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Abstract. During the MaCWAVE campaign, combined
rocket, radiosonde and ground-based measurements have
been performed at the Norwegian Andøya Rocket Range
(ARR) near Andenes and the Swedish Rocket Range (ES-
RANGE) near Kiruna in January 2003 to study gravity waves
in the vicinity of the Scandinavian mountain ridge. The in-
vestigations presented here are mainly based on the evalu-
ation of continuous radar measurements with the ALWIN
VHF radar in the upper troposphere/ lower stratosphere at
Andenes (69.3◦ N, 16.0◦ E) and the ESRAD VHF radar near
Kiruna (67.9◦ N, 21.9◦ E). Both radars are separated by about
260 km. Based on wavelet transformations of both data sets,
the strongest activity of inertia gravity waves in the upper tro-
posphere has been detected during the first period from 24–
26 January 2003 with dominant vertical wavelengths of about
4–5 km as well as with dominant observed periods of about
13–14 h for the altitude range between 5 and 8 km under the
additional influence of mountain waves. The results show the
appearance of dominating inertia gravity waves with charac-
teristic horizontal wavelengths of∼200 km moving in the op-
posite direction than the mean background wind. The results
show the appearance of dominating inertia gravity waves
with intrinsic periods in the order of∼5 h and with horizon-
tal wavelengths of 200 km, moving in the opposite direction
than the mean background wind. From the derived down-
ward energy propagation it is supposed, that these waves are
likely generated by a jet streak in the upper troposphere. The
parameters of the jet-induced gravity waves have been esti-
mated at both sites separately. The identified gravity waves
are coherent at both locations and show higher amplitudes on
the east-side of the Scandinavian mountain ridge, as expected
by the influence of mountains.
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1 Introduction

To understand the structure and dynamics of the atmosphere
and its variability, it is important to know the coupling
processes between different atmospheric regions from the
troposphere up to the thermosphere. The dynamical cou-
pling mainly includes the generation of different atmospheric
waves (gravity waves, tides, planetary waves), their propaga-
tion through the atmosphere, the interaction between differ-
ent waves and their impact upon the mean circulation. Today
it is recognized that gravity waves are an essential part of the
dynamics of the upper atmosphere. The theory to describe
these waves has been essentially stimulated by the pioneering
work of Hines(1960). Over the last decades, a multitude of
experimental observations, theoretical and modelling stud-
ies have considerably improved our understanding of grav-
ity waves and their role in the atmospheric circulation (e.g.,
Fritts, 1984, 1989; Fritts and Alexander, 2003).

To study the dynamical coupling processes, a highly
coordinated rocket and ground-based program MaCWAVE
(Mountain and ConvectiveWavesAscendingVErtically)
was performed at the Norwegian Andøya Rocket Range
(ARR) near Andenes (69.3◦ N, 16◦ E) and the Swedish
Rocket Range (ESRANGE) near Kiruna 67.9◦ N, 21.1◦ E),
at first during summer conditions in July 2002 and contin-
ued with a winter campaign in January 2003. The cam-
paigns were designed to investigate gravity waves linked to
the Scandinavian mountain ridge, to track these waves using
different instruments such as radar/rocket/lidar/radiosondes

Published by Copernicus GmbH on behalf of the European Geosciences Union.



2852 P. Hoffmann et al.: Inertia gravity waves in the upper troposphere during MaCWAVE – Part I

Table 1. Parameters of the VHF radar (ALWIN) at Andenes and the Esrange MST radar (ESRAD) at Kiruna.

ALWIN VHF Radar Esrange MST Radar

Geographical location 69.3◦ N, 16.0◦ E 67.9◦ N, 21.9◦ E

Operating frequency 53.5 MHz 52.5 MHz

Peak power/duty cycle 36 kW/5 % 72 kW/ 10%

Transmitting antenna 144 Yagi array 144 Yagi array

Antenna aperture (area) 1900 m2 2025 m2

Half-power beam width 6◦ 5◦

Pulse length 4 µs 4 µs

N of transmitter/receiver 6 6

Code Single pulse Single pulse

Coherent integration 256 256

Vertical resolution 300 m 300 m

Altitude range 2–16 km 2–16 km

Time resolution ∼ 2 min ∼ 2 min

Methods DBS, SA(FCA) SA(FCA)

data from troposphere up to the mesosphere, and to de-
tect energy dissipation in the upper atmosphere produced by
wave breaking. For more details on both campaigns we re-
fer the reader toGoldberg et al.(2004, 2006). During the
first MaCWAVE summer campaign, investigations of gravity
waves in the troposphere and stratosphere have been carried
out using combined radar and lidar data (Scḧoch et al., 2004).

Here we report on measurements of upper tropospheric
and lower stratospheric gravity waves at two different lo-
cations near the Scandinavian mountain ridge obtained with
continuous VHF radar observations during the MaCWAVE
winter campaign in January 2003. The use of two collocated
radars allows us to identify common wave events and to dis-
cuss temporal and spatial differences of the observed waves.
This a continuative paper to our investigations of the proper-
ties of inertia gravity waves in the upper troposphere/lower
stratosphere over Northern Germany where the influence of
orographically excited waves are weak and an upper tropo-
spheric jet occurred in connection with a poleward Rossby
wave breaking event in December 1999 (Peters et al., 2003;
Serafimovich et al., 2005).

In this paper we are mainly focussing on the investiga-
tion of inertia gravity waves (IGW) induced by a jet streak
in the upper troposphere under the presence of strong oro-
graphically induced waves. For this purpose the inertia grav-
ity waves at both sides of the Scandinavian mountain ridge
have been filtered out from the background winds and moun-
tain waves. In a companion paper (Part II,Serafimovich
et al., 2006), comparisons of inertia gravity wave properties
diagnosed from observations with the ALWIN radar at An-
denes and mesoscale MM5 model data are presented, result-
ing in a fairly well agreement, and the capabilities of both
methods for the analysis of such processes are proved.

The paper is organized as follows. After a short descrip-
tion of the used radars in Sect.2, the meteorological back-
ground for the inertia gravity wave generation is discussed
in Sect.3. Section4 is devoted to the estimation of iner-
tia gravity wave characteristics for each radar location sepa-
rately and by a complex cross-spectral analysis of the data of
both radars during the period from 24–26 January 2003 with
the strongest gravity wave activity. The main results are dis-
cussed in Sect.5 and we give concluding remarks in Sect.6.

2 ALOMAR VHF radar (ALWIN) and Esrange MST
radar (ESRAD)

The investigations presented here are based on observations
mainly made by collocated radars at high latitudes in the
vicinity of the Scandinavian mountain ridge. We processed
data from the ALOMAR VHF radar (ALWIN) in Andenes
and Esrange MST radar (ESRAD) in Kiruna. Details of
the radar parameters used are summarized in Table1. Both
radars, the ALWIN radar in Andenes and ESRAD radar in
Kiruna are separated by about 260 km and have comparable
characteristics. They are using the same antenna size and
nearly the same operation frequency 53.5 and 52.0 MHz.

The ESRAD radar (Chilson et al., 1999) as well as the
ALWIN radar (Latteck et al., 1999) are measuring wind com-
ponents in the Stratospheric-Tropospheric (ST) mode at the
height range of 2–16 km with a resolution in height of 300 m
and in time of 2 min. The transmitter and the data acquisi-
tion system were built by ATRAD (Atmospheric Radar Sys-
tems Pty. Ltd, Thebarton, S.A., Australia). Wind measure-
ments are carried out in the Spaced Antenna (SA) mode using
the Full Correlation Analysis (FCA) method and additionally
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for the ALWIN radar by the Doppler-Beam-Swinging (DBS)
method. For further investigations in this work the data aver-
aging over 30 min intervals is sufficient to estimate parameter
of inertia gravity waves. In order to avoid missing values in
the time series caused by low signal-to-noise ratios of the
backscattered radar signals, only height channels up to about
14 km have been evaluated.

3 Meteorological background

The MaCWAVE winter campaign were performed at An-
denes and Kiruna at two periods from 24–26 January and
from 28–29 January 2003 (Goldberg et al., 2006). Figure1
shows the zonal winds derived from ECMWF (European
Center for Medium-Range Weather Forecast) analysis for the
500 hPa level corresponding to a height of about 6 km for
both periods. On 24 January 2003 during the first part of the
campaign (Fig.1, upper panel), an north-eastward directed
jet stream occurs across the Scandinavian mountains with a
centre south of the Andøya-Esrange region in Northern Scan-
dinavia. During the second part of the MaCWAVE winter
campaign from 28–29 January 2003 (Fig.1, lower panel)
the centre of the jet stream is placed over Central Europe
and the horizontal winds over Northern Scandinavia turned
to weaker northwesterlies.

To set these meteorological situations in relation to the
mean winter behaviour, Fig.2 represents the ECMWF zonal
winds at (69◦ N, 16◦ E) near Andenes during both periods of
the MacWAVE winter campaign on 24–26 January and 28–
29 January 2003, respectively, in comparison to the clima-
tologically zonal winds of the mean winter months Decem-
ber, January and February from 1991–2001. The zonal wind
shows two significant peaks at about 9 and 30 km during the
first period (Fig.2, left part). On 28–29 January during the
second part of the winter campaign (Fig.2, right part), the
tropospheric jet in the zonal wind disappeared.

In Fig. 3 the mean winds derived for both radar locations
on the east and west side of the Scandinavian mountain ridge
are presented. The temporal development of the zonal wind
(Fig. 3a) is characterized by an oscillation with a period of
about 1–2 days with maxima (∼40 ms−1) of the zonal wind
on 24 January at both locations, whereas the maxima in the
meridional wind (∼30 ms−1) (Fig. 3b) occur approximately
12 h later. Note that the zonal winds are larger at Kiruna by
∼10 ms−1 (Figs.3c and d) as expected due to the amplifica-
tion by mountain waves (Queney, 1948; Smith, 1979). How-
ever, further investigations are required to understand these
processes in more detail. During the second part of the win-
ter MaCWAVE campaign on 28–29 January 2003, the wind
variations occur markedly weaker at both radar locations in
comparison to the period from 24–26 January 2003, consis-
tent with the ECMWF results shown in Fig.1.
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Fig. 1. Zonal wind and wind vectors derived from ECMWF analy-
sis for the 500 hPa level at 24 January 2003, 12:00 UT (upper panel)
and 28 January 2003, 12:00 UT (lower panel).

4 Data analyses

4.1 Detection of gravity waves

The calculation of gravity wave parameters is based on wind
perturbations, which have been estimated from the wind
measurements after linear interpolations to substitute miss-
ing values following by an appropriate broad band-pass fil-
tering in height and time to remove the background winds.
Suppose, that the perturbations are described by variations
of amplitudesa(x, y, z, t) of the wind components

a(x, y, z, t) = a0 · exp(i(kx + ly + mz − ωobt)), (1)

wherea can be perturbations of zonalu′ or meridionalv′

winds, temperatureT ′ or pressurep′ with a time t . The
zonal, meridional and vertical wave numbers are denoted by
k, l and m in x-, y-, z-directions, respectively, andωob is
the wave frequency observed at a fixed location. With the
Doppler relation

ωob = ω̂ + ukh, (2)
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Fig. 2. Mean climatologic zonal winds derived from ECMWF data (red) at (69◦ N, 16◦ E) near Andenes in comparison to the winds during
both periods of the MaCWAVE winter campaign (blue) on 24–26 January 2003 (left) and 28–29 January 2003 (right). The variances are
represented by the dashed lines.

Fig. 3. Mean zonal and meridional winds measured at Andenes(a, b) and Kiruna(c, d) from 23–29 January 2003. The data are smoothed
using a low-pass filter with cut-off frequencies corresponding to 4 h in time and 600 m in altitude.

ωob depends on the intrinsic frequencŷω, the horizontal
wave numberkh=

√
k2+l2 and the mean background hori-

zontal wind componentu given in the same direction as the
horizontal wave numberkh. Corresponding toZink and Vin-
cent(2001), we adopt here the convention of a positive intrin-
sic frequencyω̂ and define a negative vertical wave number
m for waves propagating energy upwards.

The perturbations are characterized by a superposition of
atmospheric waves with different frequencies. In order to
estimate inertia gravity wave parameters, individual waves
have to be separated or isolated by the application of reason-
able band-pass filtering methods. To detect the presence of
a wave in the data and to avoid arbitrary choices of inappro-

priate filter parameters, a wavelet transform has been applied
(Torrence and Compo, 1998; Zink and Vincent, 2001). This
technique is becoming a common tool for analysing local-
ized variations due to their possibilities to resolve the waves
in frequency domain as well as in the time or height. Details
of the methods used here are presented inSerafimovich et al.
(2005).

In order to examine the height-time distribution of the
wind perturbations over the whole period of the MaCWAVE
winter campaign, the background winds have been removed
with a band-pass filtering with bandwidths of 2–40 h in time
and 0.8–6 km in height. Then we used the summarized
scaled-averaged wavelet power as proposed byTorrence and
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Fig. 4. Sum of variances of zonal and meridional winds for periods 4–40 h (upper part) and 2–8 h (lower part), derived from ALWIN VHF
radar measurements at Andenes.

Compo(1998). This method is very efficient and comparable
to the variances estimated after a classical Butterworth band-
pass filtering. Here the variances have been estimated from
the zonal and zonal and meridional winds at different heights
at Andenes and Kiruna for periods between 4–40 h and be-
tween 2–8 h, respectively (Figs.4 and 5). For periods be-
tween 4–40 h at Andenes (Fig.4, upper panel), the strongest
values of the summarized variances of zonal and meridional
winds occur at heights between 6–10 km during the first part
of the winter MaCWAVE campaign on 24–26 January. The
variances for periods between 4–40 h at Kiruna from 24–
26 January (Fig.5, upper panel) are stronger than the cor-
responding Andenes values, also at heights above 10 km as
expected due to additional orographic effects. Considering
the variances between 2–8 h with weaker values on 25–26
January at Andenes (Fig.4, lower panel) and from 24–26
January at Kiruna (Fig.5, lower panel) we conclude, that the
largest part of the observed variances results from the gravity
waves with periods larger than 8 h. During the second part of
the campaign from 28–29 January 2003 no strong wave ac-
tivity has been observed in the upper troposphere at Andenes
(Fig. 4) and Kiruna (Fig.5).

Note that mountain waves generated by a steady back-
ground flow are regarded as stationary relative to the ground
(Vosper and Worthington, 2002). Therefore the presence of
mountain waves cannot be detected with the method used

in Figs.4 and5. An appropriate method to check the pres-
ence of waves in the atmosphere consists in the evaluation
of the rotary spectra (Thompson, 1978). The calculation of
the rotary spectrum by the Fourier transform of the complex
velocity vectoru′(z)+iv′(z) leads to an asymmetrical func-
tion. The dominance of clockwise (counterclockwise) rotat-
ing waves are associated with negative (positive) frequencies
in the rotary power spectrum and allows directly to estimate
the vertical direction of energy propagation (Guest et al.,
2000). This method has been used byPeters et al.(2003)
andSerafimovich et al.(2005) to diagnose an inertia gravity
wave generated by a tropospheric jet during a Rossby wave
breaking event.

Figure 6 shows the rotary spectra for Andenes and for
Kiruna derived from wind perturbations from 1.5–12.4 km
only filtered in time for periods between 8–18 h, but here
without any filtering in the vertical direction in order to de-
scribe the vertical structure. At Andenes (Fig.6a) the pres-
ence of two waves is clearly indicated: one dominating wave
with a vertical wavelength of about∼10 km and a second
wave with a vertical wavelength of about 4–5 km. At Kiruna
on the lee side of the Scandinavian mountain ridge (Fig.6b),
the amplitudes of a dominating wave with a vertical wave-
length of about 7–8 km are larger in comparison to the An-
denes results.

www.ann-geophys.net/24/2851/2006/ Ann. Geophys., 24, 2851–2862, 2006
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Fig. 5. As Fig.4, but derived from ESRAD VHF radar measurements at Kiruna.

Fig. 6. Results of rotary spectra averaged for 12 h starting on 24 January 2003, 00:00 UT applied on Radar measurements at Andenes(a)
and at Kiruna(b) after band-pass filtering only in the time domain for periods from 8–18 h.

From the dominance of the negative parts of the spectra
of the wave with the vertical wavelength of about 10 km at
Andenes and about 7–8 km at Kiruna, we conclude that these
waves show upward directed energy propagations. Follow-
ing Queney(1948) and taking into account, that the mean
flow is directed perpendicular to the Scandinavian mountain
ridge, we suppose, that these waves represent orographically
generated mountain waves. This is also supported by the ver-
tical velocities measured with the ALWIN VHF radar in DBS
mode (Fig.7). The method to use vertical winds measured by
VHF radars as indications of mountain waves has been pro-
posed, e.g., byEcklund et al.(1981), or Balsley and Carter

(1989) and has been compared with models byVosper and
Worthington(2002). As indicated in the mean profile of the
vertical winds (Fig.7, left) and by the horizontal lines in the
right part of Fig.7, we detect a vertical distance of about 5 km
between maxima and minima of the vertical winds on 24–25
January 2003, consistent with the estimated vertical wave-
length of∼10 km derived from the rotary spectra (Fig.6).
Note that the height-time plot of the vertical velocity shows
a phase change during 24 and 25 January, in correspondence
to the changing mean horizontal winds (Fig.3). Such a be-
haviour is characteristic for transient mountain waves as de-
scribed byVosper and Worthington(2002). From Figs.6 and
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7 we conclude that at Andenes an unsteady mountain wave
with a vertical wavelength of about 10 km appeared which
has a shorter wavelength on the easterly side of the Scandi-
navian mountains.

In the following we are focussing on the investigation
of the inertia gravity waves with vertical wavelengths of
about 5 km and their relation to the observed jet in the up-
per troposphere, however under the influence of the moun-
tain waves. To separate and identify these waves and con-
sider their height and time dependence at both radar loca-
tions, wavelet transforms have been applied on time series of
the zonal and meridional winds for constant height ranges as
well as on wind profiles versus height for fixed time inter-
vals. Figure8 (upper panel) shows the wavelet transform of
the time series averaged over the altitude ranges 6–7 km for
Andenes (Fig.8a) and for Kiruna (Fig.8c). Enhanced wave
activity has been observed on 24–26 January 2003 in the up-
per troposphere with dominant periods of about 12–14 h, the
amplitudes and their significance are higher at Kiruna. Fig-
ure8 (lower panel) represents the wavelet transforms of ver-
tical profiles of horizontal winds averaged over 2 h during pe-
riods with enhanced wave activity for Andenes (Fig.8b) and
for Kiruna (Fig.8d) showing dominant vertical wavelengths
of ∼4–5 km, again with larger amplitudes at Kiruna. The
significance levels and values influenced by boundary effects
are indicated. For details we refer the reader toTorrence and
Compo(1998) andSerafimovich et al.(2005).

4.2 Estimation of gravity wave parameter

To investigate the characteristics of these gravity waves in de-
tail, we used the information of the wavelet spectra (Fig.8),
and applied a band-pass filtering with bandwidths 8–18 h and
2–6 km to estimate and separate wind perturbations from the
mean winds.

With the derived zonal and meridional wind perturbations,
we use the hodograph technique and the rotary spectra to es-
timate the parameter of the inertia gravity waves and their
relation to the observed jet in the upper troposphere. Both
methods have been described in detail bySerafimovich et al.
(2005). The rotary spectrum has already been applied on the
wind perturbations without any height filtering (Fig.6) indi-
cating the presence of two waves.

Figure9 represents the rotary spectra applied on wind per-
turbations after a band-pass filtering with bandwidths for
waves with periods of 8–18 h and vertical wavelengths be-
tween 2 and 6 km. The differences between the positive and
negative parts of the spectra are significant by more than 95%
as labeled by the circles, triangles and diamonds. This result
clearly indicates the presence of inertia gravity waves with
a vertical wavelength of about 5 km at Andenes and Kiruna.
From the dominance of the positive parts of the spectra at
both locations, we conclude that these waves show down-
ward directed energy propagations in the troposphere, so that

Table 2. Stokes parameters derived from radar measurements on
25 January 2003 for 1 h starting from 09:00 UT and averaged in
wavelengths from 3.8 km to 6.4 km.

Stokes parameters Andenes Kiruna

Degree of polarization,dm1,m2 0.95 0.96

Major axis orientation,2m1,m2 −12◦
−22◦

Phase difference,δm1,m2 −104◦ 125◦

Ellipse axial ratio,Rm1,m2 0.54 0.42

we assume that these waves are generated by the jet in the
upper troposphere.

The hodograph analysis has been introduced byGill
(1982) in connection with a rotating fluid and applied first to
IGWs byCot and Barat(1986). The application of the hodo-
graph analysis on the radar measurements at Andenes and
Kiruna is shown in Fig.10 for upper tropospheric heights.
In both cases, the ellipses have an anticlockwise rotational
sense which in the northern hemisphere is related to a down-
ward energy propagation. The ratios of the major to the mi-
nor axes of the ellipses, correspond without any wind shear
effect to an intrinsic period of 5.2 h at Andenes and 6.4 h at
Kiruna, respectively. The horizontal propagation of these in-
ertia gravity waves can be derived from the orientation of
the ellipses with an uncertainty of 180◦ without additional
knowledge of temperature or vertical wind perturbations, re-
sulting here to−12◦ at Andenes and−42◦ at Kiruna. This
difference may be appear as too large, however, we have to
consider that the hodograph is only a snapshot and applicable
for monochromatic waves.

In addition,Vincent and Fritts(1987) and Eckermann and
Vincent (1989) presented a Stokes-parameter method which
results in a set of gravity wave parameters comparable to
those of the hodograph analysis, but with the possibility to
average over the duration of the wave and selected verti-
cal wave number bandsm ε [m1, m2]. We applied here
this method on both radar measurements at Andenes and
Kiruna during the period with strongest wave activity for
vertical wave numbersm1, m2 corresponding to wavelengths
between 3.8–6.4 km, respectively. Mean results using the
Stokes-parameter analysis are presented in Table2. Note
that again the derived parameters as the degree of polariza-
tion, dm1,m2, the major axis orientation, describing the wave
propagation direction2m1,m2 for Andenes and Kiruna with
values of−12◦ and−22◦, respectively, as well as the ellipse
axial ratioRm1,m2 are comparable at both locations and to the
independent hodograph analyses.

These results are in a sufficient agreement with the hodo-
graph of the wind fluctuations derived from a high-resolution
balloon sounding (Fig.11) launched at Andenes in the
frame of the MaC-WAVE campaign. FollowingGuest et al.
(2000) andPeters et al.(2003), the wind fluctuations were
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Fig. 7. Vertical winds derived from DBS measurements with the ALWIN VHF radar at Andenes. Left part: Mean profile averaged over 2 h
on 25 January 2003. Right part: Variations of the vertical winds during the period from 23–25 January 2003. The horizontal lines indicate
the distance between maxima and minima of the vertical winds.

Fig. 8. Sum of the wavelet spectra applied to the zonal and meridional winds. The upper panel(a, c) shows the Morlet wavelet transform
of the time series averaged over the altitude ranges 6–7 km. The lower panel(b, d) shows the averaged in time Paul wavelet transforms of
vertical profiles of horizontal winds. Wind measurements at Andenes (a, b) and Kiruna (c, d) have been used. Bold green lines indicate
regions with 95 % significance level, shaded areas mark zones where boundary effects appear.

determined by the differences between the measured values
and a polynomial fit of 4th order for each component applied
on tropospheric heights. From the ratio of the major to the
minor axis of the ellipse, we estimate an intrinsic period of
4.2 h. The ellipse with an orientation of about−83◦ shows an
anticlockwise rotational sense corresponding to a downward
directed energy propagation.

To estimate the intrinsic frequencŷω and the horizontal
wave numberkh of a gravity wave, we use the polarization,
dispersion and Doppler equations. The polarization relation
is defined as

R =

∣∣∣∣fc

ω̂
−

kh

mω̂

∂v

∂z

∣∣∣∣ . (3)

Here the vertical wind shear effect in the background wind,
as introduced byHines (1989), is included by the term
∂v̄/∂z, wherev denotes the mean horizontal wind compo-
nent perpendicular to the wave propagation. The dispersion
relationship is given by

ω̂2
= f 2

c +
N2k2

h

m2
−

2f kh

m

∂v

∂z
. (4)

Ann. Geophys., 24, 2851–2862, 2006 www.ann-geophys.net/24/2851/2006/



P. Hoffmann et al.: Inertia gravity waves in the upper troposphere during MaCWAVE – Part I 2859

-20 -10 0 10 20
Vertical wavelength [km]

0

0.01

0.02

0.03

0.04

0.05

0.06

E
n

e
rg

y
S

p
e

c
tr

u
m

[J
/k

g
/m

]

Andenes

12:00-24:00 UT
24 Jan 2003

3.0 - 9.0 km

-20 -10 0 10 20
Vertical wavelength [km]

0

0.01

0.02

0.03

0.04

0.05

0.06

E
n

e
rg

y
S

p
e

c
tr

u
m

[J
/k

g
/m

]

Kiruna

16:00-04:00 UT
24-25 Jan 2003

3.1 - 9.1 km

� - 95 %

� - 99%
� - 99.9%

� - 95 %

� - 99%
� - 99.9%

Fig. 9. Results of rotary spectra (◦, 4, � – significance levels) applied to radar wind perturbations after a band-pass filtering with bandwidths
of 8–18 h in time and 2–6 km in height. The spectra are averaged for 12 h starting on 24 January 2003, 12:00 UT at Andenes(a) and on 24
January 2003, 16:00 UT at Kiruna(b).

Fig. 10. Results of hodograph analysis (solid line – measured profiles, dashed line – fitted ellipse,X – starting point of the hodograph)
applied to radar measurements at Andenes(a) on 24 January 2003, 15:00 UT and at Kiruna(b) on 24 January 2003, 17:00 UT.

The Doppler relationship is given by Eq. (2). The Coriolis
frequencyfc depends on the geographical latitude and has
been calculated for both radar locations. The Brunt-Väis̈alä
frequencyN(z) can be estimated from radiosonde or lidar
temperature soundings. In the absence of temperature in-
formation in the case of pure radar investigation, the mean
Brunt-Väis̈alä frequency is selected here with a typical value
of 0.013 s−1 for the troposphere.

Using the results of the Stokes-parameter analysis applied
to the case study presented here (Table2), the solution of
Eqs. (3) and (4) leads to the final gravity parameter given in
Table3, where the Doppler relation (2) is used to solve the
sign ambiguity of the horizontal wave numberkh. Note, that
due to the high variability of the background winds during
the MaCWAVE winter campaign, a direct evaluation of the
Doppler relation between observed and intrinsic frequency
is unreasonable. Characteristic parameters like the horizon-
tal wavelengths, the phase and group velocities as well as
the orientation of the horizontal propagation show reason-
able agreements for the wave events with observed periods
of about 13 h, identified and filtered out at both locations be-
fore and behind the Scandinavian mountain ridge.

Based on the wavelet transform of the radar measurements
at Andenes and Kiruna (Fig.8a, c) we found a common wave
at both locations on 24 January with a period of about 13 h.
Note that the high variability of the background winds shows
nearly no impact on the obtained wavelet spectra. Further-
more, the direction of the wave propagation at Andenes is
nearly the same as at Kiruna (Table2). It gives us a good
ability to apply the cross-spectral analysis as detailed de-
scribed inSerafimovich et al.(2005). The cross spectrum of
the zonal winds measured at Andenes and Kiruna is shown
in Fig. 12.

In this case study over Northern Scandinavia we obtained
a peak in the cross power spectrum at a periodTob of ∼13 h
(Fig.12a). This peak is significant as shown by the coherency
spectrum (Fig.12b). Thus we conclude, that the presented
results for both locations are linked to the same wave.

5 Discussion

In the frame of the MaCWAVE winter campaign in January
2003 we show that collocated VHF radar measurements can
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Table 3. Gravity waves parameters derived from the results of the Stokes-parameter analysis as shown in Table2 for the radar measurements
at Andenes and Kiruna.

IGW parameters Andenes Kiruna

Intrinsic period, 2π/ω̂,h 5.6 4.3

Observed period, 2π/ωob,h 12.8 12.8

Vertical wavenumber,m,m−1 1.37×10−3 1.31×10−3

Vertical wavelength, 2π/|m|,km 4.6 4.8

Horizontal wavenumber,kh,m−1
−2.72×10−5

−3.61×10−5

Horizontal wavelength, 2π/|kh|,km 231 174

Horizontal phase velocity,υph,ms−1
−11.5 −11.2

Vertical phase velocity,υpz,ms−1 0.23 0.31

Horizontal group velocity,cgh,ms−1
−8.8 −9.6

Vertical group velocity,cgz,ms−1
−0.175 −0.265

Wind shear component,∂v/∂z,s−1 1.7×10−3 1.2×10−3

Fig. 11. Hodograph of tropospheric wind fluctuations derived
from high-resolution balloon sounding launched near Andenes at
∼22:30 UT on 24 January 2003 at Andenes. The data are averaged
over 300 m. The dashed line shows the fitted ellipse, the red cross
marks the starting point.

be used to identify and to investigate inertia gravity waves in
the troposphere/lower stratosphere. During the first part of
the campaign, we detected an enhanced activity of different
gravity waves with observed periods larger than 8 h (Figs.4
and 5) in connection with an eastward directed jet stream
towards the Scandinavian mountains (Fig.1).

The evaluation of the rotary spectra (Figs.6 and9) results
in the detection of an inertia gravity wave packet with down-

ward directed energy propagation having a vertical wave-
length of ∼5 km. Furthermore, a mountain wave with an
upward directed energy propagation was found which shows
a vertical wavelength of∼10 km at Andenes, but larger am-
plitudes with a shorter vertical wavelength (∼7 km) on the
lee side of the Scandinavian mountain ridge at Kiruna. Pos-
sible explanations for these observed shorter vertical wave-
lengths at Kiruna could be related to differences of the back-
ground winds at both locations and to stronger lee waves at
Kiruna leading to changed superpositions of all waves. How-
ever, such studies remain a topic for future mesoscale model
simulations. Additionally, the height-time plot of the verti-
cal winds at Andenes (Fig.7) indicates transient mountain
waves as shown by the phase changes during periods with
changing horizontal winds (Fig.3). Such an evolution due
to a varying mean flow towards the mountains has been dis-
cussed byVosper and Worthington(2002) in more details.
However, the influence of the mountain waves on the inertia
gravity waves as well as possible interactions remain a topic
of a future study.

Focussing on the inertia gravity waves with shorter ver-
tical wavelengths, a wavelet transform has been applied to
separate these waves from the mountain waves and to inves-
tigate the height and time dependencies of the inertia gravity
waves at both radar locations. Figure8 shows dominant ver-
tical wavelengths of about 4–5 km and dominant observed
periods of about 13–14 h in the altitude range between 5 and
8 km with higher amplitudes on the lee side of the Scan-
dinavian mountain ridge at Kiruna, probably caused by an
amplification due to the mountain waves. From the identi-
fied downward energy propagation (Figs.9, 10, and11) we
found that the waves are likely generated by the jet streak
in the upper troposphere. This assumption is supported by
investigations ofZülicke and Peters(2006) using model sim-
ulations of inertia gravity waves mainly generated through
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Fig. 12. Cross-power spectrum between radar measurements at Andenes and Kiruna for the time from 24 January 2003, 00:00 UT to 26
January 2003, 24:00 UT, averaged over the height range from 4 km to 8 km. Left part: Amplitude (black) and phase difference (red). Right
part: Coherency spectra.

spontaneous radiation in the exit region of the upper tropo-
spheric jet.

The parameter of these inertia gravity waves were esti-
mated by the Stokes analysis of the radar measurements at
Andenes and Kiruna separately (Table3), and are in a qual-
itatively good agreement, what we expect if the radars de-
tect the same wave packet. The results show the appear-
ance of coherent dominating inertia gravity waves with ver-
tical wavelengths of∼5 km and intrinsic periods in the order
of ∼5 h. These waves with characteristic horizontal wave-
lengths of 200 km are moving in the opposite direction than
the mean background wind.

Furthermore, the data during the first part of the winter
MaCWAVE campaign have been used in a companion pa-
per (Part II,Serafimovich et al., 2006) for estimations of the
gravity wave induced vertical fluxes of horizontal momentum
and for comparisons between observations and mesoscale
MM5 model simulations of inertia gravity waves.

During the second part of the campaign on 28–29 January
2003 nearly no wave activity has been observed in the up-
per troposphere at Andenes (Fig.4) and Kiruna (Fig.5) as
expected by the weaker stream directed more parallel to the
Scandinavian mountains.

6 Conclusion

We presented here an experimental study of inertia grav-
ity waves in the upper troposphere near the Scandinavian
mountain Ridge in the frame of the MaCWAVE winter cam-
paign. Using continuous radar measurements with the AL-
WIN radar at Andenes and the ESRAD radar near Kiruna, we
found, that the strongest gravity wave activity in the tropo-
sphere occurred during the first part of the winter MaCWAVE
campaign on 24–26 January, whereas during the second part
of the campaign on 28–29 January 2003 nearly no wave ac-
tivity has been observed.

Gravity wave parameters estimated by the analysis of radar
measurements at Andenes and Kiruna separately are in qual-
itatively good agreement. During the first period, wavelet
transformations reflect similar wave structures in the upper
troposphere at both locations. Under the influence of a tran-
sient mountain wave, the results show the appearance of co-
herent dominating inertia gravity waves moving in the oppo-
site direction than the mean background wind. Both meth-
ods, the rotary spectra and the hodograph technique, yield to
downward energy propagations, so that the identified gravity
wave packet is likely generated by the jet streak in the upper
troposphere. On the east-side of the Scandinavian mountain
ridge the inertia gravity waves show higher amplitudes as an
indication of the influence of mountain waves.

In a companion paper (Part II,Serafimovich et al., 2006),
gravity wave induced vertical fluxes of horizontal momentum
are estimated and comparisons are presented between obser-
vations and mesoscale MM5 model results. The model data
agree with the experimentally obtained results fairly well and
the capabilities of both methods, the VHF radar observa-
tions with their high temporal and vertical resolutions and
the model analyses to get more insight in the atmospheric
processes, have been proved.

Further analyses of unsteady mountain waves generated
in that region and investigations of their interactions with
the identified jet induced inertia gravity waves are necessary.
Combined model analysis in connection with observations
will contribute to understand such processes.
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