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Abstract. The external control of Saturn kilometric radiation
(SKR) by the solar wind has been investigated in the frame of
the Linear Prediction Theory (LPT). The LPT establishes a
linear filter function on the basis of correlations between in-
put signals, i.e. time profiles for solar wind parameters, and
output signals, i.e. time profiles for SKR intensity. Three dif-
ferent experiments onboard the Cassini spacecraft (RPWS,
MAG and CAPS) yield appropriate data sets for compiling
the various input and output signals. The time period investi-
gated ranges from DOY 202 to 326, 2004 and is only limited
due to limited availability of CAPS plasma data for the so-
lar wind. During this time Cassini was positioned mainly on
the morning side on its orbit around Saturn at low southern
latitudes. Four basic solar wind quantities have been found
to exert a clear influence on the SKR intensity profile. These
quantities are: the solar wind bulk velocity, the solar wind
ram pressure, the magnetic field strength of the interplane-
tary magnetic field (IMF) and the y-component of the IMF.
All four inputs exhibit nearly the same level of efficiency for
the linear prediction indicating that all four inputs are pos-
sible drivers for triggering SKR. Furthermore, they act at
completely different lag times ranging from∼13 h for the
ram pressure to∼52 h for the bulk velocity. The lag time for
the magnetic field strength is usually beyond∼40 h and the
lag time for the y-component of the magnetic field is located
around 30 h. Considering that all four solar wind quantities
are interrelated in a corotating interaction region, only the
influence of the ram pressure seems to be of reasonable rele-
vance. An increase in ram pressure causes a substantial com-
pression of Saturn’s magnetosphere leading to tail collapse,
injection of hot plasma from the tail into the outer magneto-
sphere and finally to an intensification of auroral dynamics
and SKR emission. So, after the onset of magnetospheric
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compression at least∼1.2 rotations of the planet elapse until
intensified SKR emission is visible in a Cassini-RPWS dy-
namic spectrum.

Keywords. Magnetospheric physics (Solar wind-
magnetosphere interactions) – Radio science (Magne-
tosphere physics; Radio astronomy)

1 Introduction

Before the launch of the Cassini spacecraft, the knowledge of
Saturn’s radio emitting properties was based on data gained
by the Voyager 1 and 2 missions (Warwick et al., 1981, 1982)
and by the Ulysses spacecraft (Lecacheux et al., 1997).

The Saturn kilometric radiation (SKR) was detected for
the first time when Voyager 1 was approaching Saturn in
1980 (Kaiser et al., 1980). This nonthermal radio emis-
sion usually occurs in the frequency range 3 kHz−1.2 MHz
with a broad peak in flux density between 100−400 kHz
(Kaiser et al., 1984). The maximum flux density is at
∼3×10−19 Wm−2Hz−1 normalized to a distance of 1 AU
to the planet. The spectrum typically looks bursty includ-
ing also arc-like structures and bands and, according to re-
cent Cassini observations, also fine structures if analyzed
with time resolutions in the millisecond regime (Kurth et al.,
2005b). Two components of opposite senses of nearly 100%
circular polarization have been identified which propagate as
X-mode waves. Radiation coming from the northern hemi-
sphere is right-handed polarized (RH) and radiation coming
from the southern hemisphere is left-handed polarized (LH).
Similar to radio wave phenomena observed at Earth and
Jupiter, the Cyclotron Maser Instability (CMI) is an appro-
priate model for explaining the generation of SKR, too (Wu
and Lee, 1979). The CMI theory describes the generation
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of planetary radio waves on the basis of a kinetic instability
driven by a loss cone distribution for electron velocities.

The source regions of SKR are located in high magnetic
northern and southern latitudes along auroral magnetic field
lines. They are centered with respect to 13:00 LT near the
noon meridian of Saturn above 80◦ latitude. On the morning
side between 08:00–09:00 LT possible source regions range
down to 60◦ latitude and on the evening side at 19:00 LT
sources down to 75◦ are possible (Galopeau et al., 1995).
UV observations of bright aurora phenomena performed with
the Hubble Space Telescope (HST) confirm the presence
of energetic auroral electrons in the morning-to-noon sector
(Trauger et al., 1998). Furthermore, HST observations show
a nearly continuous UV auroral oval around the magnetic
pole (Clarke et al., 2005) justifying the existence of SKR
emission emitted from the nightside of Saturn as reported
recently byFarrell et al.(2005).

Correlation studies between variations of the solar wind
and SKR emission were published byDesch(1982) for the
first time. He found clear correlations between the solar wind
ram pressureρ v2 (mass densityρ, bulk velocityv) and SKR
intensity in Voyager 1 and 2 data sets. A further indication of
the strong dependence of SKR activity on the solar wind was
found byDesch(1983). He detected a total disappearance of
SKR during times when Saturn was moving through distant
filaments of Jupiter’s magnetotail and was thus shielded from
the solar wind. Later on,Desch and Rucker(1983, 1985) im-
proved those correlation studies using the superposed epoch
method and a compilation of various solar wind quantities.
They came to the conclusion that besides the ram pressure
the solar wind momentum (ρ v) and the kinetic energy (ρ v3)
are also significant drivers for triggering SKR. The highest
correlation coefficients have been found at zero lag time with
a time resolution of 10.66 h, i.e. data have been integrated
over one full rotation period of Saturn. The interplanetary
magnetic field (IMF) and its components revealed no clear
correlation with SKR which may be due to the fact that so-
lar wind measurements were performed up to 1.6 AU ahead
of Saturn and had to be ballistically propagated to the point
of the planet thereby ignoring hydrodynamic interactions of
high- and low-speed streams inside the solar wind.

The solar wind exerts its external control not only on SKR
generation but also on Saturn’s aurorae as investigated re-
cently byClarke et al.(2005) andCrary et al.(2005). New
Cassini data in combination with ground-based and HST ob-
servations related Saturn’s radio emission phenomena to de-
tailed auroral structures (Kurth et al., 2005a).

The present paper re-analyses the external control of SKR
by the solar wind with the application of the Linear Predic-
tion Theory, outlined in Sect.2. The data used as input and
output time series are described in Sect.3. The results are
presented in Sect.4 and the final Sect.5 comprises the dis-
cussion and conclusion.

2 Basics of the Linear Prediction Theory

The Linear Prediction Theory (LPT) was developed by the
American mathematician N. Wiener (Wiener, 1949), at first
for continuous time series, and later on adapted byLevinson
(1949) to discrete time series. The main aim of the LPT is
to predict a functionY , called output signal, by convolving
a filter functionf with another functionX, called the input
signal. For the discrete case the convolution equation looks
like the following:

Yt =

M−1∑
s=−m

fs Xt−s . (1)

A certain valueYt of the output is calculated by multiply-
ing the filter coefficientsfs with a sample of input dataXt−s

and then summing theseweightedinput data. IfXt andYt

are time series representations then indext indicates a cer-
tain time and indexs indicates the temporal shift or lag. A
summation using only positives-indices (s=0, . . . ,M−1)
is called thecausal part of the filtering because only in-
put data from the past are considered. Negatives-indices
(s= −m, . . . ,−1) contribute to theacausalpart of the fil-
tering which causes a physical conflict because it calculates
output data taking input data from the future, i.e. an effect
would precede the cause. Nevertheless, it could become im-
portant to calculate the acausal part too, especially for ex-
plaining strong filter reactions around lag position zero or to
test the significance of a causal relationship.

The LPT works exclusively with a non-recursive filter as
outlined in Eq. (1) and furthermore, the filter has to be linear
and time invariant. Additionally, the time series used must be
sampled from a stochastic process and the time series must
be stationary.

The Linear Prediction Theory is usually applied on the
condition that the input signalXt and the measured output
signal Zt are known by means of corresponding measure-
ments and that the filter coefficientsfs have to be calculated.
The measured output is namedZt in order to distinguish it
from the calculated outputYt . The filterfs must be consti-
tuted such thatYt becomes the best possible representation
of Zt as far as their linear relationship is concerned. So, the
mean-square-error betweenZt andYt has to be minimized.
Stressing the convolution equation in combination with the
statistical criteria of least squares fitting makes a calculation
of the filter coefficients possible. The relationships between
input, outputs and filter are sketched in Fig.1.

The procedure for calculating the filter coefficients of a
single-channel filter is presented in the Appendix. As a last
step, the filter coefficients together with the inputXt have
to be inserted into the convolution equation (1) to get the
calculated output signalYt .
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A parameter for quantifying the degree of fit between the
calculated outputYt and the measured outputZt , i.e. the per-
formance of the linear prediction, is theefficiencydefined as

eff =

(
1 −

σ 2
r

σ 2
z

)
× 100 [%] . (2)

σ 2
z is the variance ofZt andσ 2

r is the variance of the resid-
ual time series(Zt−Yt ). An efficiency of+100% means that
all variations of the measured outputZt are reproduced by
the variations of the calculated outputYt . On the other hand,
a negative value foreff indicates thatYt does not reproduce
the variations ofZt and hence the prediction of the output
Zt by the inputXt is wrong. Moreover, the efficiency can
be investigated as a function of the temporal shift parameter
s. Therefore, the outputYt has to be calculated with a suc-
cessively increasing maximum shift. The filtering process is
said to be completed if an additional extension of the filter
does not raise the efficiency any more.

Finally, some further important remarks on the LPT are
given. It is important that the signals which are applied to the
LPT analysis contain the same number of discrete data points
and exhibit the same time resolution. Thus, the signals must
comprise the same time period. Furthermore, the maximum
allowed number of discrete shifts, i.e.(M+m), is limited to
15% of the overall numberN of data points (Taubenheim,
1969; Scḧonwiese, 1985).

An exact representation of the measured outputZt by the
calculated outputYt is only possible if the summation in
Eq. (1) is performed from negative infinity to positive infinity
and if the relation is strictly linear and time invariant. These
conditions can hardly be fulfilled by real measured signals
and one has to accept the fact that only a certain level of
efficiency lower than 100% will be achieved. So, the disad-
vantage of the LPT is the fact that it ignores relations hav-
ing higher moments of the investigated process. Moreover,
a filter is only valid for the time period selected for the cal-
culations. On the other hand, it simplifies the analysis as a
first approximation by assuming a linear system. Even if the
relation between the input and output is not strictly linear,
the Linear Prediction Theory will calculate the best possible
linear relation.

The scenario described above using one measured input
and one measured output is called single-channel system.
As an extension, a so-called multi-channel system operates
with more than one input and output. If the LPT is car-
ried out in multi-channel mode, all signals will be processed
collectively, thereby not ignoring relations among the indi-
vidual signals. The computation of the filter coefficients
follows the same concept as outlined in the appendix for
the single-channel system except that cross-correlation and
auto-correlation coefficients have to be arranged in tensors
of higher dimension.

measured
input  Xt

fs
calculated
output  Yt

measured
output  Zt

minimize error

Fig. 1. Schematics of the concepts of the Linear Prediction Theory.
The measured inputXt is filtered (filter functionfs ) yielding a cal-
culated outputYt which is then compared to the actually measured
outputZt . The error power betweenYt andZt shall be minimized.

3 Preparation of input and output signals

The Linear Prediction Theory was used to investigate the in-
fluence of the solar wind on SKR intensity. Profiles for vari-
ous solar wind quantities serve as input signals and SKR in-
tegrated intensity-time profiles serve as output signals. Data
obtained by three different experiments onboard the Cassini
spacecraft have been used to construct input and output sig-
nals feeding the LPT algorithm. These three experiments
are the Radio and Plasma Wave Science experiment (RPWS)
(Gurnett et al., 2004), the Dual Technique Magnetometer
(MAG) (Dougherty et al., 2004) and the Cassini Plasma
Spectrometer (CAPS) (Young et al., 2004).

SKR intensity profiles are established using data from the
RPWS experiment. One important point is that these pro-
files use only SKR emissions. SKR emissions can be clearly
identified in a dynamic spectrum regarding the frequency
range and the polarization characteristics. SKR usually oc-
curs in the frequency range 3−1200 kHz and exhibits a high
degree of circular polarization (nearly 100%). The polariza-
tion of measured radio waves was determined by applying
the Direction-Finding algorithm for a 3-axis stabilized space-
craft using a direct inversion (Cecconi and Zarka, 2005a).
The Direction-Finding analysis yields not only the full po-
larization information of the received radio waves, i.e. the
Stokes parameters, but also eliminates the influence of in-
tensity variations which are due to a changing orientation of
the antenna system with regard to the direction of the radio
source. Figure2 demonstrates the results of the Direction-
Finding computations as far as the polarization is concerned.
As can be seen, the dominant polarization sense of SKR
is left-handed (LH) which corresponds well to the fact that
Cassini was positioned at low southern latitudes (lat≈−17◦,
r≈150 Rs (1 Rs = 60 268 km), LT≈5.6 h) during the consid-
ered time period DOY 232.5−234.0, 2004. Thus SKR emis-
sion from source regions mainly in the southern hemisphere
was beamed towards Cassini.

Solar wind parameters used as input signals are measured
by the CAPS and MAG experiments. The latter yields mea-
surements of the interplanetary magnetic field in a defined
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Fig. 2. Cassini-RPWS dynamic spectra for(a) the Stokes parameter S (= total intensity),(b) the degree of circular polarizationdc, (c) the
degree of polarizationd and(d) the degree of linear polarizationdL as a result of the Direction-Finding computations for the time period
DOY 232.5–234.0, 2004.

coordinate frame. The CAPS-experiment provides plasma
parameters like the solar wind bulk velocity, proton density
and proton temperature.

Magnetic field and plasma measurements can be combined
into several other quantities describing the physical state of
the solar wind and yielding additional input signals for the
LPT computations.

The solar wind quantities investigated in the frame of the
LPT are:

- the solar wind bulk velocityv, the ram pressureρ v2 and
the proton temperatureTp (Desch and Rucker, 1983)

- the parametersB2 v (dynamo energy flux) andB v2

(correlates well with AKR at Earth;Gallagher and
D’Angelo, 1981)

- the parameterBz v2 describing the erosion of planetary
magnetic field lines

- the reconnection voltage8=v BT L0 cos4(θ/2) de-
scribing the voltage along the reconnection line for day-
side magnetopause reconnection between Saturn’s mag-
netic field and the IMF (Jackman et al., 2004). The IMF
magnetic field vector and the magnetic dipole axis of
Saturn have to be rotated into a coordinate frame whose
yz-plane is oriented perpendicular to the direction ofv.
The magnetic axis is assumed to be coaligned (within
∼1◦) with Saturn’s spin axis. Then the angleθ is a
polar angle forBT (B2

T =B2
y+B2

z ) counted from Sat-
urn’s magnetic North Pole. The quantityv BT refers
to the motional electric field in the planet’s rest frame
(v⊥BT ). L0 is a factor for the dimension of the mag-
netospheric cross-section (L0≈10 Rs; 1 Rs=60 268 km).
An integration of8 over time yields the rate of open
flux production.
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- the Akasofu-parameterε=B2v L2
0 cos4(θ/2) (Aka-

sofu, 1978) and the modified Akasofu-parameter
εmod=B2

T (v/ρ)1/3 cos4(θ/2) (Vasyliunas et al., 1982).
The quantitiesBT , L0 andθ have the same meaning as
discussed for the reconnection voltage.

- and the quantityQ=
µ0 (v2−v1)

2

B2
1 (1/ρ1+1/ρ2)

describing the

probability that a Kelvin-Helmholtz instability occurs
at the dayside magnetopause initiating an increased
flow of charged particles into the Saturn auroral regions
(Galopeau et al., 1995) (index 1 refers to parameters in
the magnetosheath just outside the magnetosphere and
index 2 refers to parameters inside the magnetosphere
of Saturn)

The solar wind momentum (ρ v) and the kinetic energy
(ρ v3) have not been investigated explicitly. The correspond-
ing time profiles look very similar to the time profile of the
ram pressure if centered around the mean and normalized to
standard deviation units as performed during the LPT com-
putations. Variations of the density seem to be definitely
more dominant than variations of the bulk velocity.

4 Results

The total time period for which data are available is limited
to the period DOY 202−326, 2004 due to limited availability
of CAPS plasma data because the CAPS instrument was not
always pointed properly to view the solar wind ions. Dur-
ing DOY 297−311, 2004 Cassini was positioned inside Sat-
urn’s magnetosphere and no measurements for the solar wind
could have been performed. Large data gaps (>1 day) in
the CAPS data occurring after DOY 260 cannot be repre-
sented satisfactorily by interpolated values and thus the pe-
riod DOY 260−326 had to be rejected. In the following, the
results of the LPT computations found for the time period
DOY 224−240, 2004 will be presented showing an evident
triggering effect of the solar wind on SKR. According to the
statistical criteria of the LPT, a period of 16 days allows for
performing a maximum shift in time of 57.6 h (15%) which
corresponds to 5.4 rotations of Saturn.

The period DOY 224−240, 2004 was selected because it
is centered around two clear peaks in the SKR intensity pro-
file occurring on DOY 233.0 and DOY 233.5 as can be seen
in Fig. 3b. The intensity profile was established by integrat-
ing SKR intensities present in the RPWS dynamic spectrum
(shown in Fig.3a), averaging the profile to a time resolution
of 20 min and normalizing intensities to a distance of 1 AU
to Saturn. Rapid fluctuations are removed from the profiles
by applying a low-passcos2-filter with a length of 5 h in time
domain. The time period displayed in the previous Fig.2 was
selected such that this region of intensified SKR emission is
provided.

In Fig. 3b many small⊥-symbols plotted directly below
the SKR intensity profile indicate minima which are caused

by the rotation of Saturn. Neighboring⊥-symbols are sep-
arated by 10.75 h, i.e. the present radio rotation period for
Saturn according toGurnett et al.(2005). In Fig. 3c profiles
for the solar wind ram pressurePram (solid line) and the so-
lar wind bulk velocityvbulk (dotted line) are displayed. In
Fig. 3d the profiles for the magnetic field strengthB (solid
line) and they-componentBy (dotted line) of the IMF in
KSM-coordinates are shown. KSM denotes “Kronocentric
Solar Magnetospheric” and is similar to the GSM system
used for Earth. TheX-axis points from Saturn to the sun,
i.e. it is aligned with the local time 12:00 direction. The
Y-axis is perpendicular to the plane stretched by theX-axis
and the rotation axis� of Saturn (Y=�×X). The Z-axis
completes the right-handed coordinate system. Saturn’s ro-
tation axis and magnetic dipole axis differ by<1◦, so the
KSM coordinate system can also be related to Saturn’s mag-
netic field. Finally, Fig.3e presents the profile of the dayside
magnetopause reconnection voltage8. For the sake of clar-
ity additional profiles for the other input signals listed above
in Sect.3 are not included.

A strong increase of both the bulk velocity (around
DOY 231.5) and the ram pressure (peak at DOY 232.9)
indicates the arrival of an interplanetary shock at Saturn.
Shocks are generated by high-speed plasma flows escaping
from coronal holes and overtaking slower moving solar wind
plasma. The resulting compression of plasma is followed
by several days of rarefaction during which the solar wind
speed continuously falls. If such a characteristic pattern of
the interplanetary medium is repeated for several successive
rotations of the sun, it is called “corotating interaction re-
gion” (CIR) (Tsurutani et al., 1982; Gosling, 1996). Since
the interplanetary magnetic field is frozen into the plasma
B is also enhanced in a compression region. The profile
for the By-component reveals that the CIR includes a he-
liospheric current sheet (HCS)-crossing around DOY 232.5
when By changes its sign from negative to positive. This
corresponds to a change in the orientation of the tangential
component of the IMF from atowards-configuration to an
away-configuration with regard to the position of the sun.
The reconnection voltage generally undulates below 100 kV
with a peak of 138 kV. During the period DOY 224−233, i.e.
a few days before the strong intensification of SKR, low val-
ues for8 of a few tens of kV are due to low values ofBT and
a mainly southward oriented IMF (θ>90◦). The rate of open
flux production accumulated during these 9 days is about
11 GWb (Gigaweber) which is less than the typical amount
of open flux in Saturn’s tail (∼35 GWb) deduced from HST
aurora observations (Jackman et al., 2004).

In the following, the efficiency functions for the various
input signals, i.e. the efficiency as a function of the temporal
shift between input and output, will be presented as the key
result of the LPT computations (see Eq.2). The efficiency re-
veals the characteristics of the linear filter found by the LPT
algorithm.
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Fig. 3. (a) The RPWS dynamic spectrum,(b) the integrated SKR intensity profile,(c) profiles for the SW ram pressure (solid) and bulk
velocity (dotted),(d) profiles for the interplanetary magnetic field strength (solid) and its y-component (dotted) in KSM-coordinates and(e)
the profile of the reconnection voltage at the dayside magnetopause of Saturn during DOY 224–240, 2004.

First, it was found that using the time derivative of an input
quantity or the absolute value of the input’s time derivative
yields a smoother efficiency function than using the original
input. For illustration, Fig.4 displays the efficiency func-
tions for the ram pressure andBy in combination with the
integrated SKR intensity as output signal, respectively. If the
time derivative of the input is used, the input is flagged with
an additionalδ-symbol. An efficiency function for the abso-
lute time derivative of the input is flagged withabs(δ ).

The solid line in Fig.4a belongs to the efficiency of the
ram pressure without performing any derivative. Strong fluc-
tuations at small lag times including also negative values are
obvious. Negative values indicate that the prediction of SKR
intensity by the ram pressure is wrong for these small lag

times. Between 12−13 h lag time the efficiency function ex-
hibits a significant increase. This implies that at this temporal
shift the influence of variations from the input on variations
of the output is a maximum and that this temporal shift may
be interpreted as the temporal lag required for the input to
trigger the output. Furthermore, the efficiency function levels
off at a constant plateau level after 14 h lag time. This means
that introducing larger shifts between input and output does
not raise the efficiency anymore, so, the filtering between in-
put and output is completed after a lag time of 14 h. Figure4a
also includes efficiency functions for the time derivative (dot-
ted line) and the absolute value of the time derivative (dashed
line) of the ram pressure. One recognizes that the efficiency
function for δPram increases smoothly until the maximum
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Fig. 4. Efficiency functions for(a) the ram pressurePram and(b)
theBy -component of the IMF in combination with SKR intensity
as output signal for the time period DOY 224–240, 2004. The re-
spective time derivatives of the inputs are flagged withδ and the
absolute time derivatives are flagged withabs(δ).

temporal shift of 57.6 h is reached. No significant increase
and no constant plateau level is visible indicating a bad lin-
ear prediction. Forabs(δPram) the situation is different. The
corresponding efficiency function shows a steep increase be-
tween 10−12 h lag time, i.e.∼2 h earlier than for the normal
input. Fluctuations in the efficiency function ofabs(δPram)

are weaker than inPram making a characteristic lag time eas-
ier to identify.

In Fig. 4b the efficiency functions forBy and its deriva-
tives are displayed. Again,abs(δBy) (dashed line) reveals a
smoother efficiency function thanBy (solid line) and a con-
stant plateau level is achieved at∼26 h lag time. The effi-
ciency function forδBy (dotted line) also suggests a com-
pleted filter after 26 h. The efficiency function for the normal
input quantityBy starts to level off about 2 h later, i.e. after
∼28 h.
So, as demonstrated withPram and By in Fig. 4, a better
efficiency function is obtained by taking the time derivative
or the absolute value of the time derivative of the respective
input quantity. A good linear prediction is expressed by an
efficiency function exhibiting a steep increase at a certain lag
time and a subsequent constant plateau level. The higher the
plateau level, the better the linear prediction. Plateau levels
below 30% are classified as insignificant predictions.

Such insignificant or not well-defined predictions are ob-
tained for the following input parameters: the solar wind pro-
ton temperature, the magnetic componentsBx andBz, the
modified Akasofu-parameter, the reconnection voltage and
the Kelvin-Helmholtz instability quantity. The correspond-
ing efficiency functions are displayed in Figs.5a and5b.

Fig. 5. In (a) the efficiency functions for the magnetic compo-
nentsBx andBz and the efficiency function for the time derivative
of the SW proton temperatureδTp are displayed. Part(b) shows
the efficiency functions for the Akasofu-parameterε, the modified
Akasofu-parameterεmod , the reconnection voltage8 and the KH-
instability quantityQ.

The efficiency functions forBx (solid line) andBz (dot-
ted line) are settled at low levels and exhibit no significant
increase. Taking the time derivatives or absolute time deriva-
tives does not improve the result. For the proton tempera-
ture the time derivativeδTp smoothes strong fluctuations in
the efficiency function if compared to the originalTp, but
a constant plateau level is not achieved (see dashed line in
Fig. 5a). This does not exclude the possibility that a sig-
nificant influence ofTp on SKR may be found at larger lag
times beyond 57.6 h. The efficiency function for the KH-
instability quantityQ (dashed-dotted line in Fig.5b) reveals
a poor prediction with efficiencies below 20%. Even taking
the time derivative or absolute value of the time derivative of
Q does not improve the result. In comparison to the modified
Akasofu-parameterεmod (dotted line), the normal Akasofu-
parameterε (solid line) yields better results exhibiting a clear
plateau level of 47% after∼45 h lag time. The efficiency
function for the reconnection voltage8 (dashed line) shows
a similar behavior as the efficiency function ofεmod because
both quantities are dominated by variations ofBT and the
polar angleθ .

Another characteristic found was that if the bulk velocity
and the magnetic field are mixed, e.g. inB2 v, B v2 or Bz v2,
then v seems to be of minor influence. Consequently, the
efficiencies ofB2 v, B v2 andBz v2 are nearly the same as
for B or Bz alone. The same is true ifv is mixed with the
densityρ. As mentioned at the end of Sect.3, the profiles
for ρ v, ρ v2 andρ v3 look very similar thus yielding similar
efficiency functions.

www.ann-geophys.net/24/3139/2006/ Ann. Geophys., 24, 3139–3150, 2006
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Fig. 6. The efficiency as a function of the temporal shift for the ram
pressurePram (dotted), the bulk velocityv (dashed), the magnetic
field strengthB (dash-dot) and the magnetic componentBy (dash-
dot-dot-dot). The time derivative is indicated byδ, the absolute
value of the time derivative is indicated byabs(δ ). The solid line is
produced if all 4 input signals are mixed in a multi-channel filter.

Finally, four characteristic input signals are left yielding
the best results as far as the linear prediction of SKR is con-
cerned. These four input quantities are the ram pressure
Pram, the bulk velocityv, the magnetic field strengthB and
they-componentBy of the IMF given in KSM-coordinates.
The respective efficiency functions for the time derivative or
the absolute value of the time derivative are summarized in
Fig. 6. Moreover, Fig.6 includes the efficiency if all four
input signals are processed together in a multi-channel filter
(solid line).

It can clearly be seen that the efficiency functions for
the absolute time derivative ofPram andv and for the time
derivative ofBy exhibit a significant increase in efficiency at
certain temporal shifts. Together withδB all four efficiency
functions level off at a constant plateau level. The charac-
teristic lag times are∼(12+1) h forPram, ∼(51+1) h forv,
∼(43+1) h forB and∼(26+1) h forBy . The additional lag
time (+1) h indicates that a characteristic solar wind struc-
ture arrives about 1 h earlier at the dayside magnetopause
than at Cassini. This is due to the position of Cassini on its
orbit around Saturn and causes an additional acausal shift for
the LPT computations which has to be removed. The posi-
tion of the dayside magnetopause of Saturn was calculated on
the basis of ram pressure data in combination with the mag-
netopause model ofSlavin et al.(1985). During the time pe-
riod DOY 224−240, 2004 Cassini was positioned mainly on
the morning side around 06:00 LT. So, e.g. for the ram pres-
sure, it can be concluded that the physical processes involved
to transform an increase in ram pressure into an increase in
SKR intensity require about 13 h as observed by the Cassini
spacecraft.

As mentioned before, the efficiency functions for all four
input quantities achieve a plateau level at 55%−60% effi-
ciency, so, all four input quantities seem to trigger SKR to
the same degree of probability.

Fig. 7. Efficiency functions for the absolute time derivative of
the ram pressureabs(δPram) using six different output signals:
total SKR intensity integrated over the whole frequency range
(solid line), mean intensity (dotted), intensity integrated from
300−1200 kHz (short dashes), frequency bandwidth (dash-dot), up-
per SKR frequency limit (dash-dot-dot-dot) and lower SKR fre-
quency limit (long dashes).

The solid line in Fig.6 represents the efficiency function
if all 4 inputs are mixed in a multi-channel filter. As can be
seen, the efficiency function climbs up to very high values
above 80% but it does not level off at a constant plateau. So,
investigating the external control of SKR in the frame of a
multi-channel filter does not seem to improve the result.

So far, the input signals have been transformed into their
respective derivatives to enhance the quality of the linear pre-
diction. SKR intensity integrated over the whole frequency
range was used as output signal. The following five manip-
ulations of the output signal have been tested to check if the
results for the efficiency functions can be further enhanced
by

- using a mean SKR intensity instead of the integrated
total intensity across the whole frequency range

- skipping the lower frequency range by integrating inten-
sities just from 300−1200 kHz

- using the SKR frequency bandwidth1f as output

- using the SKR maximum frequencyfmax as output

- using the SKR minimum frequencyfmin as output.
The resulting efficiency functions for these five manipu-
lations usingabs(δPram) as input signal are displayed in
Fig. 7. If compared to the total SKR intensity taken as in-
put signal (solid line) an integration of intensities just from
300−1200 kHz (short dashes) raises the efficiency function
about 10% but fluctuations are a little bit stronger and the in-
crease in efficiency around 11 h lag time is less distinct. Tak-
ing a mean intensity as output signal lowers the efficiency
level significantly (dotted line). If the SKR frequency band-
width (dash-dot) is used for output nearly the same result is
obtained as taking the upper frequency limit (dash-dot-dot-
dot). The lower frequency limit shows the worst results with
efficiencies< 20% (long dashes).
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These modifications of the output signal have also been ex-
ecuted usingv, B andBy as inputs. The respective transfor-
mations of the efficiency functions for the different outputs
show the same behavior as for the ram pressure displayed in
Fig. 7. Another test performed was using the time derivative
or absolute value of the time derivative not only for the in-
puts but also for the output. No improvements for the linear
filter are obtained if these derivatives are applied to the SKR
intensity profile both in combination with plasma quantities
and magnetic field quantities.

5 Summary and discussion

The Linear Prediction Theory has been applied to Cassini
data to investigate the external control of SKR by the solar
wind. The results can be summarized as follows:

- Taking the time derivative of an input quantity or the
absolute value of its time derivative enhances the effi-
ciency function significantly. Characteristic lag times
become more distinct and fluctuations of plateau levels
are suppressed enabling a better interpretation. It seems
that variations of a solar wind input are more important
than magnitude values for predicting the SKR intensity
profile.

- Four basic input signals (Pram, v, B andBy) have been
found to trigger SKR with nearly the same efficiency
but at completely different lag times. These lag times
and efficiency levels are:Pram→ (∼13 h, 55%),v→

(∼52 h, 55%),B→ (∼44 h, 60%) andBy→ (∼27 h,
53%). For the two quantitiesB andBy it may be said
that the efficiency functions are more distinct if a stable
sector structure for the IMF is present for several days,
i.e. if the interplanetary magnetic field is structured in a
CIR pattern. If the shapes of all four efficiency functions
are compared to each other, one realizes that the ram
pressure exerts the most significant influence on SKR at
a certain lag time. SincePram is interrelated withv, B

andBy in a CIR compression region it is not surpris-
ing that also the latter yield similar results for the LPT
computations. The important role of the ram pressure
for the enhancement of SKR activity will be discussed
below on the basis of a model proposed byCowley et al.
(2005).

- Mixing of Pram, v, B andBy in the frame of a multi-
channel filter does not enhance the result since in-
cluded variations and lag times are too different to com-
plement each other. The efficiency function for the
multi-channel computations achieves very high values
(∼ 85%) but it does not level off at a constant plateau
level before the maximum temporal shift of 57.6 h is
reached.

- The componentsBx andBz of the IMF are poor quan-
tities for explaining the external control of SKR. The

efficiency functions are either low (≤25%) or the filter-
ing does not seem to be completed until the maximum
lag time is reached. This does not exclude the possibil-
ity that a significant influence ofBx or Bz on SKR may
be found at greater lag times beyond 57 h.

- The Akasofu-parameter yields a quite good linear pre-
diction (∼46 h lag time, 47% efficiency) which is,
however, less significant than results found for the
ram pressure. The modified Akasofu-parameter and
the reconnection voltage exhibit much poorer corre-
lations with the SKR intensity profile. It seems that
the event of prominent SKR intensification occurring
around DOY 233, 2004 is not a result of enhanced sub-
storm activity initiated by an increased production of
open flux in the frame of dayside magnetopause recon-
nection. As mentioned above, the predominantly ori-
entation of the IMF is from north to south during sev-
eral days before DOY 233 thus providing unfavorable
conditions for dayside magnetopause reconnection. The
maximum of the IMF magnetic field strength does not
exceed 1.1 nT.

- The proton temperature and the instability quantity for
the Kelvin-Helmholtz instability also yield poor results
as far as the linear prediction of SKR is concerned.
In the following a short comment on the profile of
the KH-instability quantityQ is given. One discrete
value of theQ-profile was obtained by searching for
the maximum ofQ along the dayside magnetopause
at a discrete time. So, the obtained profile is actually
a Qmax-profile assuming that the position ofQmax at
the dayside magnetopause can be magnetically linked
to the true SKR source region near Saturn. If the mag-
netic field lines which are penetrating the SKR source
region refer to another magnetopause position different
from theQmax-position then anotherQ must be consid-
ered for the profile. A more detailed study on the basis
of Direction-Finding for deriving the correct longitude
of the source position would be required resulting in a
different profile forQ. Therefore, Cassini must be posi-
tioned sufficiently close to the planet because Direction-
Finding has an inaccuracy for the SKR source position
in the order of 1◦−2◦ (Cecconi and Zarka, 2005a). So,
taking theQmax-quantity directly as input for the linear
prediction studies seems to be an insufficient approach
in this respect.

- For the output, an intensity profile integrated over fre-
quency seems to be the best choice. As modified output
signals a mean intensity, the upper frequency limit of
SKR, the lower frequency limit and the frequency band-
width have also been tested. These modifications for
the output yield lower efficiencies. Especially for the
outputs concerning the frequency limits, characteristic
lag times are shifted to higher values. Furthermore, it
was found that the efficiency function for the integrated
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intensity profile can be raised further if the integration
is just performed from 300−1200 kHz thereby skipping
intensity fluctuations which are caused by variations of
the lower frequency limit. Thus, these variations seem
to be rather due to an internal process, e.g. the rotation
of the planet in combination with the specific beam-
ing of SKR, than to an external influence from the so-
lar wind. So, the integrated SKR intensity profile must
be handled with care because it represents SKR activ-
ity which was beamed towards a distant observer, i.e.
Cassini, located at a specific position around Saturn.
This measured profile can by no means represent SKR
activity for all possible source regions which are stim-
ulated by the solar wind. Furthermore, slight changes
in the longitude or latitude of the source region to-
gether with the hollow-cone-shaped beaming structure
can cause huge intensity variations seen by a quasi-fixed
distant observer (Cecconi and Zarka, 2005b).

According to the model ofCowley et al.(2005) intensified
auroral and SKR emissions are caused by a compression of
Saturn’s magnetosphere as a response to an increased solar
wind ram pressure in a CIR compression region. A compres-
sion of Saturn’s magnetosphere causes reconnection in open
tail lobes due to an enhancement of current densities in the
nightside plasma sheet and associated instability configura-
tions. As a consequence, a substantial fraction of preexisting
open flux is closed (∼20 GWb) during several hours leading
to injection of hot plasma into the outer magnetosphere of
the nightside polar cap. Newly closed flux tubes are then
subcorotated with 50%−80% of rigid corotation from the
midnight sector over the dawn sector towards noon due to
ionospheric torque. This picture coincides well with HST
observations of Saturn’s auroral structures. About 10 h after
the onset of the magnetospheric compression bright auroras
in the dawn sector have been observed (Clarke et al., 2005).
Moreover, hot plasma flows in connection with a substan-
tial enhancement of auroral emissions have been detected by
Mitchell et al. (2005) andBunce et al.(2005). The ∼13 h
lag time found for the ram pressure thus includes the time
required to close a substantial amount of open flux after the
onset of magnetospheric compression and to subcorotate an
activated SKR source region to the dawn or noon sector from
where the radiation is beamed towards the Cassini spacecraft.

Appendix A

Derivation of the filter coefficients for a single-channel
filter

First, the used time series (inputXt and measured output
Zt ) must be centered around their respective means and they
must be normalized to standard deviation units to ensure that
variations and amplitude values of different time series be-
come directly comparable. Centered and normalized time

series are indicated by a∼-sign, e.g.X̃t , in order to distin-
guish them from the original data. The error between the
measured output̃Zt and the calculated output̃Yt is simply
defined as

et = Z̃t − Ỹt = Z̃t −

M−1∑
s=−m

fs X̃t−s . (A1)

Ỹt is replaced by the filtered input signal as outlined in
Eq. (1). The mean-square-error, i.e. the error powerI , has
to be minimized. If a time series consists ofN discrete val-
ues thenI is given as

I =
1

N − 1

N−1∑
t=0

e2
t (A2)

=
1

N − 1

N−1∑
t=0

[
Z̃t −

M−1∑
s=−m

fs X̃t−s

]2

→ minimize. (A3)

Minimizing means that the derivation ofI after the filter co-
efficientsfs must be set equal to zero. A total of(M+m)

filter coefficients results in(M+m) derivations and hence in
a system of(M+m) normal equations according to

1

N − 1

N−1∑
t=0

Z̃t X̃t−v −

M−1∑
s=−m

fs

1

N − 1

N−1∑
t=0

X̃t−s X̃t−v = 0 (A4)

with v = −m, . . . ,M − 1

The indexv indicates the indexs for which the derivation is
currently performed. One recognizes that the first sum overt

is the definition of the cross-correlation coefficient between
Zt andXt for a certain temporal shiftv. All (M+m) cross-
correlation coefficients as a function of the temporal shift pa-
rameterv can be summarized in a vector namedGv. Simi-
larly, the second sum overt in Eq. (A4) represents a vector
Rv storing all(M+m) auto-correlation coefficients ofXt for
a constants. If the sum overs is incorporated, the second
term on the left side of Eq. (A4) can be written in matrix
notation as

M−1∑
s=−m

fs

1

N − 1

N−1∑
t=0

X̃t−s X̃t−v =

=

M−1∑
s=−m

fs Rv,s = Rvsfs . (A5)

Rvs becomes a square matrix storing all auto-correlation
coefficients ofXt as a function of the shift parametersv
(v= −m, . . . ,M−1; row index) ands (s= −m, . . . , M−1;
column index). Rvs fulfills the characteristics of aToeplitz
matrix (Press et al., 1986) which simplifies its computation.

So, Eq. (A4) can be written in matrix notation as

Rvsfs = Gv . (A6)

Ann. Geophys., 24, 3139–3150, 2006 www.ann-geophys.net/24/3139/2006/



U. Taubenschuss et al.: SKR-SW linear prediction studies 3149

The solution of this matrix equation yields a vector storing
the filter coefficients according to

fs = (Rvs)
−1 Gv . (A7)

The computation of the filter coefficients can be summa-
rized as follows:

– calculate the cross-correlation coefficients between the
measured inputXt and the measured outputZt as a
function of the temporal shift and arrange these coef-
ficients in a vectorGv

– calculate the auto-correlation coefficients for the input
Xt as a function of the temporal shift and arrange these
coefficients in a matrixRvs (Toeplitz matrix)

– insertGv andRvs into Eq. (A7) and compute the filter
coefficientsfs .
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nen, P., Ahola, K., Anderson, D., Bakshi, S., Baragiola, R. A.,
Barraclough, B. L., Black, R. K., Bolton, S., Booker, T., Bow-
man, R., Casey, P., Crary, F. J., Delapp, D., Dirks, G., Eaker, N.,
Funsten, H., Furman, J. D., Gosling, J. T., Hannula, H., Holm-
lund, C., Huomo, H., Illiano, J. M., Jensen, P., Johnson, M. A.,
Linder, D. R., Luntama, T., Maurice, S., McCabe, K. P., Mur-
sula, K., Narheim, B. T., Nordholt, J. E., Preece, A., Rudzki, J.,
Ruitberg, A., Smith, K., Szalai, S., Thomsen, M. F., Viherkanto,
K., Vilppola, J., Vollmer, T., Wahl, T. E., West, M., Ylikorpi, T.,
and Zinsmeyer, C.: Cassini Plasma Spectrometer Investigation,
Space Sci. Rev., 114, 1–112, 2004.

Ann. Geophys., 24, 3139–3150, 2006 www.ann-geophys.net/24/3139/2006/


