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Abstract. Low frequency electrostatic waves in the lower
parts of the ionosphere are studied by a comparison of obser-
vations by instrumented rockets and of results from numer-
ical simulations. Particular attention is given to the spectral
properties of the waves. On the basis of a good agreement be-
tween the observations and the simulations, it can be argued
that the most important nonlinear dynamics can be accounted
for in a 2-D numerical model, referring to a plane perpendic-
ular to a locally homogeneous magnetic field. It does not
seem necessary to take into account turbulent fluctuations or
motions in the neutral gas component. The numerical sim-
ulations explain the observed strongly intermittent nature of
the fluctuations: secondary instabilities develop on the large
scale gradients of the largest amplitude waves, and the small
scale dynamics is strongly influenced by these secondary in-
stabilities. We compare potential variations obtained at a
single position in the numerical simulations with two point
potential-difference signals, where the latter is the adequate
representation for the data obtained by instrumented rockets.
We can demonstrate a significant reduction in the amount of
information concerning the plasma turbulence when the lat-
ter signal is used for analysis. In particular we show that the
bicoherence estimate is strongly affected. The conclusions
have implications for studies of low frequency ionospheric
fluctuations in the E and F regions by instrumented rockets,
and also for other methods relying on difference measure-
ments, using two probes with large separation. The analy-
sis also resolves a long standing controversy concerning the
supersonic phase velocities of these cross-field instabilities
being observed in laboratory experiments.
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1 Introduction

Low frequency electrostatic fluctuations are frequently ob-
served in the lower parts of the Earth’s ionospheric E-region,
in Equatorial as well as in the polar ionospheres. Several can-
didates for instabilities giving rise to these waves have been
proposed (Rogister and D’Angelo, 1970). For the present
analysis, we emphasize the instability that arises in a plasma
with a large ion-neutral collision frequency,νi>�ci , while
simultaneously the opposite inequality holds for the electron
collisions,νe��ce. The source of free energy in the system
is a dc-electric field imposed in the direction perpendicular
to the Earth’s magnetic field (Farley, 1963; Buneman, 1963).
These fluctuations were originally discovered by radar scat-
tering off the ionosphere, and later investigated by in-situ
measurements by instrumented rockets. In a sense the rocket
and the radar represent complementary types of diagnostics:
the radar selects a constant wavelength determined by the
wavenumber matching condition, while the rocket data are
evidently dominated by the largest amplitude signal, irre-
spective of its characteristic wavelength.

For later reference we give here a simplified version of the
linear dispersion relation obtained by a fluid plasma model.
The real and imaginary parts of the frequency are denotedωr

andωi , respectively.
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and Ln denotes the scale length of a possible large scale
plasma density gradient in the direction⊥B, while Vd is the
difference between the electron-ion drift velocities, andα is
the angle betweenVd andk. The analysis uses the quasi-
neutrality assumption, and consequently the results only ap-
ply for wavelengths much longer than the Debye length,λD.
The results (1)–(2) are valid in the limit of very small growth
rates,ωi�ωr , and almostB-perpendicular wave propaga-
tions, k‖�k⊥. We note that a gradient in plasma density
contributes to an instability at any drift velocity (last term in
Eq.2). We will argue that for the relevant plasma conditions
analyzed in the following, we can ignore large scale plasma
density gradients⊥B. The relative drift between electrons
and ions has to exceed the ion sound speedCs in order to
give unstable waves, otherwise it has a damping effect. In
this simple model, the first waves to become unstable are
those wherek⊥B. Since�ce�νe and�ci≤νi for the rel-
evant ionospheric conditions, we find that waves with large
k‖ give largeϕ and therefore smallωr , and will consequently
remain linearly stable for realistic values ofVd . Recombina-
tion acts as a damping mechanism in all cases, but it is not
included in Eqs. (1)–(2).

The basic features of the Farley-Buneman instability are
well understood, but a number of features are difficult to
account for, in particular concerning a disagreement be-
tween the observations and results from several labora-
tory investigation (D’Angelo et al., 1974; John and Saxena,
1975; Mikkelsen and Ṕecseli, 1980). Several nonlinear sat-
uration models have been suggested (Sudan, 1983; Prim-
dahl and Bahnsen, 1985; Primdahl, 1986; Hamza and St-
Maurice, 1995), to account for the deviations between space-
observation and what a simple extrapolation from the linear
theoretical analysis seems to predict.

One serious problem associated with the interpretation
of the data is the lack of information concerning the de-
tailed state of the ionospheric plasma: the rockets are usually
equipped with sensors for three components of the electric
fields, one or two Faraday-cups for density (or, rather, cur-
rent), but usually only little is known concerning the neutral
background. Also, the rocket samples the ionospheric irreg-
ularities along a simple trajectory, and it is not in all cases
evident how to distinguish a stationary structure in plasma
density from one associated with the propagating waves. It
is difficult to determine to what extent stationary plasma den-
sity striations are present, and how important they are for the
plasma dynamics. As far as striations in the neutral compo-
nent are concerned, in the form of, for instance, wind-shear,
the question is even more difficult since the rockets have no
instruments to detect such phenomena. It might very well be
that the neutral background component is in a turbulent state

(Thrane et al., 1981), and this has been suggested to be of im-
portance for the spectral evolution of the plasma turbulence
(Schlegel and Gurevich, 1997).

In the present study we will analyze data from instru-
mented rockets, as obtained from the ROSE campaign (Rose
et al., 1992), and compare the results with those obtained by
direct numerical simulations. We use data obtained by de-
tecting the potential difference between two probes. Also
data for fluctuating plasma density is available, but these
have been analyzed elsewhere (Iranpour et al., 1997; Krane
et al., 2000), and are not discussed here.

Numerical simulations have proved to be valuable tools for
analyzing some of the properties of the saturated waves (Op-
penheim et al., 1995; Oppenheim and Otani, 1996). We carry
out the numerical simulations for ideal conditions, without
plasma density striations and inhomogeneities in the neutral
velocity field.

The value of the electron temperature is important for the
modeling, and we included in AppendixA discussions of this
question. In AppendixB we have a short discussion which
is addressing synthetic data modeling of wave phenomena as
those discussed in the present paper.

2 Ionospheric rocket data

During the ROSE rocket campaign, four instrumented pay-
loads were launched altogether, F1 and F2 in November–
December 1988 from Andøya, Norway, and F3 and F4 in
February 1989 from Kiruna, Sweden. Peak altitudes were in
the range 115–125 km. In the present study we analyze data
from the F4 experiment. The ROSE4 rocket was launched
in a direction perpendicular to the Hall current of the elec-
trojet, see Fig.1 for details. The magnetic field lines are
here almost perpendicular to ground, the dip angle being ap-
proximately 77◦. The local drift vectors shown on Fig.1 are
obtained from the rocket data by assuming anE0×B drift.
The circle with an arrow gives an independent measurement
of the direction of the plasma drift, as obtained by the Euro-
pean Incoherent Scatter radar (EISCAT) at the indicated al-
titude (Rinnert, 1992). The length of that arrow corresponds
to a deduced electric field of 45 mV/m. Comparison with
STARE-data are presented byRinnert (1992). The orien-
tation of the rocket is essentially constant during the flight,
since the cone-angle is small. The angle between the angular
momentum vector of the rocket and ground can be take to be
a constant, 67◦. The trajectory on the downleg part is almost
parallel to the local magnetic field lines, see also Fig.1.

The ELF signals analyzed here were obtained by means
of gold-plated spherical probes of 5 cm diameter, mounted
on two pairs of booms, one near the top of the payload
(labeled 1 and 2) and the other 185 cm lower (labeled 3
and 4), oriented at an angle of 90◦ with respect to the
first pair, as illustrated in Fig.2 (Rinnert, 1992). The
length of each boom was 180 cm, giving a probe separation
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Fig. 1. Diagrammatic representation of the ROSE4 rocket trajec-
tory, shown by the dots (Rinnert, 1992). The dashed lines give
the direction of the magnetic field. The apogee of this rocket was
123 km. Arrows indicateE0×B-drifts.

of 360 cm on each boom. We analyzed the fluctuat-
ing signalsU6(t)=φ1(t)−φ2(t); U5(t)=φ4(t)−φ3(t); U4(t)

=φ1(t)−φ4(t); U3(t)=φ2(t)−φ3(t); U2(t)= φ1(t)−φ3(t);
and U1(t)=φ2(t)−φ4(t), whereφj (t) for j=1, 2, 3, 4 de-
notes the potential on thej -th probe with respect to a suitably
defined common ground. There is an evident redundancy in
the available signals, which can be used to check the perfor-
mance of individual probes. For wavelengths much larger
than the probe separations, it is evident that the potential dif-
ference signals can be used to estimate the fluctuating elec-
tric fields. The space-time varying electric field fluctuations
of the electrojet were originally sampled with a 4 kHz sam-
pling frequency. By averaging sampling points two-by-two,
we here increase the sampling interval to 0.5 ms, giving a
Nyquist frequency of 1000 Hz. The electric circuits give an
effective frequency limitation closer to 600 Hz. The signals
were digitized with a 12 bit resolution. The dc-electric fields
were measured by the same probes. The probes measure
floating potential,φf , in principle. At these low frequencies,
we can assume the local potential difference betweenφf and
the plasma potentialφp, to be constant, since the plasma con-
ditions are unlikely to change significantly on distances cor-
responding to the probe separations. Note that ROSE4 was
night time launch (at 23:43:00 UT), so that photo-emission
differences between probes in sunlight and in the shadow of
the rocket body are not an issue here.

The ROSE rockets were also equipped with two retard-
ing potential analyzers, one pointing along the rocket axis
(labeledP1 in the following) and one in the perpendicular
direction (labeledP2), see also Fig.2. When properly nor-

Fig. 2. Schematic diagram for the positioning of the probes and
retarding potential analyzers on the ROSE rockets. The rocket is
here shown with the nose-cone intact.

malized, the signals from these analyzers can be interpreted
as a measure of the fluctuations in plasma density (Schlegel,
1992). These density signals have been studied elsewhere
(Krane et al., 2000), and will not be discussed here.

Because of the rocket spin relative to the dc-electric field,
the electric field signal has a large-amplitude variation fol-
lowing the rocket spin, with the fluctuating wave compo-
nent being superimposed. Since these large-amplitude sig-
nals at the rocket spin frequency are not being discussed in
the present study, we remove the fundamental and first few
harmonics of this low-frequency variation by an 8-Hz high-
pass filtering. The filtering is made digitally, and it does not
induce any phase changes in the filtered signal. Quite gen-
erally, it can be argued (Pécseli et al., 1989) that the rocket
spin gives rise to an amplitude as well as a phase modulation
of the ionospheric signals. For the frequency range relevant
for the present study, these effects are immaterial.

The ionospheric conditions and details of the instrumenta-
tion relevant for the present data set were discussed in a spe-
cial issue of Journal of Atmospheric and Terrestrial Physics
(54, 655-818, 1992). Here a short summary will suffice: The
dc-electric field values of approximately 40 and 70 mV/m
were measured on upleg and downleg passages of the E-
region, respectively, see also Table1. The corresponding
E0×B/B2 velocities are approximately 800 and 1400 m/s,
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Table 1. E–region plasma and field parameters during the ROSE4
flight.

Parameter Value Unit

Peak plasma density,n0, 1.6·1011 m−3

at an altitude of 116 km (Schlegel, 1992)

Magnetic field,B0 50 µT

Average upleg DC electric field,E0 40 mV/m

Average upleg value ofE0/B0 800 m/s

Average downleg DC electric field,E0 70 mV/m

Average downleg value ofE0/B0 1400 m/s

Electron temperature,Te 400 K

Ion temperature,Ti 200 K

Electron Debye–length,λD 6·10−3 m

Vertical plasma density scale–length 12.5 km

Sound speed 400 m/s

Electron cyclotron frequency,�e 9.3·106 rad/s

Ion cyclotron frequency,�i , 180 rad/s
corresponding to an average
mass of 31 amu

Ion–neutral collision frequency,νin, 600 s−1

at an altitude of 110 km

Electron–neutral collision frequency,νen, 1.5·104 s−1

at an altitude of 110 km

eastward (see also Figs.3 and1). These are of a sufficient
magnitude to excite the Farley-Buneman instability (Farley,
1963; Buneman, 1963; Rogister and D’Angelo, 1970). We
note that also the direction of the dc-electric field changes
slightly for downleg conditions, see also Fig.1. Electro-
static E-field fluctuations with typical rms amplitudes of
4–8 mV/m were observed in the altitude range 90–110 km
for the flights. The fluctuations decayed slowly for increas-
ing altitudes, eventually to disappear at around 115 km. In
Fig. 3 we show altitude variations of calculated collision fre-
quencies, temperatures, and relevant velocities.

The ion temperature is here assumed to be close to that
of the neutral component. The neutral air temperature was
measured by instruments on the rockets (Friker and L̈ubken,
1992). The value for the electron temperature is based on
a model that is supported by measurements using the Euro-
pean Incoherent Scatter radar (EISCAT) (Kohl et al., 1992).
Measurements on the rocket itself place an upper limit for the
actual value of electron temperatures, but the precise temper-
ature is otherwise uncertain. Ionospheric parameters relevant
for the flight are listed in Table1. Collision frequencies are
deduced from standard tables.

We find it important to emphasize that the electric fields,
dc and ac, are measured by the instruments on the rocket, and
not indirectly deduced from flow velocities or similar mea-

Fig. 3. Altitude variation of collision frequencies,νe, νi , and tem-
peraturesTe, Ti , together with the corresponding variation of the
sound speed, withVd being the difference between the ion and elec-
tron drift velocities calculated for different values ofE0.

surements. In a different contextRogister(1972) has noted
that the electrojet fluctuations can give rise to a large scale
polarization electric field, reducing the one imposed on the
ionosphere. We measure unambiguously the actual field.

Based on the data from one rocket trajectory alone, we are
not able to argue for the presence of gradients in the plasma
density in the direction perpendicular to the magnetic field..

2.1 Analysis of ionospheric data

We have analyzed parts of the data from the ROSE4 rocket
previously (Iranpour et al., 1997; Krane et al., 2000; Larsen
et al., 2002) in part by short time Fourier transforms, and also
by wavelet-based methods. Several questions are of interest,
such as the wave power distribution over frequencies, char-
acteristic propagation velocities and dispersion, where many
can be resolved (at least partly) by standard methods. More
advanced forms of analysis are required to reveal nonlinear
couplings between different frequency components.

We first analyze the direction and velocity of wave prop-
agation, which can be determined relatively accurately by
cross-correlation measurements between the signals from
probe pairs asU3 andU4, or U5 andU6, respectively. The
former gives estimates for velocity components in the direc-
tion perpendicular to the rocket axis, the latter for the direc-
tion along the axis of the rocket. We found that the phase-
velocity component along the rocket axis is several times
that in the perpendicular direction, indicating (as expected)
that the dominant direction of wave propagation is along the
electrojet direction, i.e. perpendicular to the rocket axis. By
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Fig. 4. Sample of local normalized cross-correlation of the signals
U1 andU2 for the time interval 257.58–259.08 s, as indicated. Con-
tour levels are at 0.3 and 0.6. Note that the front curve, with no time
delay, corresponds to the localauto-correlation of the signal.

analyzing the cross-correlations ofU5 and U6 and similar
combinations, we can estimate the direction and magnitude
of the phase velocity of the propagating waves in more detail.
Theabsolutevalue of the direction can be somewhat uncer-
tain, but therelativevariation with time, i.e. altitude, can be
obtained more accurately.

If we correlate the signalsU1 andU2 or U3 together with
U4, we obtain information of the velocities in the direction
perpendicular to the rocket axis, noting that these two signal
combinations are in quadrature, i.e. for propagation strictly
perpendicular to the rocket axis the cross correlation ofU1
andU2 is maximally delayed while theU3−U4 cross correla-
tion then has vanishing delay andvice versa. The rocket spin
will modulate these time-delays as illustrated by the cross-
correlation sample shown in Fig.4. If we take the maximum
delaysτ1 andτ2 from these two cross correlations, we can
determine two phase velocity components. Labeling, for in-
stance, the wave-numbers in the two directionsk1 andk2, we
have that the two time-delays giveτj=kj1/ω with j=1, 2,
assuming the waves to be non-dispersive, with1 being the
probe-pair separation. For the present geometry, see Fig.2,
we have1=2.54 m. The absolute value of the phase veloc-
ity for non-dispersive waves is then at any spin phase of the

rocket determined asuph=1
/√

τ2
1+τ2

2 . If the velocity par-

allel to the rocket axis is comparable to that in the transverse
direction, the analytical expressions have to be generalized
slightly (Iranpour et al., 1997). The analysis evidently relies
on idealizations of the probe geometry, with strictly perpen-
dicular booms etc. The actual conditions of the probes and
the booms after launch can not be tested.

The basic results of the analysis are shown in Figs.5, 6, 7
and8 where we present the position for the maximum value

Fig. 5. Top frame shows the time-delayτ5,6 for the maximum of
the cross-correlation betweenU5(t) andU6(t), giving the compo-
nent for the velocity of propagation along the rocket axis. The two
next frames give the corresponding delays for the cross-correlations
U1(t) vs.U2(t) andU3(t) vs.U4(t), respectively. Finally, the low-
est frame gives the phase velocity component perpendicular to the

rocket axis obtained as1
/(

τ2
1,2+τ2

3,4

)1/2
.

of the cross correlations in question, for selected time inter-
vals in the upleg as well as the downleg parts of the rocket
flight. These time-intervals contain the regions of enhanced
wave activity. The local cross correlations are obtained us-
ing a sliding window of 80 ms, i.e. less than 1/6 of a spin
period. Longer windows give a smearing out of the cross
correlation, while the scatter on the local maxima increases
rapidly for shorter windows. The time-delay of the maximum
in the cross-correlations are determined by fitting a continu-
ous function to the sampling points around the local maxima,
and the sampling time is therefore not visible (which would
otherwise give rise to horizontal “stripes”, separated by the
sampling time). We note that the clear spin modulation of the
time delays support a model where the ionospheric waves are
unidirectional, with a well defined velocity component in the
direction perpendicular to the axis of the rocket. With the
time delays for the cross correlations available and the corre-
sponding phase velocity components as functions of time af-
ter launch, we can also construct the altitude variation of the
phase velocity in the direction perpendicular to the rocket, as
shown in Fig.9.

On the basis of Figs.5, 6, 7 and8, some basic observa-
tions are readily made. Thus, we note that the systematically
varying time-delays for the propagation along the rocket axis
(correlations ofU5(t) and U6(t)) are very short, usually
1−2 ms, and apart from randomly scattered points, never
more than 5 ms. The scatter of points for the time-delays
along the rocket axis is relatively large with a small positive
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Fig. 6. Cross-correlation results. See Fig.5 for explanation.

Fig. 7. Cross-correlation results. See Fig.5 for explanation.

average on the upleg part, while they are significantly more
systematic for the downleg parts of the flight. The results
indicate that the velocity component of wave-propagation
along the rocket axis is very large,≥1 km s−1, where we
note that a characteristic rocket velocity is∼1 km s−1. A
more precise analytical approximation for the rocket altitude
is a= −36.41+1.737t−4.7223×10−3 t2 km, implying a ver-
tical velocity componentUv=1.737−9.445×10−3 t km s−1,
expressed in time-of-flightt s. The horizontal velocity com-
ponent is to the same accuracyUh=0.196 km s−1. The small
coning angle of the rocket is ignored here.

The scatter in time delays for the correlations is noticeably
smaller on the downleg part of the flight, where the rocket
trajectory is almost alongB. The observed time delays for the

Fig. 8. Cross-correlation results. See Fig.5 for explanation.

downleg part at times exceeding times-of-flight of 250 s in-
dicate a predominant direction of propagation from the back
(the U5-signal) towards the front probe-set (theU6-signal).
Parts of the signal with a large scatter in observed delays can
be interpreted as originating from small stationary, or slowly
moving, density perturbations. These will give rise to a time-
delay of the order of 1 ms. When interpreting the top frames
in Figs.5, 6, 7 and8, keep in mind that the spatial orienta-
tion of the rocket is fixed during the entire flight, apart from
a small coning with a period of approximately 5.8 s. The
most conspicuous time-delay in the range of 1−3 ms, see
top frames of Figs.7 and 8 indicate a velocity component
of northward propagation of approximately 103 ms−1 in the
rocket frame, although the estimate has a significant uncer-
tainty.

It is evident, by inspection of Figs.5, 6, 7 and8, that many
of the cross-correlation delays can be identified as “spuri-
ous”, i.e. obviously caused by uncertainties introduced by
the short time-sequences. The scatter of the points in Fig.9
could be reduced by a careful selection, but we see little point
in doing so.

With the two phase velocity components available, we can
determine also the direction of wave propagation with re-
spect to the rocket axis as8(t)=ArcTan(τ1/τ2). Results
are summarized in Figs.10 and11 as functions of time af-
ter launch. We subtracted the time variation of the a pri-
ori known spin phase of the rocket from8(t). The altitude
variation of this phase difference is shown in Fig.12. We
note a systematic variation, which is consistent for the upleg
and downleg conditions, indicating a change in direction of
dominant wave-propagation with altitude of approximately
0.4 rad, or approximately 20◦. The “stripes” in Figs.10 and
11separated byπ are caused by the ArcTan-calculation used
here: it gives an output in the range{−π; π}. The rocket
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Fig. 9. Altitude variation of phase velocity component perpendic-
ular to the rocket axis for upleg (top) and downleg (bottom) condi-
tions.

Fig. 10. Relative variation in direction of propagation for upleg
conditions.

phase has an almost linear variation with time, and results
in a nearly “saw-tooth” variation, when we takeMod[2π ].
The directional spin-phase of the waves is sometimes lag-
ging, sometimes advancing slightly, as compared to that of
the rocket spin, and the difference between the two can jump
between±π for a short time interval, simply due to small
fluctuations in these relative phases. In Fig.12we show only
the part around zero phase difference.

For reference we recall the collisional dependence of the
Hall ion drift as (E0/B)/(1+(νi/�ci)

2), while we have
(E0/B)(νi/�ci)/(1+(νi/�ci)

2) for the ion Pedersen drift,

Fig. 11. Relative variation in direction of propagation for downleg
conditions.

in terms of the ion-neutral collision frequencyνi and the ion
cyclotron frequency�ci . The directional angle of the steady
state ion drift with respect to theE0×B-direction is con-
sequently given by9=ArcTan(νi/�ci). Using an average
value∼200 s−1 for the ion cyclotron frequency we find from
Fig. 3 that the ratioνi/�ci varies by approximately from 40
to 5 in the altitude interval 95−105 km, implying a change
in 9 of approximately 89◦ to 77◦, which is consistent within
a factor of 2 with the observed variation in the direction of
propagation from Fig.12. We note here that one reason for
uncertainty in estimate originates in the use of an average
ion cyclotron frequency, but also the basic ionospheric model
implied in Fig. 3 has some uncertainties. Nonetheless, we
find it interesting that a simple collisional altitude variation
is only marginally sufficient for explaining the observations
of variations in directions of wave propagation. Nonlinear
wave effects can seemingly be excluded, since the variations
are almost the same for upleg and downleg conditions, while
the rms-wave amplitudes (as detected by the probe potential
differences) vary by almost a factor 2.

For reference we show in Fig.13 the altitude variation of
the local rms-fluctuation level for the signalU6(t) for upleg
and downleg conditions. The result is given in units of mV
for the potential difference between the two front probes, see
Fig. 2. Figure13 illustrates the altitude ranges (for upleg
and downleg conditions) with significant wave amplitudes,
and serves also to give the conversion between times after
launch and the rocket altitudes. As we might expect, the
uncertainty on the estimate for the phase velocity, as seen
in Fig. 9, becomes large when the intensity of the unstable
waves is small, see Fig.13.

The analysis of this section implicitly assumes that the
waves are non-dispersive, at least to a good approximation,
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Fig. 12. The relative variation in direction of propagation for upleg
(top) and downleg (bottom) conditions, as a function of altitude.

and can therefore be assigned one characteristic propagation
velocity. We have tried to test this hypothesis by several
methods, for instance by band-pass filtering the data prior
to cross correlation (Iranpour et al., 1997) and found some
indications of higher frequencies having the largest phase ve-
locities, but the uncertainty on the estimate was significant.
A cross-phase analysis (Krane et al., 2000) did not give con-
clusive results on this question. We find it most safe to argue
that the largest amplitudes detected have a constant phase ve-
locity as given by Fig.9, and leave the phase velocity of the
high frequency small amplitude component open, although
we expect these phase velocities to be increasing rather than
decreasing.

The data-analysis indicates that the ionospheric fluctua-
tions being detected are strongly magnetic field aligned, con-
sistent also with radar observations (Balsley, 1969) and some
laboratory studies of these instabilities (Alport et al., 1981).
This observation is substantiated best for the downleg part of
the flight where the rocket trajectory is close to be magnetic
field aligned. The coherence time for the component along
the rocket axis is longer than for the one in the transverse
direction, indicatingk‖�k⊥, as discussed also byIranpour
et al. (1997) and Krane et al.(2000). The linear stability
analysis based on (1)-(2) or similar results also suggests this
property of the waves.

To obtain an estimate of the importance of the velocity cor-
rection to Fig.9as due to the component parallel to the rocket
axis, we may consider an altitude of 100 km, corresponding
times of flight oft=114 s andt=254 s, for upleg and downleg
conditions, respectively. The absolute value of the vertical
velocity components are here 660 ms−1. After some calcula-

Fig. 13. Altitude variation of the local rms-fluctuation level for the
signalU6(t) for upleg (top) and downleg (bottom) conditions. The
results are obtained by a moving average over 80 ms.

tions, we find an expression for the time delay between the
two probes along the rocket axis to be

1t = `
k̂ · ŝ

uph − k̂ · U
, (3)

where`=185 cm is the separation between the two probe-
sets, see also Fig.2, and̂s is the directional unit vector along
the rocket axis, having essentially constant direction during
the flight. We introduced̂k as the unit wave-vector (assuming
non-dispersive waves), whileU is the rocket velocity vector
anduph is here the total phase velocity of the waves. From
Eq. (3) and the observed time delays in the top frames of
Figs. 5, 6, 7 and 8, we find that since1t 6=0, the waves
must have a wave-vector component along the rocket axis,
i.e. k̂ ·̂s6=0. Figure9 refers only to the phase velocity compo-
nent⊥̂s, but noting that it shows very little variation between
upleg and downleg conditions, we anticipate that also the to-
tal phase velocity is relatively constant during the flight, apart
from the small shift in altitude already mentioned. From
Fig. 12 we may expect that thedirection of propagation
change only a little as well. The differences between the
observed time-lags for up-leg and downleg conditions are
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likely to be found mainly in the variation of̂k·U, whereUv

changes sign from upleg to downleg conditions. Allowing
for a wave-vector component along the rocket axis, we find
that the phase velocities summarized in Fig.9 are an over-
estimate, and that the absolute value ofuph can be approxi-
mately 10% lower, although this correction has a significant
uncertainty.

We find it interesting to note that the ratios of the rms-
valuesσU6 for the signalU6(t) for upleg and downleg condi-
tions in Fig.13 have a typical value of∼1.8, which is quite
close to the ratio 70/40 of the electric fields for those con-
ditions. Although we only have these two values available
here, we note that the observation is consistent with the scal-
ing of the power of radar backscatter with the ionospheric
drift velocity observed elsewhere (Balsley, 1969; Balsley and
Farley, 1973) for a related instability.

2.2 Spectral analysis

The data, showing fluctuations in probe-potential differences
as well as in relative density, represent a non-stationary
dataset, because the rocket is traversing an inhomogeneous
ionospheric plasma. The data can be analyzed best by
wavelet methods, which better highlight local spectral fea-
tures (Wernik, 1996; Mallat, 1998). We consider these meth-
ods for standard, and do not enter a more detailed descrip-
tion. In Fig.14 we present samples of local spectra obtained
by this method. We find that the observed fluctuations are
characterized by two spectral subranges: for low frequen-
cies, below approximately 100 Hz, we note discrete peaks
in the spectrum, where these peaks are often harmonically
related, i.e.f2≈2f1, and sometimes byf1+f2≈f3, where
the the bispetral analysis indicates that these relations are
phase coherent. These discrete spectral characteristics are
transient, and observed often for only a fraction of the rocket
spin. For large frequencies,f >100 Hz, we find a continuous
power spectrum, which can be well described by a simple
power law,S(f )∼f −α, where the spectral index for potential
fluctuations is typically in the rangeαφ∈{2.5, 3}, while it is
αn∈{1, 1.5} for the fluctuations in relative density (Schlegel,
1992; Krane et al., 2000), at least in the altitude range most
interesting here, 95–105 km. The difference in spectral index
for potential and plasma density are, within an experimental
uncertainty, consistent with a proportionality between elec-
tric field and density (Mikkelsen and Ṕecseli, 1980; Krane
et al., 2000). Since here only time-series are available, we
can determine power-law subranges for the frequency spectra
only. Since, however, the waves are found to propagate with
a relatively high velocity, it is plausible that by use of Tay-
lors hypothesis (Shkarofsky, 1969; Hinze, 1975) for “frozen
turbulence” (relevant for a probe propagating rapidly through
a spatially varying turbulent velocity field), we might argue
for this subrange being characteristic for a component of the
wavenumber subrange as well, taking the component along
the preferred direction of propagation. The electric circuits

Fig. 14.Samples of spectra obtained by wavelet transform of rocket
data, here theU6 signal. The times after launch are indicated on the
horizontal axis. The data belong to the time-interval analyzed also
in Fig. 4. The high frequency part of the signal follows a power-law
f −3 to good accuracy in this time-interval, in agreement also with
results ofKrane et al.(2000).

have constant amplification in the relevant frequency range,
and will thus not distort the spectra. All frequencies are well
below the ion-plasma frequency, so we can assume sheath
resistances and coupling coefficients to be constant through
the same frequency ranges. The ultimate short wavelength
cut-off is likely to be determined by the size of the probes,
here 5 cm. We do not expect it to be possible to detect
wavelengths shorter than this, and note that with the velocity
of propagation found experimentally, this wavelength would
correspond to frequencies in excess of 3 kHz, which is above
the cut-off frequency of the detecting system.

The observed spectral shapes are not too different from the
Kolmogorov-Oubokhov lawf −5/3, obtained by use of Tay-
lors hypothesis. Since the neutral gas in the upper parts of the
ionospheric D-region (Thrane et al., 1981), and most likely
also the lower parts of the E-region, are at times characterized
by strong velocity fluctuations, the question naturally arises:
to what extent is this neutral turbulence capable of “shaping”
the power spectrum of the fluctuations originating from the
distributions of plasma charges? We recall here that the ion-
neutral collision frequency is sufficiently large to let the ion
component be transported by a neutral flow by the collisional
interactions (Tchen, 1973; Schlegel and Gurevich, 1997). In-
deed, if we let the ions be transported by the neutral turbu-
lence as a purely passive contaminant, the analysis can be
made relatively simple (Leslie, 1973). More detailed investi-
gations (Gurevich et al., 1997) take into account the different
mobilities of electrons and ions. Most of these models refer,
however, to regions below 100 km, and it is not evident to
what extent these effects are relevant for the interpretation of
the present data.
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Table 2. Input data for the “strongly driven” numerical simulations.

B 5.086×10−5 magnetic field, Tesla

E0z 0.00 dc-electric field in V/m, x comp.

E0x –0.070 dc-electric field in V/m, z comp.

−e –1.6022×10−19 electron charge, Coulomb

me 9.11×10−31 electron mass, kg

νen 28118.4 electron-neutral coll. frequency, Hz

Te 324.9 electron temperature, K

nn 5.05×1018 neutral number density, m−3

Tn 216.600 neutral temperature, K

Mi 5.0×10−26 effective ion mass, kg

qi 1.6022×10−19 ion charge, Coulomb

ni 5.159×1010 number density of ion-species, m−3

νin 2109.31 ion-neutral coll. frequency, Hz

Ti 216.6 ion temperature in K

In order to analyze possible couplings between different
spectral components, we use a wavelet-based bicoherence
analysis (Wernik, 1996; Larsen et al., 2002). This analy-
sis can reveal a possible phase-coherence between different
frequency components, which satisfy a resonance condition
f3=f1+f2. In Fig.15we have show local bispectra obtained
by wavelet methods for the same time interval as analyzed
in Fig. 14. In order to reduce the amount of information in
the bicoherence to a more manageable level, we show also
the “summed bicoherence” obtained by summing all bico-
herence values corresponding to the samef1+f2 and divid-
ing by the number of terms entering the sum. The analysis
is carried out for a time intervals larger than shown, so “edge
effects” are negligible here. We have analyzed a larger part
of the rocket data, but the results shown here can be consid-
ered representative. The bicoherences on the other hand are
strongly intermittent: in bursts it can exceed two standard
deviation from the synthetic “null signal” used for reference
here. Also this feature agrees with previous results byLarsen
et al.(2002), where the same dataset was analyzed by differ-
ent methods. Also data from one of the Greenland rockets
analyzed before (Pécseli et al., 1993) indicated statistically
significant bicoherences, but also here of a bursty or local-
ized nature.

In order to provide an estimate for the statistical signifi-
cance of the results we obtain a synthetic dataset (or “surro-
gate data”), using standard methods (Wernik, 1996). These
data have the property that their amplitude distribution is
Gaussian and the power spectrum is identical to the original
spectrum, but all phase coherencies have been randomized,
and ideally the bicoherencies should be vanishing. In real-
ity, any dataset of final duration will provide a generally non
zero bicoherence. Another source of noise in the wavelet-

based bicoherency estimate is intrinsic correlation between
wavelet coefficients calculated using the continuous wavelet
transform, which is not orthogonal. The aim of using sur-
rogate data is to distinguish between significant and noise
dominated data. The results obtained from the synthetic data
provide in this context a reference level, which has to be ex-
ceeded for the results found in the original data to be signifi-
cant.

3 Numerical simulations

The numerical simulations were conducted in two spatial di-
mensions in the plane perpendicular to the imposed magnetic
field, using a Particle-in-Cell (PIC) code for the ion compo-
nent (Oppenheim et al., 1995; Oppenheim and Otani, 1996).
The electrons are, on the other hand, described by a fluid
model. For the results shown in the following, the electron
inertia is ignored. We have conducted smaller box simu-
lations with the same parameters as the simulations shown
here, but with finite electron inertia, and found no substantial
difference in the resulting evolution or spectral characteris-
tics for the present parameters. First we solve the momentum
equation foru by omitting the derivative terms

0 = −
e

m
(E + u × B0) −

∇P

mne

− νenu . (4)

The electron temperature is assumed to vary adiabat-
ically with respect to the initial temperature, giving
P=P0(ne/n0)

γ , with γ=CP /CV . Assumptions of isother-
mal electron dynamics will rely on a finite wavenumber com-
ponent along magnetic field lines (Pécseli et al., 1989).

Next we solve for the electron density from the full conti-
nuity equation

∂

∂t
ne = −∇ · (neu) . (5)

The ions are treated as collisional and unmagnetized with an
effective ion mass and collision frequency listed in Table 1.
For these particular simulations the ion magnetization ratio
is �i/νin≈0.08, and we have found no difference in simula-
tion results for ratios below .1, and very little difference until
about 115 km in altitude. Details of the simulation code are
given byOppenheim et al.(2003).

Poisson’s equation is retained, so that we need not assume
the wave dynamics to be quasi-neutral. Typical parameters
for the simulations such as electron-neutral collision frequen-
cies etc., are given in Table2. Effects of ionization and re-
combinations are ignored. The ions are represented by an
effective ion mass, as indicated in Table2. Metallic ions
can have significant effects (Schlegel, 1985), but these are ig-
nored here. The simulation are carried out on a 512×512 pe-
riodic mesh, using a spectral solution to Poisson’s equation.
Inspection of the results shows that the simulations evolve
in the following manner. First, the development of short
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Fig. 15. Samples of bispectra ob-
tained by wavelet transform of rocket
data, here theU6 signal. The times
after launch are indicated on the hor-
izontal axis, see also Fig.14. The
dotted lines in the lowest row give
the mean summed bicoherence calcu-
lated for 20 surrogate data sets, while
dot-dashed lines represent the mean
summed bicoherence plus and minus its
standard deviation.

scale waves, in agreement with the linear dispersion relation,
where the maximum growth rate is for small scales, i.e. large
wave-numbers. Later on, the instability saturates with large
scale structure, with smaller scale secondary waves superim-
posed. As mentioned, the results (1)–(2) have limited valid-
ity, and refer to one specific plasma model. As an aid for
the discussion we show in Fig.16 examples for linear wave
dispersion relations, obtained by three different models, as
indicated by labels. The figure shows the solution to the “ki-
netic” dispersion relation, where the ion density is solved us-
ing Vlasov’s equation. A dotted line for the real part of the
frequency gives the ion sound speed for comparison. The so-
lution with the label “Fluid approx” originates from the stan-
dard simplified model suggested byFejer et al.(1984), while
the “full fluid” represents the solution of the full quadratic
equation from that same paper without simplification. Since
the analysis of kinetic and fluid models are different, we do
not attribute any significance to the slight difference between
the growth rates of the fluid versus the kinetic models for the
long-wavelength limit in Fig.16. Since we obtain the dis-
persion relations numerically, we do not need to impose the
restrictionωi�ωr , as in Eqs. (1)–(2). A previous analysis by
numerical solution of model equations including anisotropic
electron thermal conductivities, based on arguments given by
Pécseli et al.(1989) was presented byIranpour et al.(1997).
Those results deviate only slightly from those shown here,
and the details of the electron thermal conductivity model
are most important near threshold electric fields. The results
of Fig. 16 are based on the standard local model, while non-

0 20  40 60 80 100
kz

0

10  

20

30  

 40  

50  

60  

ω
r

0 20  40 60 80 100
kz

0

5

10 

15 

20 

25 

ω
i
x 

10
00

 [r
ad

 s
-1

]

Cs

Fluid Aprox

Fluid Full

Kinetic

Fluid Aprox

Fluid Full

Kinetic

x 
10

00
 [r

ad
 s

-1
]

[m-1] [m-1]

Fig. 16. Numerically obtained dispersion relations, for plasma pa-
rameters corresponding to those relevant for the ROSE4 dataset,
i.e. altitudes of 105 km and d.c. electric fields of 70 mV/m. Real and
imaginary parts (to the left and right, respectively) of the frequency
are shown as a function of wavenumbers in theE0×B-direction.

local models have to be applied for strongly inhomogeneous
conditions (St.-Maurice, 1985).

In Figs.17and18we show selected results from the simu-
lations for three different times, chosen so that the first one is
in the linear growth period, the second column is just before
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Fig. 17. Summary plots illustrating the
results from the numerical simulations
for three times. The top panels shows
electron density, the middle frames the
electrostatic potential, and the bottom
frames illustrate the wavenumber spec-
tra for the potential. The magnetic field
is perpendicular into the plane of the pa-
per, and theE0×B-drift is in the verti-
cal direction, withE0=40 mV/m being
in the positive x-direction.
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Fig. 18. Summary plots illustrating the
results from the numerical simulations
for three times. The top panels show
electron density, the middle frames the
electrostatic potential, and the bottom
frames illustrate the wavenumber spec-
tra for the potential. The magnetic field
is perpendicular into the plane of the pa-
per, and theE0×B-drift is in the vertical
direction, here withE0=70 mV/m again
in the positivex-direction. See Fig.17
for comparison.
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Fig. 19.Plots of the dispersion relations from the plasma simulation
shown in in Fig.18, with kz‖E×B. The slope of the dashed line
gives theE×B/B2-velocity, while full lines give the sound speed
for the given conditions. The dominant direction of propagation is
at an angle to theE0×B-direction and to improve the presentation
the color scale has been amplified accordingly, as indicated.

saturation, while the last column represents a fully devel-
oped saturated stage. Times are in units of ms. The first
case, Fig.17, corresponds approximately to our upleg con-
ditions for the ROSE4 rocket, the other one, in Fig.18, is
a strongly driven case, corresponding rather closely to the
down-leg conditions for the ROSE4 rocket. We note a sig-
nificant difference in growth rate of the instabilities for the
two conditions. The weakly driven case, Fig.17, runs for a
time interval being four times that of the strongly driven case,
and saturates at a less turbulent state then the strongly driven
case shown in Fig.18.

Already in the linear growth phase, we note a deviation
between the dominant direction of wave propagation and the
E0×B-drift direction, see also Fig. 19. This can be due
to ion thermal effects (Oppenheim and Dimant, 2004), or
the Pedersen ion drift in the direction alongE0. This ef-
fect is usually ignored in analytical models, but needs evi-
dently to be retained. As the instability saturates, this de-
viation of propagation-direction from the vertical becomes
more pronounced for the strongly driven case (Oppenheim
and Dimant, 2004; Dimant and Oppenheim, 2004). Also,
we find the general feature of the results to be a large scale
structure (basically filling the simulation box) with superim-
posed smaller scales, which is particularly conspicuous for
the strongly driven case, Fig.18, but noticeable also on en-
larged versions of Fig.17. The numerical resolution is very
fine (dx=dy=5 cm), and by inspection one can find very
fine details by enlarging the figure, see for instance Fig.20.
In particular, the developments of the secondary instabilities
(Sudan, 1983) can be clearly seen. We note that such sec-

x (m)

z 
(m

)

Fig. 20. Enlarged part of the potential variation obtained at the sat-
urated stage of the instability in the strongly driven case, see also
Fig. 18. The color code is the same as in Fig.18. The fine scale sec-
ondary instabilities can be recognized as “feather-like” structures,
see for instance around(x, z)=(6, 6).

Fig. 21. Spectra for potential fluctuations, obtained by wavelet-
transform of simulation results at a fixed position, as function of
time.

ondary instabilities can be found also for other instabilities
(Hallatschek and Diamond, 2003).

In Fig. 19 we present results for the “effective” disper-
sion relation obtained by Fourier transformingφ as presented
in Fig. 18, in the the spatial and temporal dimensions. We
note that the wavelengths here are much larger than what can
be determined by analyzing rocket data and even laboratory
experimental data, i.e. the wavenumbers are given in phys-
ical units with k=15 m−1 corresponding to a wavelengths
as short asλ=0.4 m. The rocket observation correspond to

www.ann-geophys.net/24/2959/2006/ Ann. Geophys., 24, 2959–2979, 2006



2972 L. Dyrud et al.: Ionospheric E-region instabilities

Fig. 22. Bicoherence for potential fluc-
tuations, obtained by wavelet-transform
of simulation results at a fixed position,
as function of time, see Fig.21. The
dotted and dashed lines in the figures
for summed bicoherence, are defined
just as in Fig.15.

the small dark area less thenk≈4 m−1 in Fig. 19. The
first frame withky=0 is symmetric with respect to the ori-
gin, but this symmetry is broken is subsequent frames by
choosingky>0 there. As a guide for the eye, we have in-
serted lines for the sound speed,Cs , and the magnitude of
the E×B/B2-velocity. (Forky>0 these lines are cuts in a
cone, and therefore appear as hyperbola.) For the smallest
wavenumbers we find the phase velocity to be close toCs , to
increase for shorter wavelengths. The phase velocity is be-
low the E×B/B2-velocity in all cases, but approaches this
value for the shortest wavelengths. These results can not ex-
plain the exceptionally low subsonic phase velocities found
by the analysis of the rocket data, but we find it interesting
that they to some extent resolve a paradox concerning some
laboratory experiments.

Analyzing waves spontaneously excited under condi-
tions where the Farley-Buneman instability was operative,
Mikkelsen and Ṕecseli(1980) found that the phase velocity
increased for increasing frequencies, ultimately to approach
theE×B/B2-velocity. In their experiment the phase velocity
was supersonic for all cases, as supported also by other re-
lated experimental observations (D’Angelo et al., 1974; John
and Saxena, 1975; Alport et al., 1981). Since these exper-
iments were all carried out in a rotating cylindrical plasma
column, it is plausible that the longest azimuthal wavelength
∼2πR, with R being the radius of the plasma column, was
too small to reach the region of sonic or subsonic phase ve-
locities. On the other hand, by analyzing rocket data, ev-
idently the emphasis will be on the largest amplitude long

wavelength part of the spectrum and there are no similar lim-
its to accessible phase velocities.

4 Data analysis

The analysis of the simulated data is carried out in two steps.
First we take the simplest and most natural approach, by se-
lecting a typical reference point in the middle of the compu-
tational domain, and analyze the spectral characteristics of
the signal. We are aware though that this is not directly com-
parable to what is obtained by the rocket: in this case we
have available, as discussed before, the potential difference
between two separate probes. The difference between the
two cases can be explained by associating a spatial filtering
with the difference signal, which is explained best for a spa-
tial Fourier transform of the potential variation. In this repre-
sentation, the differencing corresponds to a multiplication of
the power spectrum by a filter-function sin2(1

2k·d)/(1
2k·d)2

for spatially homogeneous, but not necessarily isotropic con-
ditions, whered is a vector pointing in the direction of the
vector connecting the two probes, having the length given by
the probe separation (Kelley and Mozer, 1973; Pfaff et al.,
1984; Krane et al., 2000).

4.1 One point potential analysis

We have analyzed the simulation results for comparison with
the rocket data. In Fig.21 we show results for the power
spectra for the potential fluctuations obtained from the data
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in a fixed position as function of time. In the top part of the
figure we have the raw signal from that spatial position, and
note the increase in wave amplitude in the initial linear phase
of the instability, until the fluctuations saturate in an irregular
oscillation with a mixture of wave periods, where the small-
est frequencies seem to have the largest amplitudes. Below
the raw data we show, on a logarithmic scale, the wavelet
power for the signal. At four selected times after wave sat-
uration, we show local spectra, taking care to integrate the
power spectrum over the “cone of influence” for the appro-
priate mother wavelet, here the Morlet-Grossmann wavelet.
It is interesting to note the close agreement with the spec-
tra obtained from the rocket, as summarized byKrane et al.
(2000). We thus note a “spiky” structure for low frequen-
cies and a continuous power-law spectrum at higher frequen-
cies, in agreement also with the laboratory experiments by
Mikkelsen and Ṕecseli(1980). The agreement is also quan-
titative, by giving peaks in the spectra in the range up to
≈200 Hz. In the power law part of the spectrum we find the
exponent to be close to the value∼2.5 observed byKrane
et al. (2000) andMikkelsen and Ṕecseli(1980). The nature
of the fluctuations is strongly intermittent, as best seen by
the color coded spectrum, in particular in the high frequency
parts.

In Fig. 22 we show results for the bicoherence, again ob-
tained by wavelet-techniques. In order to reduce the amount
of information in the bicoherence to a more manageable
level, we show also here, at the same times as the spectra
were obtained in Fig.21, the “summed bicoherence” ob-
tained by summing all bicoherence values corresponding to
the samef1+f2 and dividing by the number of terms enter-
ing the sum. The bicoherence was calculated over 128 points
centered at the chosen time instant and for 128 frequencies.
This method of data-reduction is standard, and allows pre-
sentation of results as a function of one variable only. We
note significant peaks in the bicoherence, but taking into ac-
count the short time series used for obtaining these results,
we have ample reasons for caution. It is thus well known
(Bendat, 1958; Pécseli and Trulsen, 1993; Pécseli, 2000)
that analysis of short data sequences often give spurious re-
sults. Consequently, also in this case we produced a syn-
thetic dataset, in order to have a reference when estimating
the statistical significance of our estimates (Wernik, 1996).
The synthetic data were produced to have no phase coheren-
cies, and were analyzed the same way as the original data.
The results are shown with dotted lines for the average of 20
Gaussian sets obtained this way, and±1 standard deviation
is given by dot-dashed lines in the summed bicoherence fig-
ures in Fig.22. It is readily seen that the large values of the
observed bicoherencies at small frequencies are completely
fictitious, as could be expected, since the width of the mother
wavelet is here comparable to the integration interval. For
larger frequencies we note, however, that the observed bico-
herence is noticeably above the average + one standard de-
viation, and here the bicoherence is statistically significant.

Fig. 23.Wavelet spectrum of signal obtained by the potential differ-
ence between two points, separated by 3 m in theE0×B-direction.

The physical origin of a finite bicoherence in the spectrum
can of course not be explained by these observations alone.
Considering the “spotted” nature of the enhanced regions in
the bicoherence plots, we find it reasonable to argue that the
observations indicate phase-coherent couplings of enhanced
spectral components, but note also the transient nature of
these interactions.

One of the problems associated with the observed struc-
tures in the low frequency part of the spectra was pointed
out by Krane et al.(2000): the dispersion relation has no
local maxima at low frequencies or long wavelengths, see
Fig. 16. The most obvious explanation advocated then was
the presence of striations in the background plasma, which
might somehow give rise to some “selection laws” for the
most unstable long wavelengths. Indeed, indirect evidence
could be argued for the presence of such striations. We also
find low frequency structures in the numerical simulations,
despite the homogeneity of the spatial conditions assumed
in the simulations. The initial growth phase has no predom-
inant large scales present. The low frequency “spiky” part
of the spectrum thus seems to be natural for the saturated
stage of the Farley-Buneman instability. We might argue that
seemingly, if stationary density striations are present in the
ionosphere, then they do not have any pronounced influence
on the wave characteristics.

4.2 Two point potential difference analysis

In Fig. 23 we show a wavelet-based power spectral analysis
of the potential difference between two positions with 3 m
separation along the direction of theE0×B-direction, ob-
tained from the simulations. One of the positions is the one
giving the signal in Figs.21 and22. The separation chosen
represents closely the probe separation on the rocket. The
spectra are somewhat distorted as compared to the original
one point data in Fig.21, but the local power spectra are
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Fig. 24. Bicoherence spectrum for the
dataset analyzed in Fig.23.

still recognizable. The spectral indexes are approximately
the same, although we expect that it is necessary to take av-
erages over longer samples to get a clear result. The high fre-
quency continuous part seems to extend to somewhat lower
frequencies here, and the low frequency “spikes” are not as
pronounced as in Fig.21.

Figure24 shows the bicoherence for the probe difference
signal obtained as in Fig.21. By comparison with the results
from the original data, illustrated in Fig.21, we find that the
bicoherences are significantly distorted, in particular at the
high frequency parts. If we emphasize the low frequency
part of the bicoherence we find results like those shown in
Fig. 25, which incidentally resembles the results from the
rocket data.

The effective filtering mentioned before applies to the in-
stantaneous potential field. For wavelengths much shorter
than the probe separation, it might be argued that one probe
here simply acts as a reference for the other one (Krane et al.,
2000). The difference between the results from the one-point
data analysis and the one based on the probe-difference sig-
nal may appear surprisingly large, but it should be empha-
sized that the spatial filtering is followed by a time-averaging
implied by the wavelet analysis. The consequences of these
two combined steps is not intuitively obvious.

The essential observation based on the results from this
subsection is that the probe difference data represents a rather
distorted version of the potential variations in the plasma.
In particular the bicoherences are severely affected by the
effective filtering due to the differencing. If we find signs
of bicoherent couplings in the spectrum, these might very

well be much stronger in the fluctuating fields of the iono-
spheric plasma. Although our analysis refers explicitly to in-
strumented rockets, these conclusions have implications for
satellites as well, when waves are sampled by potential dif-
ferences between two separated probes.

5 Conclusions

We have analyzed irregularities in the ionospheric E-region,
as detected by instrumented rockets from the ROSE exper-
iment. Figures5, 6, 7, 8, 10 and 11 contain most of the
relevant information, but not in the preferable form since the
variable is the time of flight. In Figs.9 and12we present the
most important information deduced from the rocket data for
varying altitudes. The analysis was supplemented by numer-
ical simulations.

A few basic observations can be made right-away: the dif-
ference in dc electric fields for upleg and downleg conditions
(40 and 70 mV m−1) is reflected in the differences in rms
wave activities observed, see Fig.13. We note an altitude
shift, consistent with the altitude shift of the enhanced fluc-
tuation level. Apart from this, we do not find any difference
(that is: not within the statistical uncertainty) of the observed
phase velocities, implying that at least within the present pa-
rameter range, there is no dependence of the phase velocities
on the corresponding wave amplitudes. Similar comments
apply to the directional changes of the wave propagation with
altitudes. The observed changes can be explained in part by
the variations in Hall and Pedersen ion velocities due to the
altitude variations of the ion-neutral collisions, see Fig.3.
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Fig. 25.Enlarged version of the low fre-
quency part of Fig.24, see also Fig.23.
The present figure shows some indica-
tions of a significant bicoherency in the
first frame only, otherwise the signal is
within the uncertainty of the “null” or
“synthetic” signal.

A slight difference between the directional change for the up-
leg and downleg conditions can be argued, but we find it to be
within the experimental uncertainty. One restriction on these
conclusions is of course that they refer to the dominant wave
amplitudes only. For large frequencies, the spectral energy
decreases, and estimates of, for instance, ionospheric phase
velocities become uncertain.

Based on the rocket data alone, we can not make definite
statements concerning steady state large scale density gradi-
ents in the ionospheric plasma. In case such gradients have
components along the rocket trajectory, they would have
been observed by the density probes on the rocket. How-
ever, apart from the vertical density gradient usually associ-
ated with the E-region (Rose et al., 1992), we see no signs
of such a density gradient. One possibility is that the rocket
flight was along equi-density contours of a steady state den-
sity gradient, which would not be detected. In that case,
however, the direction of the gradient would be along the
electrojet current direction, and it is difficult to see how such
a steady state gradient could be maintained. We argue that
it is unlikely that any steady state density gradients with a
component perpendicular to the magnetic field are present
during the ROSE4 flight, except for the natural vertical gra-
dient. Consequently, our numerical simulations are ignoring
such large scale density gradients.

The simulations gave results which in many respects agree
with the rocket data, qualitatively as well as quantitatively. In
making comparisons with the rocket observations we found
it important to mimic the rocket measurements in detail by
taking the potential difference between two points separated

by the rocket boom length. The best agreement was found
for the strongly driven (down-leg) case. The fluctuation lev-
els are approximately the same, and the velocities of wave
propagation are unidirectional and have comparable phase
velocities at long wavelengths. The simulated spectra also
have a low frequency, long wave-length, “spiky” component,
followed by a continuous spectral range well approximated
by a power law with index close to−3. The simulations
as well as the rocket data are characterized by strongly in-
termittent bicoherencies. Important differences are found in
an apparent “shift” in frequency range, i.e. in the simulations
the spiky subrange continues up to approximately 0.5–1 kHz.
In the simulations, we also have indications for a change in
direction of wave propagations induced by nonlinear wave-
phenomena. This effect does not have any counterpart in
the rocket observations, where the observed change in direc-
tion is the same for upleg and downleg conditions in spite of
change in dc-electric fields from 40 mV/m to 70 mV/m.

The numerical simulations indicate that the smallest scales
in the wave-fields are driven by secondary instabilities, and
that the characteristics of this part of the spectrum changes
from one side of the large amplitude wave-crests to the other.
This can explain the strong intermittency of the bicoher-
ence couplings observed also in the analysis of rocket data,
which agree also with other observations (Pécseli et al., 1993;
Larsen et al., 2002). We emphasize again the significant dif-
ference between the one-point statistics of the numerically
simulated potential variations and the two-point potential
differencesignal: the latter, which closely mimics the po-
tential measurements by the rocket instruments, gave a close
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to excellent agreement with the analysis of the in-situ data.
These conclusions evidently refer to probe configurations as
shown in Fig.2. Significantly different configurations have
to be analyzed separately.

We find that the close agreement between the observed
spectra and those from the simulations allow us to draw some
nontrivial conclusions. First, we recall that the simulations
are restricted to the two spatial dimensions perpendicular to
B. It can thus be argued that theB-parallel wave dynamics
is of minor importance for the development for the spectrum
for the strongly driven case. Since the neutral atmosphere is
taken to be at rest in the simulations, and the results are in
good agreement with observations, it seems that we might
safely conclude that the observed spectra are the results of
plasma nonlinearities, and not a consequence of mixing by
turbulence in the neutral background atmosphere. Neutral
turbulence is, in our opinion, unlikely to have a major role for
the details of the electrojet fluctuations for conditions corre-
sponding to the ROSE flights.

The most significant discrepancies between the in-situ
data and the numerical simulations are, in our opinion, the
difference in directional variation of the wave-propagation.
The simulations indicate a nonlinear effect, while the obser-
vations unambiguously speak against such effects. Also we
find a nontrivial difference in the speed of wave propagation,
but note here that a uniform neutral wind might imply that
the actual velocity with respect to a neutral atmosphere
is different from the one found here. (We also note that
the Greenland rocket launched in 1976 under conditions
very similar to the ROSE4-flight gave phase velocities very
close to, or slightly above, the sound speed, as described
by Pécseli et al., 1989). These features can justify that our
numerical studies are extended by a fully three dimensional
numerical simulation, to ensure that they are not artifacts
induced by the limitations of a two dimensional model as
the one used here. On the other hand, we find it safe to
argue that the basic properties of the turbulent low frequency
wave-field are well accounted for by the present simulations
in two spatial dimensions.

Appendix A

Electron temperature in the electrojet

As stated before, we are not able to give any accurate exper-
imentally obtained value for the electron temperature. This
parameter is of some relevance for the interpretation of our
results, and there has been discussions on the possibility
for the Farley-Buneman instability to enhance this temper-
ature. One possible scenario for nonlinear saturation of the
instability is actually based on the assumption thatTe can
be enhanced sufficiently to make the sound speed close to
theE×B-drift velocity of the electrons, thereby reducing the

linear growth rate of the instability, and ultimately stabilize
the waves. Unfortunately, it seems that these arguments are
based on over-idealized assumptions for infinite plasmas, and
we give here arguments in support of our assumption of elec-
tron temperatures close to the value found for a stable iono-
spheric E-region.

We take first the equation for the electron temperature vari-
ation (Gurevich, 1978; Stenflo, 1985; St.-Maurice and Kis-
sack, 2000)

n
∂Te

∂t
+ nU · ∇Te + ∇ · g +

2

3
nTe∇ · U =

−nδeνe(Te − T0) + Q(r , t) (A1)

whereQ is an energy density input, which is for the moment
unspecified. We have

g = −n4e · ∇Te (A2)

being the heat flux density, with4e being the electron ther-
mal conductivity tensor
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We ignore electron–ion collisions and assume for simplic-
ity that all collisions with neutrals are “simple”, i.e. that the
cross section varies inversely proportional to the velocity,
so that we can take the collision frequencyνe to be a con-
stant. The quantityδe≈2m/M determines the energy loss of
an electron per collision.

The steady state electron driftU(r) can be determined by

U(r) · ∇U(r) = −
e

m
(E(r) + U(r) × B)

−
Te(r)
mn(r)

∇n(r) −
1

m
∇Te(r) − νe(r)U(r) , (A3)

where we can often assume the left side to be small or van-
ishing. TheB-parallel component is particularly simple,

U‖ = −
e

mνe

E‖ −
Te

mnνe

∂

∂z
n −

1

mνe

∂

∂z
Te .

The basic element in the following arguments is that the
expression Eq. (A1) is not complete before the boundary
conditions have been specified. With the electrojet being
∼10 km in the vertical direction, it may seem plausible that
it is safe to assume it to be infinite, but we have to take into
account that the electron thermal conductivity is very large,
4‖∼Te/(νem), along the magnetic field lines. This conduc-
tivity has to “compete” with an electron cooling term, which
is rather small because of the smallness ofδe.
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To substantiate the discussion we assume the magnetic
field lines to be vertical for our case, and write the vertical
component of Eq. (A1) for steady state horizontally stratified
conditions, with no vertical electric fieldE‖=0. We might
assume that the electron temperature variations possibly in-
duced by the plasma instability vary on a smaller length scale
than the plasma density variations, so we retain only the part
of U‖ that originates from the temperature gradient

d

dz

(
n

5

3

Te

mνe

d

dz
Te

)
+

n

mνe

(
d Te

dz

)2

+
2

3

nTe

mνe

d2

dz2
Te =

nδeνe(Te − T0(z)) − Q(z, t) , (A4)

assuming that alsoQ is horizontally stratified. The
E×B-drift of the electrons does not enter here, since it ap-
pears in the expressions for the horizontal coordinates.

We now make an estimate for the electron temperature,
by use of Eq. (A4). The electron temperature will have a
maximum value somewhere in the electrojet,Tem, at z=zm,
wheredTe/dz|zm=0. We then have

nm

7

3

Tem

mνe

d2

dz2
Te

∣∣∣∣∣
zm

= nmδeνe(Tem−T0(zm))−Q(zm) . (A5)

As an estimate we make a local parabolic approxima-
tion for the temperature variation and taked2Te/dz2

≈

−(Tem−T0(zm))/L2, whereL is a characteristic length scale.
In our case we can takeL∼1−5 km. We can estimate
Te/(mν2

e )≈`2
c , where`c is the mean free path for collisions.

We then have the estimate

7

3

`2
c

δeL2
(Tem − T0(zm)) ≈ (T0(zm) − Tem) +

Q(zm)

nmδeνe

. (A6)

Although it is not apparent by the notation, this expression is
nonlinear inTm, because of the temperature dependence of
`c. With an effective average ion mass of 27 proton masses,
we can estimateδe≈3.6×10−5

�1.
Basically two different cases can be found: one where the

left side is negligible and one where it dominates the first
term on the right hand side, the controlling parameter being
`2
c/(δeL2). If we take a typical mean free path to be`c≈10 m,

we find the left side to be approximately 10 times larger that
the other term, i.e. thermal conduction to the surroundings
dominate for the conditions relevant for the ROSE4 rocket.
This estimate of course depends on the actual parameter val-
ues, and for a detailed analysis it might be best to solve
Eq. (A4) numerically with proper models for the altitude de-
pendencies of the parameters. Even when the two terms in
Eq. (A6) are comparable, we need approximately twice the
energy deposition from the instability into the electrons, as
compared to the infinite plasma model, in order to reach the
same electron temperature.

One interesting aspect of the present discussion is that it
indicates a basic difference between the equatorial and polar

electrojets in this respect. For the equatorial case where we
might assume the magnetic field to be horizontal, we have
to take not the mean free path but the electron Larmor ra-
dius,reL�`c, and we can for most relevant cases ignore the
thermal conductivity to the D- and F-regions. ForB≈50µT
andTe≈500 K, we havereL≈0.01 m. The electron thermal
conductivity is generally poor in the direction perpendicu-
lar to a magnetic field. These simple arguments indicate that
there might be interesting physics to be learned by comparing
details of observations of the saturated stage of these iono-
spheric instabilities from the equatorial and polar electrojets.
For the present applications we find it justified to use a model
with an electron temperature given by the standard electrojet
values and ignore the possibility for an enhancement ofTe

by the instability.
The analysis of the present section has direct relevance

for some laboratory studies of cross-field instabilities. In a
Q-machine experiment, for instance, we can in general ex-
pect the electron temperature to be given as the hot-plate tem-
perature due to the high electron thermal conductivity along
magnetic field lines and also here ignore anomalous electron
heating.

Appendix B

A simple model for synthetic data

We have previously commented upon a simple model for
providing a set of synthetic data (Pécseli and Trulsen, 1993;
Krane et al., 2000). Basically, the idea is to make a random
superposition of some prescribed, deterministic space-time
varying pulses. The randomness of the signal is then solely
due to the statistical distributions of the reference time and
position of each pulse. By the prescribed time variation we
can model a growth due to the linear instability and a subse-
quent saturation and decline. While a structure is damping
and vanishing at some position, other pulses are created at
different positions. The model of course allows for a distri-
bution of different structures, with prescribed densities. Let
for instance a basic structure be given for the electrostatic
potential asφ(r , t). The space time varying signal is then
constructed as

8(r , t) =

N∑
j=1

N∑
`=1

φ(r − r j , t − t`) , (B1)

assumingN pulses, andr j being a pulse position uniformly
distributed over a large volume whilet` is similarly a pulse
reference time uniformly distributed over a long time inter-
val. If several pulse types are invoked, there will be an ad-
ditional sum over the pulse types, given their individual sta-
tistical weights. It is now a simple matter (Pécseli, 2000;
Krane et al., 2000) to obtain the correlation function for the
signal as
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〈8(ξ, τ )8(ξ + r , τ + t)〉 =

µ

∫
∞

−∞

∫ ∫ ∫
∞

−∞

φ(ξ, τ )φ(ξ − r , τ − t)dξ3 dτ , (B2)

where we assumed the volume and time intervals to be so
large that we can let the integration limits be infinite. The
density of pulses is introduced asµ. The expression (B2)
gives the correlation function for the space-time varying elec-
trostatic potential in the model ionosphere. To obtain a model
for the signal as detected by the rocket probes, we insert a
probe positions as functions of time in Eq. (B1).

We have a basic choice in selecting either a pulse, or
“blob” like basic structure (St.-Maurice and Hamza, 2001)
or alternatively an oscillatory wave-like structure. The
important point is here that only an oscillatory structure
will be compatible with the observed auto-cross correlation
functions, as found in Fig.4: this figure showscross-
correlations, but for the case where the time-delay vanishes,
it reproduces an auto-correlation. Evidently: if the basic
structureφ is oscillatory, so is the correlation function (B2).
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Krane, B., Ṕecseli, H. L., Trulsen, J., and Primdahl, F.: Spec-
tral properties of low-frequency electrostatic waves in the iono-
spheric E region, J. Geophys. Res., 105, 10 585–10 601, 2000.

Larsen, Y., Hanssen, A., Krane, B., Pécseli, H. L., and Trulsen, J.:
Time-resolved statistical analysis of nonlinear electrostatic fluc-
tuations in the ionospheric E region, J. Geophys. Res., 107, 1005,
doi:10.1029/2001JA900125, 2002.

Leslie, D. C.: Developments in the Theory of Turbulence, Oxford
University Press, Oxford, 1973.

Mallat, S.: A Wavelet Tour of Signal Processing, Academic Press,
San Diego, California, 1998.
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