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Abstract. The Jovian paraboloid magnetospheric model is
applied for the investigation of the planet’s auroral emis-
sion and plasma disk structure in the middle magnetosphere.
Jupiter’s auroral emission demonstrates the electrodynamic
coupling between the ionosphere and magnetosphere. For
comparison of different regions in the ionospheric level and
in the magnetosphere, the paraboloid model of the global
magnetospheric magnetic field is used. This model provides
mapping along highly-conducting magnetic field lines. The
paraboloid magnetic field model is also applied for consid-
eration of the stability of the background plasma disk in the
rotating Jupiter magnetosphere with respect to the flute per-
turbations. Model radial distribution of the magnetic field
and experimental data on the plasma angular velocity in the
middle Jovian magnetosphere are used. A dispersion relation
of the plasma perturbations in the case of a perfectly conduct-
ing ionosphere is obtained. Analyzing starting conditions of
a flute instability in the disk, the “threshold” radial profile of
the plasma density is determined. An application of the re-
sults obtained to the known data on the Jovian plasma disk is
discussed.

Keywords. Magnetospheric physics (Planetary magneto-
spheres; Polar cap phenomena; Solar wind-magnetosphere
interactions)

1 Introduction

Contrary to the case of the Earth, where the energy of the
auroral emission is ultimately taken from the energy of the
solar wind, the energy of Jupiter’s aurora is obtained mainly
from the planetary rotation energy. For the outer planets,
the rotation period varies as a function of latitude, so it has
been necessary to define several longitude systems. System I
corresponds to the rotation of equatorial latitudes (±10◦),
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while System II relates to higher latitudes which rotate more
slowly. System III has been defined to take into account the
rotation period of the magnetic field. The Hubble Space Tele-
scope (HST) images of Jupiter’s aurora exhibit three distinct
regions with independent variations in time: (1) the satellite
footprint emissions, (2) the bright main oval emissions, and
(3) all other emissions poleward of the main oval, the so-
called polar emissions (Grodent et al., 2003a, b; Cowley et
al., 2003). A long-term comparison of the images shows that
the bulk of the auroral morphology is fixed in System III and
reminded stable over a 5-year period (Grodent et al., 2003a).

A bright ring which corresponds to the main oval was
described in Clarke et al. (1996, 1998), and in Prangé et
al. (1998). Pallier and Prangé (2001) noted that in both
Jovian hemispheres, the north and south main oval emis-
sions appear conjugate, and defined the northern and south-
ern reference main ovals (see, also Clarke et al., 1996, 1998,
and Pranǵe et al., 1998). Pallier and Prangé (2001) con-
cluded that the main oval is a very narrow structure which
surrounds each pole of Jupiter approximately along the foot-
prints of magnetic field lines crossing the equator in the mid-
dle magnetosphere near∼20−30RJ on the dayside, and
maybe somewhat closer in on the nightside (RJ≈7·107 m is
Jupiter’s radius).

Ballester et al. (1996) observed that the main oval emis-
sions corotate with Jupiter. Clarke et al. (1998) noted
that the main auroral oval not only rotates with the planet
but also displays systematic addition motions. Grodent
et al. (2003a) mentioned sub-corotation of the main oval
(or of some individual auroral features of it). Bunce and
Cowley (2001), Hill (2001), and Southwood and Kivelson
(2001) suggested that the main oval is connected with the
magnetosphere-ionosphere coupling current system associ-
ated with the breakdown of rigid corotation in the middle
Jovian magnetosphere. Thus, the main auroral oval may be
interpreted as the ionospheric footprint of the upward field-
aligned current caused by the breakdown of rigid corotation.
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Significant sub-corotation of the plasma flow was found
on the ionospheric latitudes higher than the main oval (Rego
et al., 1999) (the Earth’s high-latitude auroral pattern is fixed
with respect to the solar wind direction). Stallard et al. (2001)
derived a detailed infrared picture of the auroral morphology
in this region. They identified a dark (in the UV) polar region
on the dawn side and a bright polar region on the dusk side.
Stallard et al. (2001) presented Doppler observations within
both of these polar regions and found that the emission in the
bright polar region is weakly sub-corotational, while in the
dark polar region there is a strong sub-corotation. Most re-
cently, Stallard et al. (2003) found that the dark polar region
may be divided into two separate regions: the fixed dark po-
lar region which is near stagnant in the magnetic pole refer-
ence frame, and the rotating dark polar region (which sub-
corotates with the planet), located between the fixed dark
polar region and the main oval. Based on those observa-
tions, Cowley et al. (2003) proposed a general structure of
the equatorial and ionospheric plasma flows. Since the re-
gion of open field lines is magnetically connected to a tail
lobe with very low plasma density, it is expected to be auro-
raly dark. According to the Cowley et al. (2003) picture, the
fixed dark polar region is identified with the stagnant open
field line region.

Grodent et al. (2003a) mentioned that the polar emissions
are more variable than the main oval ones (their character
time may reach tens of seconds, while the main oval vari-
ations are on time scales of tens of minutes to hours, and
that the main oval usually contributes∼70% of the total au-
roral emission). Prangé et al. (2001) noted that the intensi-
ties of the northern and southern aurora are very tightly cor-
related, although their brightnesses differ in absolute value.
This tight and quantitative interhemispheric correlation sug-
gest that the dominant auroral processes take place on closed
field lines. Pranǵe et al. (1998) described fainter, roughly
concentric, and very narrow ovals detected poleward of the
north main oval. Their brightness is not related to the main
oval activity. Pranǵe et al. (1998) suggested that the inner
ovals are on open field lines of the tail, maybe near the po-
lar cap boundary. Detailed investigation of the Jovian polar
cap had been further developed in Pallier and Prangé (2001).
They noted that the transpolar emission crosses the polar re-
gion from one side of the main oval to the other. Pallier and
Pranǵe (2001) also suggested that the poleward edge of the
transpolar emission and the innermost inner oval generally
resemble a high-latitude limit for bright auroral emissions,
thus representing west and east parts of the Jovian northern
polar cap boundary. Pallier and Prangé (2001) noted that the
polar cap shape and size vary as a function of the solar wind
and interplanetary magnetic field (IMF) conditions.

Jupiter’s magnetospheric magnetic field model is neces-
sary to clarify the regions in the magnetosphere connected
with specific features in the high-latitude Jovian ionosphere.
The models most often used were developed by Connerney
(1992) and Connerney et al. (1998) (see, e.g. Prangé et al.,

1998; Tomas et al., 2004), or by Khurana (1997) which sup-
plements one of Connerney’s (1993) internal field models
with a warped and twisted current sheet (see, e.g. Prangé
et al., 2001). However, it should be noted that Connerney’s
(1998) VIP4 model is not applicable beyond 30RJ . At the
same time, just these outer parts of the Jovian magnetosphere
are responsible for the polar aurora emissions.

Khurana’s (1997) model couples the internal field spher-
ical harmonic coefficients from the Goddard Space Flight
CenterO6 model with an Euler potential formulation of the
external field. This model cannot be used in the outer dayside
magnetosphere and at higher latitudes at any local time be-
cause the magnetopause currents are not included. The mag-
netopause currents were included in the Engle (1991, 1992a,
b) model. The magnetic field of the magnetopause currents
was added to those of a model current system in the equato-
rial plane and the intrinsic dipole field of Jupiter. (Engle and
Beard (1980) assumed that the contribution to the total field
due to the magnetopause currents is a negligible fraction of
the total field near the equator at about midsheet.) However,
the magnetotail contribution had not been included. More-
over, all of these models ignored the IMF effects. Walker
and Ogino (2003) used a global magnetohydrodynamic sim-
ulation of the interaction of Jupiter’s magnetosphere with the
solar wind to study the solar wind effects on the structure
of currents in the Jovian magnetosphere. They used an im-
age dipole to help form a magnetospheric cavity. The Jovian
magnetospheric currents were simulated for southward and
northward IMF.

Fukazawa et al. (2005) also used a time dependent, 3-D,
magnetohydrodynamic simulation of the interaction between
the Jovian magnetosphere and the solar wind to investigate
the importance of the IMF.

However, there is no global Jovian magnetospheric model
(except MHD simulations) which takes into account all
large-scale magnetospheric current systems (including mag-
netotail) as well as the interplanetary magnetic field pene-
trating into the magnetosphere. Presently, even locations
of closed and open field line areas are under debate. For
these reasons the paraboloid magnetospheric Jovian model
described in Sect. 2 was constructed (Belenkaya, 2003, 2004;
Alexeev and Belenkaya, 2005), on the basis of the terres-
trial paraboloid magnetospheric model (Alexeev, 1986). This
global large-scale magnetospheric magnetic field model al-
lows us to establish the correlation of the most high-latitude
ionospheric regions with different regions and processes in
the distant magnetosphere. The paraboloid model also in-
cludes the interplanetary magnetic field effects.

The Jovian magnetosphere is very dynamic, although it is
not clear whether this variability is due to an external influ-
ence of the solar wind or to internal effects related to plasma
transport from Io (Pranǵe et al., 2001). The mutual rela-
tion between the solar wind and internal magnetospheric pro-
cesses in their influence on the Jovian aurora is not well un-
derstood now. One of the aims of the present paper is an
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attempt to clarify some points of this relation and to use the
constructed model for this goal (see Sect. 3).

The model of the global magnetospheric magnetic field
is also very significant for the analysis of the plasma dis-
tribution and stability in the magnetosphere. As known,
the Pioneer 10 investigation of the Jupiter’s magnetosphere
shows that background plasma and energetic particles are
confined to a narrow latitudinal range in the vicinity of the
magnetic equator with relatively small asymmetries in longi-
tude (Smith et al., 1974; McKiben and Simpson, 1974). To
explain the observed particle flux and plasma distribution, a
model of the thin plasma disk in the middle Jovian magne-
tosphere has been suggested. Voyager 1 and 2 provided ad-
ditional data on the magnetic field, as well as measurements
of plasmas not obtainable by Pioneer 10. The Jovian plasma
disk was observed by a number of experiments on board both
Voyager spacecraft, including a plasma science experiment
(Bridge et al., 1979a, b) and the low-energy charged particle
experiment (Krimigis et al., 1979a).

As shown by Walker et al. (1978), the thermal pressure in
the middle magnetosphere is primarily due to the suprather-
mal ion component with characteristic energies about 25 keV
and above, whereas the mass densities are dominated by
ions with energies of less than 6 keV. Later, these conclu-
sions were confirmed by direct measurements (Krimigis et
al., 1979a, b). Thus, there are two interconnected plasma
disks in the Jovian magnetosphere: the current disk of the
suprathermal particles, providing mainly the energy density
of the magnetodisk, and the plasma sheet of the low-energy
ion component, dominating in the mass density. The weak-
ening of the magnetic field in the vicinity of the current disk
promotes the accumulation of cold and heavy ions there un-
der the action of centrifugal force, and one can suppose that
current and plasma disks mainly coincide.

Here, using the magnetic field model, we consider a ra-
dial density profile of the comparatively low-pressure back-
ground plasma in the Jovian magnetodisk. Since the kinetic
pressure and current systems caused by the instabilities of the
background plasma disturb only slightly the magnetospheric
magnetic field, we can use the given field approximation. It
is known that the pattern of the magnetic field exerts a sig-
nificant influence on the structure of the background plasma
disk: the region of the weak magnetic field in the vicinity
of the magnetodisk mainly corresponds to the location of the
relatively cold plasma disk, whereas the profile of the mag-
netic field strength in the disk plane affects the radial distri-
bution of the plasma density.

In Sect. 4 we analyze in more detail the flute instability in
the plasma disk as applied to the formation of the radial pro-
file of the plasma density. As follows from a number of stud-
ies (see, e.g. Melrose, 1967; Bespalov and Davydenko, 1994;
Liu, 1998), the most significant factors exerting an influence
on the development of the flute instability are the structure
of the magnetic field in the disk, and the high conductivity
of the planetary ionosphere, which connects magnetic flux

tubes. We assume the structure of the magnetic field in the
disk according the suggested model, and study in more de-
tail the influence of the conducting ionosphere on the radial
distribution of the plasma density, taking into account the in-
fluence of the rarified plasma between the disk boundaries
and the ionosphere.

2 The Jovian paraboloid magnetospheric magnetic field
model

The main contributors to the magnetospheric magnetic field
in the paraboloid model are (Alexeev and Belenkaya, 2005):

1. The intrinsic magnetic (dipole) field, as well as the
shielding magnetopause currents, which confine the
dipole field inside the magnetosphere of Jupiter.

2. The tail currents and their closure currents on the mag-
netopause.

3. The disk current and the corresponding shielding mag-
netopause current.

4. The IMF penetrated into the magnetosphere.

The following equations for the magnetic field and electric
current density:

divB = 0, divj = 0 (1)

are true for all model calculations. Each magnetospheric
current system conserves the conditionBn=0 at the magne-
topause. Both the magnetopause currents shielding all mag-
netospheric magnetic field sources, including distant tail, as
well as the IMF penetrating into the magnetosphere, repre-
sent new elements in comparison with the other Jovian mod-
els. Flowing pass the obstacle (magnetosphere), the mag-
netic field of the solar wind drapes around it and, conse-
quently, increases in the magnetopause vicinity. Increased
diffusion, due to the field growth near the magnetospheric
boundary, leads to the penetration of the IMF through the
magnetopause inside the magnetosphere.

The magnetospheric magnetic field vectorB was calcu-
lated in the Jovian solar-magnetospheric coordinate system:

B = Bd(ψ)+ BT S(ψ,Rss, R2, Bt)

+BMD(ψ,BDC, RD1, RD2)+ Bsd(ψ,Rss)
+BsMD(ψ,Rss, BDC, RD1, RD2)

+b(κJ,BIMF ) .

(2)

Here Bd(ψ) is the dipole magnetic field; the field of the
magnetospheric tail current system (cross-tail currents and
their closure magnetopause currents) isBT S(ψ,Rss, R2, Bt);
a field of the thin current disk placed near the equato-
rial plane is BMD(ψ,BDC, RD1, RD2); the field of cur-
rents on the magnetopause shielding the dipole field is
Bsd(ψ,Rss); BsMD(ψ,Rss, BDC, RD1, RD2) is the field of
the currents on the magnetopause shielding the disk current
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field; b(κJ,BIMF ) is a part of the interplanetary magnetic
field penetrating into the magnetosphere. Here we consider
the tail current sheet and the current disk to be infinitely thin.
On the night-side the magnetodisk merges with the magne-
totail current system.

For calculation of the Jovian magnetospheric magnetic
field (Eq.2), the input model parameters should be defined:
the magnetic dipole tilt angle,ψ (the angle between theZ
axis of the Jovian solar-magnetospheric coordinate system
and the dipole axis, here we considerψ=0); the distance
from Jupiter’s center to the subsolar point on the magne-
topause,Rss ; the distances to the outer and inner edges of
the magnetodisk,RD1 andRD2, respectively; the distance
from the planet’s center to the inner edge of the magneto-
spheric tail current sheet,R2; the magnitude of the field of
the tail currents at the inner edge of the tail current sheet,
Bt/α0, α0=

√
1+2R2/Rss; a magnetic field strength caused

by the magnetodisk currents at the outer edge of the current
disk, BDC; the interplanetary magnetic field vector,BIMF ,
and the coefficient of its penetration into the magnetosphere,
κJ.

Caudal (1986) showed that a self-consistent model of
Jupiter’s disk, including the effects of centrifugal force and
pressure, gives 1/r magnetodisk current dependence. How-
ever, here, following Barish and Smith (1975) and Beard
and Jackson (1976), we assume a 1/r2 current disk depen-
dence. In this case, the magnetic flux of the disk field,
F lMD=BMD r ·2πr2, across the Southern or Northern Hemi-
sphere is constant. As it is shown by Alexeev and Belenkaya
(2005), this dependence, for example, fits well to the Ulysses
data.

Here we will demonstrate applications of the Jovian
paraboloid magnetospheric model for investigations of the
auroral phenomena and a radial plasma distribution in the
magnetodisk. In prepartion, we review the mathematic
description of the magnetodisk field used in the Jovian
paraboloid magnetospheric model (Alexeev and Belenkaya,
2005). A spherical coordinate system is used with the axis
Z parallel to the dipole axis, the polar angleθ , and the az-
imuthal angleϕ, counted in the planet rotation direction.
The rigid plasma disk is placed in the magnetic equatorial
plane. The azimuthal symmetry is suggested about the mag-
netic dipole axis. The azimuthal magnetodisk current,jMD ϕ ,
exists only inside the disk (RD1>r>RD2) and is directed to
dusk in the dayside, and to dawn in the nightside.

If we assume that in the magnetodisk only the azimuthal
current, jMD ϕ , exists, a vector-potentialAMD of the mag-
netodisk magnetic fieldBMD (BMD=∇×AMD) has only one
nonzero component,AMD ϕ . In a current-free region,AMD ϕ

is a solution of equation:∇×∇×AMD ϕ=0, which in spher-
ical coordinates looks like:

r
∂2
(
rAMD ϕ

)
∂r2

+
∂

∂θ

(
1

sinθ

∂
(
AMD ϕ sinθ

)
∂θ

)
= 0 . (3)

Assuming a separation of variables, we can find solutions in
the form

rn · P 1
n (cosθ) and

P 1
n (cosθ)

rn+1
,

n = 1, 2, . . . ,∞ ,

(4)

whereP 1
n (cosθ) are the associated Legendre polynomial

functions. These solutions provide a continuity of the mag-
netic field at the edges of the magnetodisk. Discontinuity of
the magnetic field caused by the disk current is described by
another solution of Eq. (3):

A
(1)
MD ϕ = BDC

R2
D1

r

{
tan θ2 for 0 ≤ cosθ ,
cot θ2 for cosθ ≤ 0 .

(5)

This solution yields a drop inBMD r at the equatorial plane
(θ=π/2): {BMD r}|θ/2.

To construct a solution for the magnetic field of the disk
current we use a principle of superposition of solutions (ex-
pressions4and5). The vector potentialAMD ϕ can be written
as:

AMD ϕ=



∞∑
k=0

F1k

(
RD1

r

)2k+2

P 1
2k+1 (cosθ)

for RD1 ≤ r ,

A
(1)
MD ϕ +

∞∑
k=0

P 1
2k+1 (cosθ)

[
F2k

(
r

RD1

)2k+1

+G1k

(
RD2

r

)2k+2
]

for RD2 < r < RD1 ,

∞∑
k=0

G2k

(
r

RD2

)2k+1

P 1
2k+1 (cosθ)

for r ≤ RD2 .

(6)

To calculate the coefficientsF1k, F2k andG1k, G2k, we use
the continuity conditions forBMD θ andBMD r (BMD ϕ≡0 in
the considered model) at the edges of the disk (atr=RD1 and
r=RD2).

The resulting expression forBMD r=
∂
(
AMD ϕ sinθ

)
r sinθ ∂θ

is

BMD r=

BDC



∞∑
k=0

a2k

(
1−ρ2k+1

0

) P2k+1 (cosθ)

ρ2k+3

for RD1≤r ,

sign(cosθ)

ρ2
+

∞∑
k=0

P2k+1 (cosθ)

(
a2k+2

−a2k
ρ2k+1

0

ρ4k+3

)
ρ2k for RD2≤r≤RD1 ,

∞∑
k=0

a2k+2

(
1 −

1

ρ2k+2
0

)
ρ2kP2k+1 (cosθ)

for r≤RD2 .

(7)
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Fig. 1. Noon-midnight meridional cross section of the open Jovian magnetosphere for northward IMF (BIMFx=−0.02 nT;BIMFy=0 nT;
BIMFz=0.62 nT) withκJ=0.8. The model parameters are:ψ=0; Rss=100RJ ; R2=65RJ ; Bt=−2.5 nT;RD1=92RJ ; RD2=18.4RJ ;
BDC=2.5 nT. Dashed curves separate magnetic field lines of different topology types.

Here we introduce coefficientsa2k= P2k (cosθ)|θ=π/2 =

(−1)k

2k k!
1·3· · ·(2k−1), a dimensionless distanceρ=

r

RD1
, and

ρ0=
RD2

RD1
. Function sign(cosθ) could be expanded in a se-

ries of Legendre polynomials:

sign(cosθ) =

∞∑
k=0

a2k

2k + 2
P2k+1 (cosθ) , (8)

where calculations were performed fork≤50.
The other component of the magnetodisk magnetic field

BMD θ= −
∂
(
rAMD ϕ

)
r ∂r

can be expressed as

BMD θ =

BDC



∞∑
k=0

a2k

2k + 2

(
1 − ρ2k+1

0

) P 1
2k+1 (cosθ)

ρ2k+3

for RD1 ≤ r ,
∞∑
k=0

a2k

2k + 2

(
ρ2k

−
ρ2k+1

0

ρ2k+3

)
P 1

2k+1 (cosθ)

for RD2 ≤ r ≤ RD1 ,
∞∑
k=0

a2k

2k + 2

(
ρ2k

0 −
1

ρ2
0

)
ρ2k

ρ2k
0

P 1
2k+1 (cosθ)

for r ≤ RD2 .

(9)

For RD1<r the first term in the sum forBMD θ (Eq. 9)
corresponding tok=0 andθ=π/2 is equal to

BMD θ |k=0, θ=π/2 = −
BDC

2ρ3 (1 − ρ0) =
MMD

r3
, (10)

where

MMD =
BDC

2
R3

D1 (1 − ρ0) (11)

is an effective magnetic moment of the magnetodisk field for
RD1<r. As it was described by Belenkaya (2004), we chose
the value ofRD2 as the distance where the field distortions
associated with the current sheet become dominant. Follow-
ing Barbosa et al. (1979) (who stated the existence of an ex-
tensive magnetoplasmadisk from 20 to∼80–90RJ) and En-
gle and Beard (1980) (using an equatorial current sheet from
∼18 to 100RJ), we took the equatorial current sheet from
∼18RJ to RD1=92RJ. (These parameter values allow us
to fit well to the Ulysses data from Alexeev and Belenkaya,
2005.) Below we consider two applications of the paraboloid
model for calculations of the IMF effects on Jupiter’s auro-
rae, and for study of plasma distribution in the Jovian mag-
netodisk.

3 The IMF influence on the Jovian magnetospheric field
and polar auroral phenomena

At the present time it is established that the solar wind mag-
netic field affects the Jovian magnetospheric field. In partic-
ular, Kivelson and Southwood (2003) gave evidence of the
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Fig. 2. Three-dimensional Jovian magnetosphere for northward IMF. Electric equipotentials of the corotation (solid curves) and solar wind
(dashed-dotted curves) electric fields on the magnetopause and on the equatorial plane are shown. For the dashed-dotted curves,1y=50RJ
and1U=0.75 MV. For the solid curves on the equatorial plane (from the outer to inner) the latitudes and electric corotation potentials are:
80◦, 0.4 MV; 78◦, 1.4 MV; 76◦, 4.3 MV; 74◦, 7.6 MV; 0◦, 356 MV, respectively. For the solid curves on the magnetopause (from the outer to
inner) the corresponding values are: 81◦, 0 MV; 82◦, −1.9 MV; 84◦, −5.1 MV; 86◦, −7.4 MV; 88◦, −8.8 MV; 90◦, −9.2 MV, respectively.
IMF and model parameters are as for Fig. 1.

response of the Jovian magnetopause and bow shock posi-
tions to changes in the north-south IMF component. In spite
of the fact that the magnetopause position is determined by
the requirement of the pressure balance, a secondary control
of this position is provided by the sense of the IMF. Kivelson
and Southwood (2003) proposed that for Jupiter this process
is analogous to that found at Earth but the effects of north-
ward and southward IMF are reversed, as the Jovian dipole
moment is antiparallel to that of Earth.

In spite of the large Jovian dipole moment and strong mag-
netodisk field, a penetrating solar wind magnetic field of very
small strength occurs and is significant for the global mag-
netospheric topology. For northward IMF, the Jovian mag-
netospheric structure is simpler (as for the southward IMF
for the Earth), and open field lines do not intersect the equa-
torial magnetospheric plane on their way to the polar caps
(see Fig. 1). That is why the equatorial corotation lagging
(due to the centrifugally driven radial outflow of the iogenic
plasma concentrated in the equatorial plane, and conserva-
tion of angular momentum) is transferred only to the iono-

spheric closed field line region, but not to the high-latitude
ionospheric open field line region. Thus, for northward IMF,
the electric field generated by Jupiter’s rotation is transmit-
ted along open field lines outward to enforce the corotation
of magnetospheric plasma under the assumption that mag-
netic field lines are perfect conductors. Rigid corotation can
exist up to the distance at which the azimuthal speed equals
the Alfvén speed (beyond this distance the information about
rigid corotation cannot be transmitted along field lines with
Alfv én velocity). In the Jovian tail lobe the Alfvén veloc-
ity is much higher (∼31·103 km s−1 (Goldstein et al., 1985,
1986)) than in the equatorial plane (∼200 km s−1). Estima-
tions done by Belenkaya (2004) showed that for northward
IMF rigid corotation can be transmitted along open field lines
up to the magnetopause (see Fig. 2).

Thus, for northward solar wind magnetic field, corota-
tion may exist in the high-latitude ionosphere of both po-
lar caps. This is why in this case, corotation determines the
electric field distribution in most of the open field line re-
gions in the Jovian ionosphere. Calculations performed in
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Fig. 3. Noon-midnight meridional cross section of the open Jovian magnetosphere for southward IMF (BIMFx= −0.26 nT;BIMFy=0 nT;
BIMFz= −0.5 nT) with kJ=0.8. The model parameters are:ψ=0; Rss=100RJ ; R2=65RJ ; Bt=−2.5 nT;RD1=92RJ ; RD2=18.4RJ ;
BDC=2.5 nT. Dashed curves separate magnetic field lines of different topology types (closed, open, and the interplanetary magnetic field
lines penetrating into the magnetosphere).

the Jovian paraboloid model for northward IMF with a pen-
etratedz component 0.5 nT (Belenkaya, 2004) showed that
only in a small spot near the pole (from∼87◦ to 90◦) does
the antisunward convection generated by the solar wind elec-
tric field prevail. According to these calculations, the iono-
spheric open field line region in the northern (southern) Jo-
vian hemisphere is extended from 82.17◦ (−82.33◦) at noon
to 78.05◦ (−77.59◦) at the midnight. Thus, the angular radius
of the ionospheric open field line region is∼10◦. (Cowley et
al. (2003) concluded that if the region of open flux was circu-
lar and centered on the magnetic pole, then it would occupy
a region down to∼9◦ co-latitude.)

For the southward solar wind magnetic field, contrary to
the case of northward IMF, open field lines go to the iono-
sphere after intersection with the magnetospheric equatorial
plane (see Fig. 3). Using the Jovian paraboloid model and
taking into account the observed lagging of corotation in the
equatorial plane (caused by the radial plasma outflow and
conservation of angular momentum), the corresponding po-
tential of the corotation electric field was calculated in the
Jovian ionosphere. The corotation braking in the equatorial
magnetosphere leads to the partial stopping of a connected
part of the ionosphere from corotating. According to Be-
lenkaya (2003, 2004), the location of the ionospheric final

corotation boundary is almost insensitive to the magnitude
of the penetrating southward IMF field strength (there is no
corotation on the ionospheric latitudes higher∼±84◦). It
was also shown that forκJ varying from 0.1 to 1 and for
reasonable values of southward IMF, the open field line re-
gion in the ionosphere is located in a zone free from corota-
tion where reconnection effects should dominate (Belenkaya,
2003, 2004). For southward IMF, convection cells with
sunward motion near the cusp projection arise on the high-
latitude Jovian ionospheric open field lines (see Fig. 4). Here
and in the subsequent text we neglect the 9.6◦ offset between
Jupiter’s magnetic dipole axis and the spin axis.

Southwood and Kivelson (2001) and Cowley and Bunce
(2001) argue that the auroral oval which maps to the part
of the rotating flows falls below the corotation velocity.
The main auroral ovals suggested to be connected with the
regions of significant upward field-aligned currents (Hill,
2001) are associated with the field-aligned potential drops.
In our model, the maximum field-aligned electric potential
drop occurs at the latitudes corresponding to the locations of
maximum magnetic field lines slippage:L=RD2 (the corre-
sponding ionospheric latitudes are∼±74◦, independent of
the IMF orientation). This modeled position of the equator-
ward edge of the main oval is in good accordance with the
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Fig. 4. The northern Jovian polar cap for southward IMF (BIMFx= −0.26 nT;BIMFy=0 nT;BIMFz=−0.5 nT) withκJ=0.8. The model
parameters are:ψ=0; Rss=100RJ ; R2=65RJ ; Bt=−2.5 nT;RD1=92RJ ; RD2=18.4RJ ; BDC=2.5 nT. The Sun is on the top; positive
Y corresponds to the dusk side. Dotted lines with crosses mark lines of constant latitudes (from∼±83◦ to ∼±90◦). The dashed curve marks
the open field line boundary. The bold solid circle is the corotation boundary. The solid curves are equipotentials of the solar wind electric
field: “1” corresponds to the potential 0.6 MV; “2” corresponds to−0.6 MV; “3” corresponds to 0.3 MV; “4” corresponds to−0.3 MV; “5”
corresponds to 0.03 MV; and “6” corresponds to−0.03 MV.

Connerney et al. (1998) and Cowley and Bunce (2001) re-
sults: the oval’s angular radius is∼16◦.

In the inner part of the Jovian magnetosphere, the mag-
netic field guides space plasmas. Beyond the distance where
the rigid corotation is finished, the plasma motion affects the
strength and the configuration of the magnetic field. The
length LA represents the distance scale in the equatorial
plane over which the rigid corotation breaks down. Be-
yondLA , the field should assume a disk-like geometry, and
the plasma should lag behind the inner magnetosphere in its
corotation.

In our model,LA approximately coincides with the inner
edge of the magnetodisk,LA∼RD2. According to obser-
vations (Kane et al., 1995, 1999), in the magnetodisk (for
RD2≤L≤RD1) the angular velocity remains at roughly half
the rigid corotation rate. We assume that beyond the mag-
netodisk, forRD1≤L≤Rc, the corotation significantly breaks

down due to the action of the external forces or to the inertia
of the corotating plasma;Rc is the equatorial boundary of the
corotation region, out of which the corotation vanishes. At
noonRc may coincide with the distance to the subolar point
or with the equatorial distance to the last closed field line. At
the other LT,Rc is roughly approximated by the equatorial
projection of the constant ionospheric latitude coincided with
the footpoint of the noon field line withL=Rc (for south-
ward IMF this ionospheric latitude is equal to±84◦, and for
northward IMF is equal to±81◦). According to observations
of the angular velocity in the outer dayside equatorial mag-
netosphere (forRD1≤L≤Rc in our model), the speed of the
azimuthal plasma flow is approximately one-fifth of the lo-
cal rigid corotation speed (e.g. Laxton et al., 1997; Hawkins
et al., 1998). So, for the crude estimation we suggest that
in the equatorial section of the Jovian magnetosphere, the
plasma corotates with an effective angular velocity�=γ�J,
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whereγ=1 forL≤RD2, γ=0.5 forRD2≤L≤RD1, γ=0.2 for
RD1≤L≤Rc, andγ=0 forL≥Rc. We suppose that due to the
braking of the plasma rotation speed observed in the equa-
torial magnetosphere, velocities at the “ends” of the corre-
sponding magnetic field lines (in the ionosphere) fall below
the rigid corotation (in particular, the region of the equato-
rial plane where corotation is absent maps to the zone of the
ionosphere prevented from rotating by the magnetosphere).

As it was mentioned above, the ionospheric projection
of the final corotation boundary corresponds to the latitude
∼±84◦ for southward IMF and to the latitude∼±81◦ for
northward. So roughly, for southward IMF at the ionospheric
latitudes less than∼±74◦ the rigid corotation exists; from
∼±74◦ to ∼±84◦ the sub-corotation should take place; at
the latitudes higher than∼±84◦ the ionosphere does not ro-
tate. For northward IMF, at the ionospheric latitudes less than
∼±74◦ the rigid corotation exists; from∼±74◦ to ∼±81◦

the sub-corotation should take place; for higher latitudes the
rotation should be restored.

For northward IMF, according to our scenario, there is a
corotation inside the Jovian ionospheric open field line re-
gion. For southward IMF ionospheric convection inside the
open field line region is driven by the solar wind, and forms
two cells for the IMF componentBIMFy=0 (see Fig. 4)
and one vortex forBIMFy 6=0 (really for BIMFy 6=0 and
BIMFx 6=0 there are two unequal cells, but one of them sig-
nificantly prevails; forBIMFx=0 there is only one vortex).
Thus, dependent on the sign ofBIMFy we can see, for exam-
ple, on the dawn side of the northern ionospheric open field
line region, the predominance of clockwise or anticlock-wise
motions.

Cowley et al. (2003) suggested that the region of open
field lines should be a region of near-stagnation in Jupiter’s
ionosphere in the rest frame of the dipole (that is in a frame
where the dipole axis is at rest), compared with surrounding
regions of sub-corotational flow. Cowley et al. (2003) also
noted that the location and the stagnant nature of the fixed
dark polar region may be associated with the region of open
magnetic flux mapping to the tail lobes. In turn, Grodent et
al. (2003b) stated that the location and shape of the so-called
UV swirl region matches well the infrared fixed dark polar
region observed by Stallard et al. (2003). The swirl region
may be described as a region of faint, patchy, and short-lived
(tens of seconds) emission features characterized by turbu-
lent motions which occasionally form localized clockwise
swirls, though the sense of rotation is not clear and varies
from one data set to the next (Grodent et al., 2003b). It is
located around the center of the polar region and fills approx-
imately one-third of the area limited by the main oval. Ac-
cording to Grodent et al. (2003b), it is difficult to follow the
motion of the faint, patchy, short-lived features which fill the
swirl region, therefore one cannot determine to what extent
it is corotating or not with the bulk of the auroral emission.

Following these suggestions, if we propose that the swirl
region is associated with an open Jovian field line region,

then the ratioη of the area limited by the ionospheric pro-
jection of the inner edge of the magnetodisk to the area oc-
cupied by the ionospheric open field line region can be esti-
mated and compared with the observed ratio of the area lim-
ited by the main oval to the swirl region area. Belenkaya
(2003, 2004), using the paraboloid model, showed how the
IMF controls Jupiter’s magnetospheric structure and distri-
bution at the ionospheric level of the open and closed field
line regions. For the typical IMF strength at Jupiter’s orbit,
of the order of 0.5 nT, it was shown above that the radius of a
circle approximating an open-closed field line boundary for
northward IMF is∼10◦ (which coincides with the Walker
and Ogino (2003) simulations result), and that a co-latitude
of the ionospheric projection of the inner edge of the mag-
netodisk (imitating the equatorward boundary of the main
oval in our model) is∼16◦. So, η is of the order of 2.5,
which matches well the observed estimation of the swirl re-
gion area as one-third of the area limited by the main oval
(for southward IMF of the same strength, the open field line
region area on the Jovian ionosphere should be less). Thus,
our model calculations of the ionospheric open field line re-
gion, controlled by the IMF, give results which in some sense
are correspondent to the described observations of the swirl
region: we obtained comparable areas of these objects, with
variable rotating motions inside them.

The most bright auroral emissions in the Jovian ionosphere
occur in the main oval. According, for example, to the Tomas
et al. (2004) definition, the magnetospheric projection of the
main Jovian oval is the equatorial region from∼15RJ to
several tens ofRJ , i.e. most of the magnetodisk. This is due
to the fact that magnetic field above and below the disk is al-
most parallel to the equatorial plane, therefore a large region
of the disk projects to a narrow ionospheric belt. Thus, the
structure of the disk is directly connected with the processes
responsible for the main oval emission. Below we will study
a radial structure of the plasma density in the vicinity of the
magnetodisk.

4 The radial profile of the background plasma density
in the magnetodisk

Let us consider a radial distribution of background plasma
density in the Jovian plasma disk in more detail. We re-
strict our consideration to the region 15RJ≤r≤50RJ, where
r is a distance from the planetary center. In this region,
the centrifugal force in the plasma disk is mainly normal to
the magnetic field lines and substantially exceeds the force
of gravity. This makes prerequisites for the development
of a flute instability, which has the greatest growth rateγ
and therefore is able to provide a most rapid transport of
the cold iogenic plasma at the periphery of the magneto-
sphere. This flute instability as applied to the Jovian magne-
tospheric plasma transport was investigated in a number of
articles. The first results (see, for example, Melrose, 1967)
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were mainly based on thea priori structure of the mag-
netospheric magnetic field and plasma properties and pre-
sented the linear approach to the problem. The following
models used the results of the direct measurements of the
magnetic field and charged particles in the Jovian magne-
tosphere (see Hill, 1976; Goertz, 1980, and others) and fo-
cused on the different aspects of the MHD stability of the
plasma disk: an influence of the magnetic field perturba-
tions on the development of the flute instability was treated
by Liu (1998), a mixed magnetohydrodynamic-kinetic ap-
proach of low-frequency instabilities was suggested by Fer-
riere and Andre (2003), some aspects of the nonlinear diffu-
sion of the iogenic plasma were considered, in particular, by
Siscoe and Summers (1981). In most of the above consider-
ations it was presumed that outside the disk proper a space is
devoid of plasma, and communication between the boundary
of the disk and the ionosphere is nearly instantaneous. Here
we investigate the flute instability of the background magne-
tospheric plasma, taking into account both the effects of the
well-conducting ionosphere and the regions of the rarified
plasma outside the disk.

Since the plasma source in the inner magnetosphere is
comparatively weak, we can follow the approach by Be-
spalov and Zheleznyakov (1990) and determine the equilib-
rium radial distribution of the plasma density in the disk, as-
suming it is at the threshold of the flute instability. Namely,
we assume that at every radial distance the growth rate of the
most unstable mode is equal to zero:

γmax = 0 . (12)

This estimation gives the steepest radial density profile, since
an appearance of the unstable modes leads to the flute in-
stability development which provides a fast transfer of the
excess plasma to the periphery of the magnetosphere. This
threshold profile can be further smoothed by more slow insta-
bilities, but we do not consider these problems in this paper.

Since a flute instability arises due to a small difference be-
tween the drift velocities of ions and electrons, any factors
which can influence this difference are of great interest. As
shown in a large number of articles, one of the most signif-
icant factors is an inhomogeneity of the perturbations along
the magnetic field. Here we consider an influence of this fac-
tor in more detail as applied to the background plasma disk
in the Jovian magnetosphere.

4.1 General dispersion relation in a plane layer

To describe plasma processes we assume that any plasma
component obeys the following set of two-fluid magnetohy-
drodynamic equations (the terms with kinetic pressure are
omitted):

∂n̄α/∂t + div(n̄α v̄α) = 0, (13a)

ρ̄α (∂ v̄α/∂t+(v̄α∇)v̄α)=qαn̄α
(
Ē+v̄α×B/c

)
+ρ̄αgα, (13b)

divĒ = 4πe(n̄i − n̄e), (13c)

rotĒ = 0. (13d)

Hereα=i corresponds to ions, andα=e corresponds to elec-
trons;ρ̄α, n̄α, andv̄α are total density, concentration, and ve-
locity of the corresponding plasma component, respectively,
qe= −e, qi=e, Ē andB are the electric and magnetic fields,
respectively,̄ραgα is a total force acting upon the unit volume
of the corresponding plasma component,c is the velocity of
light.

Let us enter the local Cartesian coordinates in the disk (see
Fig. 5), assuming, for simplicity, that the magnetic field lines
are straight and directed along theZ axis (the influence of
their curvature is discussed below). A steady-state flow can
be determined assuming∂/∂t=0 in the equations (Eqs.13a
and13b), wheren(0)α =n

(0)
α (x), B=B(x)z0, andgα=gα(x)x0.

We also assume that the flow is uniform along theY axis and
along the magnetic field, i.e.∂/∂y=0, ∂/∂z=0. Since the
rotation of real plasma disk is not rigid, it seems convenient
to use a local co-rotating frame of reference, where using
the quasineutrality of the mediumn(0)i =n

(0)
e one can obtain

E(0)≡0. So, at the given distance the rotation of the disk as
a whole is absent, and the corresponding centrifugal force
appears. Assuming that the medium does not move along
theX axis and along the magnetic field (v(0)αx=0 andv(0)αz =0),
Eq. (13b) gives a steady-state flow:

v(0)α =

{
0,−gxα

mαc

qαB
,0

}
. (14)

Let us consider perturbations in the form of
exp[i(ωt−kyy−kzz)], which can provide the greatest
increments of flute instability (Mikhailovskii, 1974). Per-
turbed velocity and concentration of theα-component
are v̄α=v(0)α +vα and n̄α=n

(0)
α +nα, respectively; the per-

turbed electric field isE= −∇ψ=ikψ . The continuity
equation (13a) gives

nα =
idiv(n(0)vα)

ω − kyv
(0)
αy

. (15)

Equation (13b) gives

iωvα+(vα∇)v(0)α +(v(0)α ∇)vα=
qα

mα

(
ikψ+

1

c
vα×B

)
+gα. (16)

As seen, Eq. (16) can be divided into the separate equations
for the field-aligned (longitudinal) and transverse to the mag-
netic field components of the perturbed velocityvαz andvα⊥,
respectively. Namely, multiplying Eq. (13b) by z0, one can
obtain

vαz =
qα

mα

kzψ

ω − kyv
(0)
αy

. (17)
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Perturbation of the transverse velocityvα⊥ is described by
the equation

vα⊥=
1

ω2
Bα−ω

′2
α

qα

mα
ψ

[
i

c

qα

mα
k⊥×B−k⊥(ω−kyv

(0)
αy )

]
. (18)

Here we used the inequality|v(0)αy κ|�|ωBα|, whereκ is the
inverse characteristic scale of the drift velocity (Eq.14) vari-
ation along the axisX, ωBα=qαB/(mαc), ω′

α=ω−kyv
(0)
αy .

Using the expressions (Eqs.15, 17 and18) one can calcu-
late the disturbance of theα-component concentration:

nα=ψn
(0)
α

qα

mα

(
k2
z

ω′2
α

−
k2
y

ω2
Bα−ω

′2
α

)
−
ky

ω′
α

qαc

mα
ψ
∂

∂x

[
n
(0)
α ωBα

ω2
Bα−ω

′2
α

]
.

(19)

Assuming
∣∣ω′
α

∣∣�|ωBα| and substituting expressions for
ne andni to the Poisson equation (13c), we obtain the fol-
lowing general dispersion relation:

k2
y

(
1 +

ω2
pi

ω2
B i

+
ω2

pe

ω2
Be

)
+ k2

z

(
1 −

ω2
pi

ω′2
i

−
ω2

pe

ω′2
e

)
−

k2
y

ωB i

∂

∂x

(
ω2

pi

ωB i

)
gexme/mi + gix

ω′

iω
′
e

= 0. (20)

Below this basic relation will be applied to the MHD stabil-
ity analysis of the background plasma in the Jovian magne-
tosphere.

4.2 Model dispersion relation in the case of bounded inho-
mogeneous plasma

It is clear that the dispersion relation (Eq.20) is suitable for a
plasma, which is uniform along theZ axis. However, plasma
distribution along the magnetic field line in the Jovian mag-
netosphere is not uniform: there are extensive regions of rel-
atively rarefied plasma between the ionosphere and the dense
disk in the vicinity of the magnetic equator.

Another very important circumstance is that any magnetic
tube will lean on the conducting ionosphere. This, generally,
can significantly damp a flute instability.

To take into account the above features, the following
model of the background plasma disk in the Jovian magneto-
sphere is considered. We assume that the magnetic field lines
are straight and bounded by the ionosphere with the given
properties. In the middle of this plane cavity of the thickness
2l a dense plasma disk of the given thickness 2d (medium I)
is placed, the rest of the cavity is filled with relatively rar-
efied plasma (medium II, see Fig. 5). It is assumed that the
steady-state plasma density is homogeneous along theZ axis
both in media I and II, and their ratio does not depend on the
distance from Jupiter:n(0)II =τn

(0)
I , whereτ≤1. This simpli-

fied model corresponds qualitatively to the magnetospheric
conditions.

Fig. 5. A model field-aligned distribution of the background
plasma. The magnetic field lines are straight and directed along
thez axis, the hatched region corresponds to the dense plasma disk
(region I), there are regions of rarefied plasma between the disk and
ionosphere (regions II). The external forces act along thex axis, and
in the case of the small-scale perturbations, Cartesian coordinates
can be used, where they axis corresponds to the azimuth direction.

Since the projection of the external force onto
the magnetic field line is maximum near the top of
the line, for simplicity sake we neglect the force
in the medium II. A total force acting upon the
plasma components is caused, first of all, by the az-
imuthal rotation of the whole disk with the velocity
V≈�Jx for x≤15RJ and V≈15RJ�J for x>15RJ
(Belcher, 1983), where�J=1.76·10−4 rad/s is an angular
velocity of the planetary rotation. Centrifugal acceleration
in this case is the same both for ions and electrons, and
for x≥15RJ is equal togcf

x ∼
(15RJ�J)

2

x
≈5·102RJ

x
m/s2. As

follows from the last term in the left-hand side of Eq. (20),
in this case an ion term dominates and should only be taken
into account.

In accordance with the Jovian paraboloid magnetospheric
magnetic field model there is a significant curvature of the
magnetic field lines inside the disk. The radius of the cur-
vature is about 2RJ and slightly depends on the radial dis-
tancex. Usually the effect of the curvature of the magnetic
field lines is taken into account by an additional centrifu-

gal accelerationgcur
αx=

v2
Tα

RJ
∼

Tα
mαRJ

, whereTα is the kinetic
temperature of theα-component. As seen, assuming elec-
tron and ion temperatures are equal:Te≈Ti=T≈100 eV, both
electron and ion contributions should be taken into account:
gcur

ex me/mi+g
cur
ix ∼

T
miRJ

≈8 m/s2. As seen, the effect of the
magnetic field line curvature can be neglected as compared
to the influence of the cold plasma disk rotation.
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Now let us estimate the parameters of the dispersion rela-
tion (Eq.20) for medium I and II using measured values for
the distance 15RJ: n

(0)
I ∼10−5 m−3, B∼50 nT. The follow-

ing inequality is met:ω2
piI/ω

2
B i∼107

�1. The corresponding
relation is also valid in the medium II under any reasonable
τ . Taking into account that 1�ω2

piI/ω
′2
i �ω2

peI/ω
′2
e , one can

obtain the dispersion relation in the medium I:

k2
y

ω2
piI

ω2
B i

− k2
z

ω2
peI

ω′2
e

−
k2
y

ωB i

∂

∂x

(
ω2
piI

ωB i

)
(15�JRJ)

2

xω′

iω
′
e

= 0. (21)

Using the above assumption that the term withgα is equal
to zero in the medium II, one can also write out a dispersion
relation of the flute disturbances outside the disk:

ω2
=
k2
z

k2
y

ω2
B i
mi

me
. (22)

One can see that the system (Eqs.21, 22) is not complete:
it is necessary to determine the possible longitudinal wave
numberkz. Let us construct an appropriate characteristic re-
lation.

Disturbed electric potentialψ1 in the medium I andψ2 in
the medium II we present as two waves propagating in the
opposite directions (generally, frequencies and wave vectors
of the disturbances in both media can be different). Here we
restrict ourselves by even modes, since their electric field is
zero in the vicinity of the disk center, and one can expect that
the lowest even modes have maximum increments since the
damping influence of the conducting ionosphere is at amini-
mum.

To obtain a characteristic relation, the following boundary
conditions atz=d andz=l were used. First, the transverse
electric field at the boundaries should be continuous:

Eτ1 = Eτ2. (23)

Second, since the continuity equation div(4π j+iωE)=0 is
met, the normal component of the vector 4π j+iωE should
be continuous:

4πjz + iωEz = const. (24)

Here, for simplicity sake, we also assume that the ionosphere
is a perfect conductor1. Using the relations (Eqs.23, 24), and
the dispersion relation (Eq.22) in the medium II, we obtain
the following characteristic relation for the longitudinal wave
numberk1z in the disk:

k1z tan(k1zd) =
n
(0)
II

n
(0)
I

ωky
√
ωB i |ωBe|

cot

(
ωky(l − d)
√
ωB i |ωBe|

)
. (25)

The above expression (Eq.25) and dispersion relation for
the medium I (Eq.21), wherekz=kz1, describe a flute pertur-
bation in the plasma disk.

1More detailed survey shows that this assumption is valid under

the condition|ky |�
1

4π6P

ω2
peII

ωB i
√
mi/me

, where6P is the height-

integrated Pedersen conductivity of the Jovian ionosphere.

4.3 Threshold radial profile of the background plasma den-
sity

It was discussed above that we need to investigate threshold
conditions of the flute instability in the plasma disk. It can
be assumed that the most unstable modes correspond to the
smallest longitudinal wave numbers. So, we shall search for
a solution which satisfies the condition

k1zd � 1. (26)

An analysis of the flute instability under the condition
k1zd=0 (see Bespalov and Davydenko, 1994) shows that un-
stable modes have very low real frequencies, so we can also
suppose that an argument of the trigonometric function in the
right-hand side of Eq. (25) is also small enough:

ω|ky |(l − d)
√
ωB i |ωBe|

� 1. (27)

Using the conditions (26, 27), the functions in Eq. (25) can be
expanded, and the small terms can be neglected. Substituting
this equation in formula (21) and neglecting the drift of the
electrons as compared to ion’s drift (ω′

e≈ω), we obtain the
following reduced characteristic relation:

ω2ω′

i −
V 2ω

x

∂

∂x

(
ln
n
(0)
I

B

)
−
ω2
B i

k2
y

mi

me

ω′

iτ

d(l − d)
= 0. (28)

It is seen that the relation (Eq.28) presents a cubic equation
with respect to the frequencyω:

ω3
+Aω2

+ Bω + C = 0, (29)

where

A =
V 2

ωB i

ky

x
,

B = −
V 2

x

∂

∂x

(
ln
n
(0)
I

B

)
−
ω2
B i

k2
y

mi

me

τ

2RJ(1.3x − 2RJ)
,

C = −
ωB i

ky

mi

me

τ

2RJ(1.3x − 2RJ)

V 2

x
,

where the thickness of the plasma disk is about 4RJ, l≈1.3x.
Starting conditions of the flute instability correspond to

the appearance of the complex roots of Eq. (29), i.e. on the
threshold of the instability the determinant of Eq. (29) should
be zero:

[−A2/3 + B]
3/27+ [2(A/3)3 −AB/3 + C]

2/4 = 0. (30)

One can see that at a given radial distancex the condition
(Eq.30) itself presents the cubic equation with respect to the
relative steepness of the radial profile of the plasma density
∂(n

(0)
I /B)/∂x. The only single parameter of the perturba-

tions in Eq. (30) is the transverse wave numberky .
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Fig. 6. Normalized model radial distributions of the magnetic field strength in the plasma disk (see Sect. 2) and background plasma density
underτ=0.01, 0.001, and 0.0001. HereB(x=15RJ) andn(x=15RJ) are the magnetic field strength and plasma density at the radial distance
x=15RJ, respectively.

An numerical analysis shows that the determinant of
Eq. (30) is always positive, i.e. this equation has only one
real solution for∂(n(0)I /B)/∂x at a givenx and ky . This
root is always negative, since at the threshold of the flute in-
stability a plasma density decreases withx faster than the
magnetic field, due to the damping effect of the conduct-
ing ionosphere (it is known that the threshold relative steep-
ness in the case of the boundless plasma is equal to zero,
i.e. the threshold’s radial profile of the plasma density re-
peats the radial distribution of the magnetic field). It is nat-
ural to assume that the most unstable mode corresponds to
the maximum relative steepness: there are bands of unsta-
ble modes under the steeper density profile and there are no
unstable flute perturbations under the smoother density pro-
file. This value determines the plasma density profile, which
corresponds to the appearance of the first unstable mode and
depends on the parameterτ and the magnetic field distribu-
tion only.2 Substituting the value of the threshold relative
steepness∂(n(0)I /B)/∂x to Eq. (30) one can determine the
transverse wave number of the most unstable mode. Using
Eq. (29) we can also determine the frequency of this mode.

The radial distribution of the magnetic field in the equato-
rial disk agrees with the above paraboloid Jovian magneto-
spheric magnetic field model and is presented in Fig. 6. The
calculated threshold radial profiles of the plasma density for
different density ratioτ are also presented in Fig. 6. In ac-
cordance with qualitative expectations, an influence of the

2 The transverse wave number and the frequency of the most un-
stable mode should satisfy the above conditions

∣∣ω′
α

∣∣�|ωBα | and
(27). It should be noticed that the last condition is satisfied under
τ.0.1 only, and the caseτ≥0.1 needs more specific analysis and
was not considered.

conducting ionosphere becomes less (and the density profile
tends to the radial distribution of the magnetic field in the
disk) asτ decreases, since the plasma outside the disk be-
comes more tenuous and conditions at the disk boundary be-
come close to free (vacuum) conditions. In accordance with
the calculations, under the density ratioτ=10−4, the thresh-
old plasma density profile almost exactly corresponds to the
magnetic field distribution which is typical for the case of
plasma disk in a free space. If the ratio of the plasma densi-
ties outside and inside the disk isτ=10−3, then the thresh-
old plasma density profile can be described by the expression
n
(0)
I (x)=8(x, τ)B(x)x−1.4, where8(x, τ)∼1. If τ=10−2,

the model profile corresponds ton(0)I (x)=8(x, τ)B(x)x−4.4.

In accordance with thein-situmeasurements in the Jovian
plasma disk, the plasma density and magnetic field distri-
bution are both approximately described by the power laws
(Belcher, 1983; Khurana and Kivelson, 1993). The plasma
density profile is steeper, and the difference in the magnetic
field and plasma density exponents lies in the range between
1 and 2. One can see that the above results qualitatively agree
with the experimental data. The density ratioτ plays the role
of a free parameter, which can be varied to met the calcu-
lated and observed radial profiles of the background plasma
density in the disk. Thus, the valueτ can also provide addi-
tional information on the plasma density outside the disk: the
best coincidence of the experimental and calculated profiles
reaches the density ratioτ≈10−3. This result qualitatively
agrees with the direct plasma measurements (see Belcher,
1983).

It should be noticed that the above approach can be applied
to the analysis of the radial plasma density profiles in the sta-
ble regions of other planetary magnetospheres. In particular,
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this method can be applied to the rather stable inner part
of Saturn’s magnetosphere. The stability of the background
plasma in the outer, unstable part of Saturn’s magnetosphere
needs specific consideration (see Goertz, 1983).

5 Conclusions

The paraboloid model of Jupiter’s magnetospheric magnetic
field was used for calculations of the open field line region
dependent on the IMF, and for determination of the radial
distribution of the background plasma in the Jovian magne-
todisk.

The predictions made on the basis of the Jovian paraboloid
model were compared with observations. We showed that the
main oval radius is of the order of 16◦, which corresponds to
observations. The equatorward boundary of the main oval
in our model is an ionospheric projection of the inner edge
of magnetodisk, where the maximum field-aligned electric
potential drops along upward field-aligned currents, which
occur due to the maximum magnetic field lines slippage.

The regions of different corotation regimes in the high-
latitude Jovian ionosphere were determined to be dependent
on the IMF orientation. For southward IMF, at ionospheric
latitudes less than∼±74◦, the rigid corotation exists; from
∼±74◦ to ∼±84◦ the sub-corotation should take place; at
latitudes higher than∼±84◦ the ionosphere does not rotate.
For northward IMF, at ionospheric latitudes less than∼±74◦

the rigid corotation exists; from∼±74◦ to ∼±81◦ the sub-
corotation should take place; for higher latitudes the rotation
should be restored.

Following Grodent et al. (2003b), we suggested that the
swirl region is associated with an open Jovian field line re-
gion at the ionospheric level. It was shown by observations
that the swirl region occupies approximately one-third the
area limited by the main auroral oval, and that motions in-
side it occasionally form localized swirls, though the sense
of rotation is not clear and varies from one data set to the
other. The area of the open field line region in the high-
latitude ionosphere calculated in the paraboloid model for
the typical IMF of 0.5 nT was also of the order of one third
from the area of a region bounded by the ionospheric pro-
jection of the inner edge of the magnetodisk (which we con-
sider to be coincident with the equatorward boundary of the
main oval). According to our calculations, different vortex
structures are formed inside the ionospheric open field line
region, dependent on the IMF orientation. For southward
IMF, ionospheric convection inside the open field line re-
gion forms two cells for the IMF componentBIMFy=0 (see
Fig. 4), and one cell significantly dominates forBIMFy 6=0
(for BIMFy 6=0 andBIMFx 6=0 there are two unequal cells;
for BIMFx = 0 there is only one vortex). Dependent on the
sign ofBIMFy we can see, for example, on the dawn side of
the northern ionospheric open field line region, the clockwise
or anticlockwise motions. For northward IMF, according to

our scenario, there is a corotation inside the open field line
region.

The elaborated model of the magnetic field was used to de-
termine the radial profile of the background plasma density
in the magnetospheric disk. The dense plasma of the rotating
disk is a subject of flute instability, which can provide fast
transfer of the iogenic plasma to the periphery of the mag-
netosphere. Considering the instability of the disk plasma, a
coupling between the dense disk, the tenuous plasma outside
the disk, and the conducting planetary ionosphere was taken
into account. Assuming that the plasma in the disk is at the
instability threshold to the flute perturbations, the limiting ra-
dial plasma density profiles were calculated. In accordance
with the previous results, when the density ratio at the disk
boundary is small enough (τ∼10−5), the radial profiles of
the plasma density and the magnetic field almost coincide.
As τ grows, the density profile appears to be steeper relative
to the magnetic field’s profile (due to the mitigating influence
of the conducting ionosphere), and approximately fits the ex-
perimental results atτ∼10−3.
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