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Abstract. The diurnal, seasonal, and solar activity vari-
ations of the ionogram derived scale height around the
ionospheric F-layer peak (Hm) are statistically analyzed at
Wuhan (114.4◦ E, 30.6◦ N) and the yearly variations ofHm

are also investigated for Wuhan and 12 other stations where
Hm data are available.Hm, as a measure of the slope of the
topside electron number density profiles, is calculated from
the bottomside electron density profiles derived from verti-
cal sounding ionograms using the UMLCAR SAO-Explorer.
Results indicate that the value of medianHm increases with
increasing solar flux.Hm is highest in summer and lowest in
winter during the daytime, while it exhibits a much smaller
seasonal variation at night. A common feature presented at
these 13 stations is thatHm undergoes a yearly annual vari-
ation with a maximum in summer during the daytime. The
annual variation becomes much weaker or disappears from
late night to pre-sunrise. In addition, a moderate positive
correlation is found betweenHm with hmF2 and a strong
correlation between the bottomside thickness parameter B0
andHm. The latter provides a new and convenient way for
empirical modeling the topside ionospheric shape only from
the established B0 parameter set.

Keywords. Ionosphere (Modeling and forecasting; Solar ra-
diation and cosmic ray effects; General or miscellaneous)

1 Introduction

Knowledge of the spatial distribution of the electron den-
sity in the ionosphere, especially the ionospheric profile
Ne(h), is important for scientific interest, such as iono-
spheric empirical modelings and ionospheric studies, and
for practical applications for time delay correction of the
radio wave propagation through the ionosphere, etc. Dur-
ing the past decades, great efforts have been made in the
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global ionospheric empirical modeling (Bilitza, 2001). Many
mathematical functions, such as the Chapman, exponen-
tial, parabolic, Epstein functions, have been proposed to de-
scribe the ionospheric profiles (e.g. Booker, 1977; Rawer et
al., 1985; Rawer, 1988; Di Giovanni and Radicella, 1990;
Stankov et al., 2003). Among these functions, the Chapman
function is simple and has great potential for analytical mod-
eling of the ionospheric profile (e.g. Huang and Reinisch,
2001). A nice feature of the Chapman profiler is that it only
needs information about the electron density and height of
the F peak and scale height to give a good representation
for the observed topsideNe(h). Studies have identified that
the Chapman function, even with a constant scale height, fits
the topside ionospheric profile well several hundred kilome-
ters above the F2-peak (Reinisch and Huang, 2004; Bele-
haki et al., 2003). This is enough for most situations because
most electrons in the ionosphere are distributed in this re-
gion. When the scale height is linearly varied with height,
the fit will be greatly improved in the higher region (Lei et
al., 2005).

It is evident that the scale height is a key and inherent pa-
rameter for ionospheric profiles, especially for the topside
profiler (Stankov et al., 2003; Belehaki et al., 2006). How-
ever, there are still limited studies on the behavior of the
plasma scale height. Recently, Huang and Reinisch (2001)
introduced a new technique to extrapolate the topside iono-
sphere based on information from ground-based ionogram
measurements. They approximated theNe(h) both around
and above the F2-layer peak (hmF2) by anα-Chapman func-
tion with a scale height (Hm) determined athmF2. The
parameterHm derived from ionograms is a measure of the
electron density profile slope of the topside ionosphere. The
Hm data is routinely archived at some stations after being
derived from the Digisonde ionograms with the UMLCAR
SAO-Explorer (http://ulcar.uml.edu/).

In this paper, we conduct a statistical analysis on the
variations of the ionogram derived scale height (Hm)
around the F2-peak during 1999–2004 from routine
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Fig. 1. Diurnal variations of the scale height (Hm) derived from Digisonde measurements recorded at Wuhan during 29–31 October 2003
and 27–29 October 2004. The median values ofHm in the nearest 31 days are plotted in dashed lines for a reference. The 3-hourKp index
is illustrated in the histograms. The corresponding daily sumKp and solar index F107 indices are also labeled. Local Time, LT, is UT plus
7.6 h at Wuhan.

Digisonde measurements recorded at Wuhan (geographic
114.4◦ E, 30.6◦ N; 45.2◦ dip), China, and on the yearly
variations of Hm observed at Wuhan, College (64.9◦ N,
212.2◦ E), Narssarssuaq (61.2◦ N, 314.6◦ E), Chilton
(51.6◦ N, 358.7◦ E), Millstone Hill (42.6◦ N, 288.5◦ E),
Tortosa (40.4◦ N, 0.3◦ E), Athens (38◦ N, 23.5◦ E), Wallops
Is. (37.8◦ N, 284.5◦ E), Ascension Is. (7.9◦ S, 345.6◦ E),
Madimbo (22.4◦ S, 30.9◦ E), Louisvale (28.5◦ S, 21.2◦ E),
Grahamstown (33.3◦ S, 26.5◦ E) and Port Stanley (51.7◦ S,
302.2◦ E) stations. The results will have empirical modeling
applications.

2 Data

The present analysis uses a database ofHm observed at
Wuhan, College, Narssarssuaq, Chilton, Millstone Hill, Tor-
tosa, Athens, Wallops Is., Ascension Is., Madimbo, Louis-
vale, Grahamstown and Port Stanley. To investigate the
annual variation,Hm data at the latter 12 stations were
downloaded from the SPIDR web (http://spidr.ngdc.noaa.
gov/spidr/).

More than 219 000 ionograms were routinely recorded at
Wuhan (China) with a DGS-256 Digisonde during 1999–
2004. A huge effort has been made to manually scale those

ionograms, and the bottomside profiles are calculated from
these hand-scaling ionograms with a standard “true height”
inversion program (Reinisch and Huang, 1983; Huang and
Reinisch, 1996) inherent in the UMLCAR SAO-Explorer.
The critical frequency (foF2) and its height (hmF2) of the F-
layer, the IRI bottomside profile thickness parameter B0, etc.,
are obtained. At the same time, the scale height around the
F2-peak (Hm) is also derived. The calculation ofHm from
the bottomside profile can be found in the work of Huang
and Reinisch (2001) and Reinisch and Huang (2004). B0 is
a bottomside thickness parameter that gives the height differ-
ence betweenhmF2 and the height where the electron density
profile has dropped down to 0.24*NmF2.

3 Results and discussions

3.1 Daily variation and geomagnetic dependence of Wuhan
Hm

There are appreciable diurnal and day-to-day variations
in the ionogram derived scale height around the F2-peak,
Hm, derived from Digisonde measurements. Figure 1 dis-
plays Hm recorded at Wuhan for three geomagnetically
disturbed days (29–31 October 2003) and three quiet days
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Fig. 2. Scatterplot of the scale height (Hm) at Wuhan versus the 3-h geomagnetic activity index ap at 04:00 UT (around local noon) in
spring. The solid line shows the trend of the linear regression.

(27–29 October 2004). The median values ofHm in the
nearest 31 days are also plotted with dashed lines which serve
as a reference level.

Hm for those three quiet days (27–29 October 2004) in
general follows the average behavior. In contrast, for three
geomagnetically disturbed days (29–31 October 2003), the
variability of Hm is enhanced and it significantly deviated
from the median behavior. This indicates the redistribution of
the ionospheric ionization during geomagnetic disturbances
due to the storm impact. Thus, for constructing a complete
ionospheric image during storms,Hm may present comple-
mentary characteristics of the ionosphere.

The effects of geomagnetic storms on the ionosphere are
well-known to be complicated and stochastic. The geomag-
netic dependence ofHm at Wuhan has been statistically in-
vestigated with the planetary geomagnetic indices, 3-hour
Kp andAp, and the dailyKp andAp. AlthoughHm may
greatly deviate from the average pattern under individual dis-
turbed situations, the correlations ofHm with these indices
are poor, as depicted in Fig. 2. It implies a complicated de-
pendence ofHm on geomagnetic activity. Furthermore, it
also suggests insignificant differences in the averaged values
of Hm at specified times for those 6 years if we separate
the data into two groups, low (Ap<15) and moderate to high
(Ap>15) magnetic activity levels.

3.2 Seasonal and solar activity variations of WuhanHm

Several atmospheric and ionospheric parameters display reg-
ular seasonal and solar activity variations (e.g. Richards,
2001; Lei et al., 2005). At low and middle latitudes, the pri-
mary source of ionization in the F-region is the EUV solar

irradiances. The solar activity dependence of ionospheric
characteristics has been studied in the early various iono-
spheric observations. Richards et al. (1994) have shown that
the solar cycle variation of most solar EUV flux lines can be
scaled accurately enough for aeronomic applications by us-
ing F107p = (F107 + F107A)/2, where F107A is the 81-day
running mean of daily F107 index. Now we use F107p as an
indicator of the solar activity level in this analysis.

Figure 3 presents the mothly diurnal variation ofHm at
Wuhan in 2002. The average and day-to-day variability of
the monthlyHm is described by the corresponding median
and upper and lower quartiles, which are represented in lines
with vertical bars, respectively. It can be observed from the
figure that the values of medianHm vary from 30–80 km.
As seen from Fig. 3,Hm are roughly of a similar behavior
in the months from November to February. It is true forHm

grouped in March and April, May to August, and Septem-
ber and October, respectively. Thus, to look for their sea-
sonal variation, the parameters in months from November to
February are classified as winter, March and April as spring,
May to August as summer, and September and October as
autumn, respectively.

Diurnal variations of the medianHm for four seasons un-
der high (F107p>180) and moderate-to-low (F107p<140)
solar activity levels are plotted in Fig. 4. In Fig. 4, data are
grouped according to their solar activity levels. The possible
influence of geomagnetic activities is not excluded.

Under moderate-to-low and high solar activities, a morn-
ing increase inHm is followed by an afternoon decrease.
There is no significant change inHm during the nighttime
compared with the daytime, except for a small peak in the
winter under high solar activity. In summer,Hm has a
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Fig. 3. Diurnal variations ofHm at Wuhan in 2002. Lines with bars, respectively, represent the monthly median values ofHm and the
corresponding upper and lower quartiles. The local noon and local night are also indicated with open and solid circles near the abscissa,
respectively.
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Fig. 5. Scatterplot of the scale heightHm versus the solar activity index F107p at 04:00 UT in winter. The solid line shows the trend of the
linear regression.
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Fig. 6. Diurnal variations of the rate ofHm increase with F107p in four seasons. Here the solar proxy is F107p = (F107+F107A)/2, where
F107A is the 81-day running mean of the daily F107 index.

notable diurnal variation with a maximum around 10:00 LT
and a minimum around midnight. Both under high and
moderate-to-low solar activity,Hm is at its minimum dur-
ing nighttime. The winter peak ofHm shifts to local midday
under high solar activity and even later under moderate-to-
low solar activity. The diurnal variation of seasonal median
Hm is not so appreciable in other seasons as that in summer.
An evident feature found in Figs. 3 and 4 is that the mean

daytime values ofHm are highest in summer and lowest in
winter, while insignificant seasonal differences are seen in
the nighttimeHm. During the daytime, the observedHm

values in summer are about 20 km larger than those in other
seasons.

According to Huang and Reinisch (2001), there is a good
correlation betweenHm and the slab thickness of the iono-
sphere, which is defined by the ratio of ionospheric total

www.ann-geophys.net/24/851/2006/ Ann. Geophys., 24, 851–860, 2006
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Fig. 7. Time sequences of values of scale height (Hm) at hmF2 over 12 stations at specified day times during 2000–2004. The names and
their locations of the stations are labeled.

electron content to the peak density. The seasonal feature
of WuhanHm is also similar to the general trend for the
slab thickness to decrease from summer to equinox to win-
ter as reported by Goodwin et al. (1995), Jayachandran et
al. (2004) and Wu et al. (1998).

It is evident that the solar activity level should have an in-
fluence onHm. Figure 5 gives a scatterplot of WuhanHm

versus F107p at 04:00 UT in winter. Although the data set
has not covered a full solar cycle, the solar activity index
F107 during the observations extends from the minimum of
80 to the maximum of 285.5 (on 28 September 2001), with
a mean value of 157. In order to study the solar activity
variations ofHm, we investigate the relationship between
Hm and F107p at each specified time for the four seasons.
It dindicates that the overall trend of theHm change is a
linear increase with respect to F107p, namely the values of
Hm tend to be higher for higher solar activities. Thus, the
solar dependence ofHm may be represented with the rate
of increase with solar flux, dHm/dF107p. Figure 6 demon-
strates dHm/dF107p against universal time for the four sea-
sons. The value of dHm/dF107p averages at 0.13 km per
solar flux unit by day and night.

If the scale height in anα-Chapman function represents
the scale height of the neutral atmosphere, the plasma scale
height should be roughly twice as large as the Reinisch

and Huang (2004) method. The neutral temperature Tn at
Wuhan, provided by the MSIS model (Picone et al., 2002),
is shown in the fifth panel of Fig. 8. It is obvious thatHm is
not strongly connected withT n. It is also true for electron or
ion temperatures, because there is a significant morning rise
in electron and ion temperatures in the F-layer (Oyama et al.,
1996; Sharma et al., 2005), while it does not occur inHm.

It should be mentioned that the classical scale height is de-
fined askT /mg (herek is the Boltzmann constant,T is the
temperature,m is the mass andg the gravitation accelera-
tion), while the scale heightHm, derived from ionograms, is
actually a measure of the slope of the topside electron num-
ber density profile with a Chapman function, thus it does
have not the classical physical meanings. This point has been
made by Huang and Reinisch (2001). ButHm derived from
the ionograms has some physical meanings. First, the iono-
gram derivedHm is a measure of theNe(h) profile, thus it
may be thought of as an index for the slope of the topside
ionosphere. It has values in topsideNe(h) modeling applica-
tions. Second, thisHm is also a measure of slab thickness,
although their values may be different from each other, ac-
cording to the statistical study of Huang and Reinisch (2001)
on NmF2, TEC andHm. In addition, although the Chap-
man theory can only be applied in the E- and F1-layer, the
distribution of the electron density of the topside ionosphere
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L. Liu et al.: An investigation of ionospheric effective scale height 857

50

100
H

m
 (

km
)

50

100

H
m

 (
km

)

200

300

400

hm
F2

 (
km

)

200

300

400

hm
F2

 (
km

)

5

10

15

fo
F2

 (
M

H
z)

5

10

15

fo
F2

 (
M

H
z)

50

100

150

200

B
0 

(k
m

)

50

100

150

200

B
0 

(k
m

)
800

1000

1200

1400

T
n 

(K
)

600

800

1000

1200

T
n 

(K
)

1999 2000 2001 2002 2003 2004
−200

−100

0

Year

W
n 

(m
/s

)

1999 2000 2001 2002 2003 2004
−100

0

100

Year

W
n 

(m
/s

)

UT = 4 UT = 16
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model), and southward neutral windWn (at the height ofhmF2 from HWM model) over Wuhan at 04:00 UT (left) and 16:00 UT(right)
during 1999–2004.

not far away from the F-layer peak can be well described
by the Chapman function. Thus, the ionogram derivedHm

should contain information on the ionospheric chemical and
dynamic processes. This point deserves further investigation.

3.3 Annual variation ofHm at 13 stations

The Earth’s ionosphere is known to undergo a yearly varia-
tion (e.g. Kawamura et al., 2002; Yu et al., 2004). It is well
known that in some parts of the world the predominant vari-
ation of foF2 is semiannual, but elsewhere it is significantly
annual, usually with a winter maximum (e.g. Torr and Torr,
1973; Yu et al., 2004). To investigate the yearly variation of
Hm, besides Wuhan, data at College, Narssarssuaq, Chilton,
Millstone Hill, Tortosa, Athens, Wallops Is., Ascension Is.,
Madimbo, Louisvale, Grahamstown and Port Stanley were
also collected.Hm data at these 12 ionosonde stations can
be available on the SPIDR web. The latitude of these stations
varies from 64.9◦ N to 51.7◦ S.

An interesting feature of daytimeHm, which occurs at
all latitudes, is its significant annual variation with a sum-
mer maximum. Figure 7 shows the time sequence of the

day-by-dayHm at a specific time during the daytime over
these global 12 stations. During the daytime, the annual com-
ponent is dominant in the yearly variation ofHm.

We choose the Wuhan station as an example to show the
yearly variation ofHm andhmF2, foF2 and the IRI bottom-
side profile thickness parameter B0. Figure 8 shows the day-
by-day values of these parameters over Wuhan around lo-
cal noon and midnight, respectively. The yearly variation of
Hm at Wuhan also shows the common feature at the other
12 stations. In addition,Hm has a similar phase with that of
hmF2 and B0 and an opposite one withfoF2. At midnight,
the yearly variation ofhmF2 and B0 becomes much weaker
and tends to disappear. In contrast, the annual variation of
foF2 is predominant with a peak in summer.

Figure 9 illustrates the amplitudes of the annual and semi-
annual components ofHm, hmF2, foF2 and B0 at Wuhan at
different times, while Figure 10 represents the annual phase
of these parameters at Wuhan. The yearly variation of Wuhan
foF2 has notable annual and semiannual components, al-
though its daytime annual phase is in winter, while at night,
its annual variation is predominant with a peak in summer. In
contrast, the behaviors ofHm, hmF2 and B0 are somewhat

www.ann-geophys.net/24/851/2006/ Ann. Geophys., 24, 851–860, 2006
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different from that offoF2. Their annual phases are in sum-
mer (Fig. 10). As shown in Fig. 9, daytimeHm andhmF2
at Wuhan undergo a strong yearly variation with a predomi-
nant annual component, while at night the yearly variations
become much weaker and tend to disappear. Both the annual
and semiannual components ofHm and B0 become insignif-
icant at night.

3.4 The correlation betweenHm andhmF2, B0

Scatterplots of the scale heightHm versus hmF2, foF2
and B0 at Wuhan at local noon (04:00 UT) and midnight
(16:00 UT) during 1999–2004 are given in the left and right
panels of Fig. 11, respectively. In general,Hm (also B0)
shows a moderate positive correlation withhmF2 and a very
weak negative or poor correlation withfoF2.

A striking feature shown in Fig. 11 is the strong correlation
betweenHm and the IRI bottomside thickness parameter B0
at all local times over Wuhan (with a correlation coefficient
as high as 0.92–0.99). Both parameters B0 andHm are de-
pendent on the shape of the electron density profile in the F
region. This dependence justifies the strong correlation be-
tween both parameters. Reinisch et al. (2004) discussed the
possibility to calculateHm from the IRI parameters B0, B1
and D1. Their ultimate purpose is searching for an alternate
path to an estimate of the topside profile based on the bot-
tomside one. Our result suggests that the strong correlation
betweenHm and B0 provides a new and convenient way for
future modeling of the topside ionospheric shape only from
the established B0 parameter set. This point may be helpful
for improving the IRI profile prediction in the future.
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The positive correlation ofHm with hmF2 suggests that
the physical processes involved in controlling the variation
of hmF2 may also be responsible for that ofHm. ThathmF2
greatly depends on the direct effect of horizontal neutral wind
is well known from the past and well explained by the the-
ory of the thermospheric winds. Neutral winds and electric
fields act to shift the F peak from the balance height to a new
level. It is the physical basis of deriving the meridional neu-
tral wind from ionospheric observations (e.g. Rishbeth et al.,
1978; Buonsanto et al., 1997; Liu et al., 2003, 2004). The
annual variation arises from the summer to winter thermo-
spheric circulation wind. The meridional neutral wind (Wn)
for Wuhan aroundhmF2 obtained by the HWM93 model
(Hedin et al., 1996) is illustrated in the bottom panel of Fig. 8.
As expected, during daytime, the model Wn shows a similar
annual pattern as that ofhmF2 andHm. It indicates that Wn
not only contributes to the ionospheric height but also to the
shape of the ionospheric profile. At night, the model Wn still
has a significant annual variation, which is far from that of
Hm. This point deserves further study, although the current
version of the HWM93 model has its limitations.

4 Summary

This paper investigates the diurnal, seasonal, and solar ac-
tivity variations of the ionogram derived scale height around
hmF2 observed at Wuhan and the yearly variations ofHm at

Wuhan and 12 other stations. The main results are summa-
rized as follows:

(1) It shows thatHm observed at Wuhan has appreciable
diurnal and day-to-day variations. Significant distur-
bances inHm are presented during geomagnetic active
periods. However, the dependence ofHm on magnetic
activity is complicated.

(2) The diurnal behaviors of seasonal medianHm under
both solar activities are found to be similar. Median val-
ues ofHm are highest in summer and lowest in winter
during the daytime. At nighttime,Hm exhibits a much
weaker seasonal variation.Hm tends to a higher value
with increasing solar flux.

(3) A distinct annual variation ofHm is observed at Wuhan
and 12 other stations, i.e.Hm has a higher value in sum-
mer and a lower value in winter during the daytime.
This annual variation becomes much weaker or disap-
pears at the time interval from late night to pre-sunrise.

(4) A strong correlation is found betweenHm and the bot-
tomside thickness parameter B0 at all local times. It
provides a new and convenient way for modeling the
topside ionospheric shape only from the established B0
parameter set. In general,Hm shows a moderate posi-
tive correlation withhmF2 and negative and little corre-
lation with foF2 depending on the local time.

www.ann-geophys.net/24/851/2006/ Ann. Geophys., 24, 851–860, 2006



860 L. Liu et al.: An investigation of ionospheric effective scale height

Acknowledgements.The authors thank two referees for their valu-
able suggestions for improving the presentation of the paper. The
SAO-Explorer software is provided by UMass Lowell Center for
Atmospheric Research. The data at global 12 ionosonde stations
are downloaded from the Space Physics Interactive Data Resource
(SPIDR) web (http://spidr.ngdc.noaa.gov/spidr/). This research was
supported by the KIP Pilot Project (kzcx3-sw-144) of Chinese
Academy of Sciences and National Natural Science Foundation of
China (40574071, 40574072) and National Important Basic Re-
search Project (G2000078407). The author (L. Liu) gratefully ac-
knowledges the support of K. C. Wong Education Foundation, Hong
Kong.

Topical Editor M. Pinnock thanks two referees for their help in
evaluating this paper.

References

Belehaki, A., Jakowski, N., and Reinisch, B.: Comparison of iono-
spheric ionization measurements over Athens over Athens us-
ing ground ionosonde and GPS derived TEC values, Radio Sci.,
38(6), 1105, doi:10.1029/2003RS002868, 2003.

Belehaki, A., Marinov, P., Kutiev, I., Jakowski, N., and Stankov, S.:
Comparison of the topside ionosphere scale height determined by
topside sounders model and bottomside digisonde profiles, Adv.
Space Res., doi:10.1016/j.asr.2005.09.015, in press, 2006.

Bilitza, D.: International reference ionosphere 2000, Radio Sci.,
36(2), 261–275, 2001.

Booker, H. G.: Fitting of multi-region ionospheric profiles of elec-
tron density by a single analytic function of height, J. Atmos.
Terr. Phys., 39, 619–623, 1977.

Buonsanto, M. J., Starks, M. J., Titheridge, J. E., Richards, P.
G., and Miller, K. L.: Comparison of techniques for derivation
of neutral meridional winds from ionospheric data, J. Geophys.
Res., 102, 14 477–14 484, 1997.

Di Giovanni, G. and Radicella, S. M.: An analytical model of
the electron density profile in the ionosphere, Adv. Space Res.,
10(11), 27–30, 1990.

Goodwin, G. L., Silby, J. H., Lynn, K. J. W., Breed, A. M., and Es-
sex, E. A.: GPS satellite measurements: ionospheric slab thick-
ness and total electron content, J. Atmos. Terr. Phys., 57(14),
1723–1732, 1995.

Hedin, A. E., Fleming, E. L., Manson, A. H., et al.: Empirical wind
model for the upper, middle and lower atmosphere, J. Atmos.
Terr. Phys., 58(13), 1421–1447, 1996.

Huang, X. and Reinisch, B. W.: Vertical electron profiles from the
Digisonde network, Adv. Space Res., 18(6), 121–129, 1996.

Huang X. and Reinisch, B. W.: Vertical electron content from iono-
grams in real time, Radio Sci., 36(2), 335–342, 2001.

Jayachandran, B., Krishnankutty, T. N., and Gulyaeva, T. L.: Clima-
tology of ionospheric slab thickness, Ann. Geophys., 22, 25–33,
2004.

Kawamura, S., Balan, N., Otsuka, Y., and Fukao, S.: An-
nual and semiannual variations of the midlatitude iono-
sphere under low solar activity, J. Geophys. Res., 107(A8),
doi:10.1029/2001JA000267, 2002.

Lei, J., Liu, L., Wan, W., and Zhang, S.-R.: Variations of elec-
tron density based on long-term incoherent scatter radar and
ionosonde measurements over Millstone Hill, Radio Sci., 40,
RS2008, doi:10.1029/2004RS003106, 2005.

Liu, L., Luan, X., Wan, W., Ning, B., and Lei, J.: A new approach
to the derivation of dynamic information from ionosonde mea-
surements, Ann. Geophys., 21(11), 2185–2191, 2003.

Liu, L., Luan, X., Wan, W., Lei, J., and Ning, B.: Solar activity vari-
ations of equivalent winds derived from global ionosonde data, J.
Geophys. Res., 109, doi:10.1029/2004JA010574, 2004.

Oyama, K.-I., Watanabe, S., Su, Y., Takahashi, T., and Hiro, K.:
Seasonal, local time, and longitudinal variations of electron tem-
perature at the height of∼600 km in the low latitude region, Adv.
Space Res., 18(6), 269–278, 1996.

Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.:
NRLMSISE-00 empirical model of the atmosphere: Statistical
comparisons and scientific issues, J. Geophys. Res., 107(A12),
1468, doi:10.1029/2002JA009430, 2002.

Rawer, K.: Synthesis of ionospheric electron density profiles with
Epstein functions, Adv. Space Res., 8(4), 191–198, 1988.

Rawer, K., Bilitza, D., and Gulyaeva, T. L.: New formulas for IRI
electron density profile in the topside and middle ionosphere.
Adv. Space Res., 5(7), 3–12, 1985.

Reinisch, B. W. and Huang, X.: Automatic calculation of electron
density profiles from digital ionograms: 3. Processing of bottom-
side ionograms, Radio Sci., 18(3), 477–492, 1983.

Reinisch, B. W. and Huang, X.: Deducing topside profiles and total
electron content from bottomside ionograms, Adv. Space Res.,
27(1), 23–30, 2004.

Reinisch, B. W., Huang, X., Belehaki, A., Shi, J., Zhang, M., and
Ilma, R.: Modeling the IRI topside profile using scale height
from ground-based ionosonde measurements, Adv. Space Res.,
34, 2026–2031, 2004.

Richards, P. G., Fennelly, J. A., and Torr, D. G.: EUVAC: A solar
EUV flux model for aeronomic calculations, J. Geophys. Res.,
99(A5), 8981–8992, 1994.

Richards, P. G.: Seasonal and solar cycle variations of the iono-
spheric peak electron density: comparison of measurement and
models, J. Geophys. Res., 106(A12), 12 803–12 819, 2001.

Rishbeth, H., Ganguly, S., and Walker, J. C. G.: Field-aligned and
field-perpendicular velocities in the ionospheric F2 layer, J. At-
mos. Terr. Phys., 40, 767–784, 1978.

Sharma, D. K., Rai, J., Israil, M., and Subrahmanyam, P.: Diurnal,
seasonal and longitudinal variations of ionospheric temperatures
of the topside F region over the Indian region during solar min-
imum (1995–1996), J. Atmos. Solar-Terr. Phys., 67, 269–274,
2005.

Stankov, S. M., Jakowski, N., Heise, S., Muhtarov, P., Ku-
tiev, I., and Warnant, R.: A new method for reconstruction
of the vertical electron density distribution in the upper iono-
sphere and plasmasphere, J. Geophys. Res., 108(A5), 1164,
doi:10.1029/2002JA009570, 2003.

Torr, M. R. and Torr, D. G.: The seasonal behaviour of the F2-layer
of the ionosphere, J. Atmos. Terr. Phys., 35, 2237–2251, 1973.

Wu, J., Long, Q., and Quan, K.: A statistical study and modling of
the ionospheric TEC and the slab thickness with observations at
Xinxiang, China, Chinese J. Radio Sci., 13(3), 291–296, 1998.

Yu, T., Wan, W., Liu, L., and Zhao, B.: Global scale annual and
semi-annual variations of daytime NmF2 in the high solar activ-
ity years, J. Atmos. Solar-Terr. Phys., 66, 1691–1701, 2004.

Ann. Geophys., 24, 851–860, 2006 www.ann-geophys.net/24/851/2006/

http://spidr.ngdc.noaa.gov/spidr/

