with increasing solar EUV is more pronounced
around the magnetic latitudes where maximum values ofNi

occur at high solar activity. We suggest that this amplifica-
tion effect of the solar activity variations ofNi in the topside
ionosphere mainly results from solar activity variations of the
topside scale heights. The changes in the height and electron
density of the underlying ionosphere with solar activity are
also part of the reason, but not the primary reason. The com-
bined effects result in the amplification feature ofNi in the
topside ionosphere. However, a quantitative determination
of the source mechanisms requires further investigation with
theoretical models which will be done later.

Acknowledgements.The authors thank two referees providing valu-
able comments to improve the presentation of the manuscript. The
DMSP data are provided by the Center for Space Sciences at Uni-
versity of Texas at Dallas and the US Air Force. The SEM/SOHO
data is provided by Space Sciences Center of University of Southern
California. The F107 index is taken from the SPIDR web site. The
Arecibo incoherent scatter radar data are provided by the Arecibo
Observatory, which is operated by the Cornell University under an
agreement with the National Science Foundation. This research
was supported by National Natural Science Foundation of China
(40674090, 40636032), the KIP Pilot Project (kzcx3-sw-144) of
Chinese Academy of Sciences, and National Important Basic Re-
search Project (2006CB806306).

Topical Editor M. Pinnock thanks S. Zhang and another anony-
mous referee for their help in evaluating this paper.

References

Balan, N., Bailey, G. J., Jenkins, B., Rao, P. B., and Moffett, R.
J.: Variations of ionospheric ionization and related solar fluxes
during an intense solar cycle, J. Geophys. Res., 99(A2), 2243–
2253, 1994.

Balan, N., Bailey, G. J., and Su, Y. Z.: Variations of the ionosphere
and related solar fluxes during solar cycles 21 and 22, Adv. Space
Res., 18(3), 11–14, 1996.

Balan, N., Otsuka, Y., Bailey, G. J., and Fukao, S.: Equinoctial
asymmetries in the ionosphere and thermosphere observed by the
MU radar, J. Geophys. Res., 103(A5), 9481–9495, 1998.

Buonsanto, M. J.: Observed and calculated F2 peak heights and
derived meridional winds at mid-latitudes over a full solar cycle,
J. Atmos. Terr. Phys., 52, 223–240, 1990.

Chandra, S. and Rangaswamy, S.: Geomagnetic and solar control of
ionization at 1000 km, J. Atmos. Terr. Phys., 29, 259–265, 1967.

Chuo, Y. J.: The variation of ionospheric slab thickness over equa-
torial ionization area crest region, J. Atmos. Solar-Terr. Phys.,
69, 947–954, 2007.

Ivanov-Kholodny, G. S. and Mikhailov, A. V.: The prediction of
ionospheric conditions, D. Reidel Publishing Company, Holland,
1986.

Judge, D., McMullin, D. R., Ogawa, H. S., Hovestadt, D., Klecker,
B., Hilchenbach, M., Mobius, E., Canfield, L. R., Vest, R. E.,
Watts, R., Tarrio, C., Kuhne, M., and Wurz, P.: First Solar EUV
Irradiances Obtained from SOHO by the SEM, Solar Phys., 177,
161–173, 1998.

Kane, R. P.: Solar EUV and ionospheric parameters: A brief assess-
ment, Adv. Space Res., 32(9), 1713–1718, 2003.

Kutiev, I. and Marinov, P.: Topside sounder model ofscale height
and transition height characteristics of the ionosphere, Adv.
Space Res., 39(5), 759–766, 2007.

Kutiev, I. S., Marinov, P. G., and Watanabe, S.: Model of top-
side ionosphere scale height based on topside sounder data, Adv.
Space Res., 37, 943–950, 2006.

Lei, J., Liu, L., Wan, W., and Zhang, S.-R.: Variations of elec-
tron density based on long-term incoherent scatter radar and
ionosonde measurements over Millstone Hill, Radio Sci., 40,
RS2008, doi:10.1029/2004RS003106, 2005.

Liu, J. Y., Chen, Y. I., and Lin, J. S.: Statistical investigation of
the saturation effect in the ionospheric foF2 versus sunspot, solar
radio noise, and solar EUV radiation, J. Geophys. Res., 108(A2),
1067, doi:10.1029/2001JA007543, 2003.

Liu, L., Le, H., Wan, W., Sulzer, M. P., Lei, J., and Zhang, M.-L.:
An analysis of the scale heights in the lower topside ionosphere
based on the Arecibo incoherent scatter radar measurements,
J. Geophys. Res., 112, A06307, doi:10.1029/2007JA012250,
2007a.

Liu, L., Zhao, B., Wan, W., Venkartraman, S., Zhang, M.-L., and
Yue, X.: Yearly variations of global plasma densities in the top-
side ionosphere at middle and low latitudes, J. Geophys. Res.,
112, doi:10.1029/2007JA012283, in press, 2007b.

Liu, L., Wan, W., and Ning, B.: A study of the ionogram derived
effective scale height around the ionospherichmF2, Ann. Geo-
phys., 24, 851–860, 2006a.

Liu, L., Wan, W., Ning, B., Pirog, O. M., and Kurkin, V. I.: So-
lar activity variations of the ionospheric peak electron density, J.
Geophy. Res., 111, A08304, doi:10.1029/2006JA011598, 2006b.

Luan, X., Liu, L., Wan, W., Lei, J., Zhang, S-R, Holt, J. M., and

Ann. Geophys., 25, 1337–1343, 2007 www.ann-geophys.net/25/1337/2007/



L. Liu et al.: Dependence of topsideNi on solar activity 1343

Sulzer, M. P.: A study of the shape of the topside electron
density profile derived from incoherent scatter radar measure-
ments over Arecibo and Millstone Hill, Radio Sci., 41, RS4006,
doi:10.1029/2005RS003367, 2006.

Pandey, V. K., Sethi, N. K., and Mahajan, K. K.: Dependence of
F2- peak height on solar activity: A study with incoherent scatter
measurements, Adv. Space Res., 31(3), 543–548, 2003.

Rich, F. J., Sultan, P. J., and Burke, W. J.: The 27-day variations of
the plasma densities and temperatures in the topside ionosphere,
J. Geophys. Res., 108(A7), 1297, doi:10.1029/2002JA009731,
2003.

Richards, P. G.: Seasonal and solar cycle variations of the iono-
spheric peak electron density: comparison of measurement and
models, J. Geophys. Res., 106(A12), 12 803–12 819, 2001.

Rishbeth, H. and Garriott, O. K.: Introduction to ionospheric
physics, 331 pp., Academic Press, New York, 1969.

Sethi, N. K., Goel, M. K., and Mahajan, K. K.: Solar cycle varia-
tions of foF2 from IGY to 1990, Ann. Geophys., 20, 1677–1685,
2002,http://www.ann-geophys.net/20/1677/2002/.

Stankov, S. M. and Jakowski, N.: Topside ionospheric scale height
analysis and modeling based on radio occultation measurements,
J. Atmos. Solar-Terr. Phys., 68, 134–162, 2006.

Su, Y. Z., Bailey, G. J., and Fukao, S.: Altitude dependencies in
the solar activity variations of the ionospheric electron density, J.
Geophys. Res., 104(A7), 14 879–14 891, 1999.

Venkatraman, S. and Heelis, R.: Interhemispheric plasma flows in
the equatorial topside ionosphere, J. Geophys. Res., 105(A8),
18 457–18 464, 2000.

West, K. H., Heelis, R. A., and Rich, F. J.: Solar activity varia-
tions in the composition of the low-latitude topside ionosphere,
J. Geophys. Res., 102(A1), 295–305, 1997.

Zhang, S.-R., Holt, J. M., van Eyken, A. P., McCready, M., Amory-
Mazaudier, C., Fukao, S., and Sulzer, M.: Ionospheric lo-
cal model and climatology from long-term databases of multi-
ple incoherent scatter radars, Geophys. Res. Lett., 32, L20102,
doi:10.1029/2005GL023603, 2005.

Zhao, B., Wan, W., Liu, L., Yue, X., and Venkatramn, S.: Statistical
characteristics of the total ion density in the topside ionosphere
during the period 1996-2004 using empirical orthogonal function
(EOF) analysis, Ann. Geophys., 23, 3615–3631, 2005,
http://www.ann-geophys.net/23/3615/2005/.

www.ann-geophys.net/25/1337/2007/ Ann. Geophys., 25, 1337–1343, 2007

http://www.ann-geophys.net/20/1677/2002/
http://www.ann-geophys.net/23/3615/2005/

