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Abstract. A 2-D, two- and three-layer stratified airflow over 1 Introduction

a mountain of arbitrary shape is considered on the assump-

tions that upstream wind velocity and static stability within The existence of buoyant force interaction of stably stratified

each layer are constant (Long’s model). The stratosphere iair flow with surface corrugates leads to the generation of

simulated by an infinitely deep upper layer with enhancedwave disturbances which are able to transmit far away from

static stability. their source. It was found that partial reflection of wave en-
. ] ] ergy by individual layers with different static stability and/or

~ The analytical solution for the stream function, as well asying velocity can produce a strong influence on the flow field

first (linear) and second order approximations to the wave, ihe free atmospher&¢orer 1949 Blumen 1965 Eliassen

drag, are obtained in hydrostatic linfity ./ Uo— 0o, where  anq paim1961; Berkshire and Warrgri970. Some aspects

N1 is the Brunt-\Bsala frequency in the tropospher,is @ f this problem were considered in many of investigations

characteristic length of the obstacle, aliglis upstream ve- (see reviews byQueney et a).196Q Kozhevnikoy 197Q

locity. The results of numerical computations show the pri”'Smith 1979 Réttger, 2000, principally in the framework of

cipal role of long waves in the process of interaction betweennear models permitting one to account for actual really ob-

the model layers for a typical mesoscale mountains for whichseryeqd vertical distributions of atmospheric characteristics,

the hydrostatic approximation proves valid in a wide range Ofincluding those at large altitude®dlm and Foldvik 196Q

flow parameters, in accordance with the earlier Condusmn%erkshire 1975.

of Klemp and Lilly (1979. Partial reﬂectjon of wave energy The linear theory, when applied to the atmosphere, may

from the tropopausg prodyces strong influence on the ValuBe of limited value, particularly for the following reasons:

of wave drag for typical middle and upper tropospheric Iapsei The results of model calculationSiith, 1977 Durran

rates, leading to a quasi-periodic dependance of wave drag o 86 1990 Kozhevnikoy 1999, as well as ot;servations

a reduced frequendy=N1H / Uo (H s tropopause height) (Lilly, 1978 Smith, 1985 Kozhevnikov and Bedanokov

in the troposphere. The flow seems to be statically U”Sta'lgggz show that the wind velocity perturbations are not

ble fordkzlzkfor sluffltct;l.ently large ct)bstqcles (\ho?[SG he'tght small for many real atmospheric situations, thus disproving
exceeds 1km). In this case, vast regions of rotor motionSy, o 5ic assumption of linear theory; (ii) the investigations
f'md strong turbulence are predicted from model calculat|on%n the basis of the linear approach were conducted primarily
in the middle t.roposphere .and the '°V.Ve“ stratos.pher-e. Th‘1"or strongly idealized topography while the mountain shape
model calculations also point to a testify for possible impor- and height may exert exceptionally strong influence on the

tant role of _nonlinear effef:.ts associated with finitg .height F’fflow structure Gutman 1969 Smith, 1977 Lilly and Klemp,
the mountain on the conditions of wave drag amplification in 1979 Kozhevnikoy 1999

the process of overflow of real mountains. In the case of large-amplitude motion the initial nonlin-

ear equation of the task can be reduced to the linear one
and solved by the well-developed techniques only for a lim-
ited class of flows which are of practical interest for the at-
mospheric taskgglaus 1963 Kozhevnikov and Moiseenko
2004. The most investigated are still the case when up-
stream wind velocity and static stability do not depend on
Correspondence tK. B. Moiseenko height (Long’s model for compressible fluid)qng, 1955
(konst.dvina@mail.ru) Gutman 1969. This model was used in a number of works
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in which the flows over obstacles with simple geometry were2 Governing equations and general solution
consideredNliles, 1968 Miles and Huppert1968 Huppert
and Miles 1969 Lilly and Klemp, 1979. We consider a 2-D {, 7), stably stratified, two-layer flow in
. . . which the internal dividing surface (tropopause) is situated
Extension of Long's model to multi-layer flow with ot ihe evel7, and the upstream velocityo and temperature

constant static stability within each layer performed by |55se rateg; within each layer are constant. Henceforth,
Kozhevnikov and Bedanoko{1993 let us investigate the 4 indexesj=1 and j=2 refer to the lower and the upper

corr}bined.(_effects of topography and vertical varigtions Oflayer, correspondingly, and the symbol) s related to di-
static stability for a number of observed atmospheric eventsygngjonal variables whose non-dimensional counterparts are
In particularly, comparison of calculated flow fields with the ;54 used. Itis supposed that<y1. The horizontal and ver-

observations of lee-wave clouds above the Crimean moungicq coordinates are directed downstream and upwards, re-
tains show that the existence of the layers with enhanced e ively, and the level=0 coincides with the bottom flat
static stability can produce a strong effect on the flow f'eld'surface. The flow traverses an obstacle of heigliy and a

especially for the region located downwind from the main ¢ aracteristic lengtia having a finite cross-sectional area.
In present work, the flow in the troposphere is of primary

ridge, where the formation of partially trapped waves of sig-
interest. Thus, the kinematic effect of static compressibility

nificant amplitude is possibl&6zhevnikov and Bedanokov
1993 1998. It was also pointed out that the lower strato- 555-6yimately can be ignored and we may therefore define a

sphere can play an important role in such a process. Furth&liream function such that the horizontal and vertical com-
investigations revealed that the correct account for the flow

o~ . ! : ponentsi, w of wind velocity fieldV are

characteristics at altitudes 250-50 mbar is almost as impor-

tant as the shape of the mountain (Kozhevnikov, V. N, pri- . _ 0¥ . 9V o
vate report). This conclusion is in agreement with the results 9z’ 0x

of nonlinear numerical computations (see, for exampla; The condition of no upstream influence leads to:

ran 1986 1990, as well as the earlier conclusion ikfemp
and Lilly (1979, according to which there exists a strong re-
sponse of flow field to the conditions of the partial reflection
of the wave energy by the tropopause.

dT ; -

V| — Ug=const y; — i asx —» —oo. (2)
The equation of motion, the continuity equation, and equa-
The present paper is a logical continuation of the previoustion for conservation of entropy for inviscid stationary flow

works (Kozhevnikov and Bedanokovl998 Kozhevnikov may be written with use of Boussinesq approximation as

and Moiseenkp2004) aimed at the investigation of the ef-

_ / I
fects dealing with the vertical variation of flow characteris- (VV)V =-Vr + BTV, ©)
tics within a nonlinear approach. The qualitative analysis Of(VV)T’ — S )
wave drag dependence on the flow characteristics are of pri- '
mary interest in the work. The role of the stratosphere isvV =0, (5)
investigated in the framework of two- and three-layer flow

. . 9 9 g
with an exact account of the mountain shape, as well as thg; _ ( 2 % -5 gy _ 6
With at’ GO : . —=|. B , Yd =V, (6)
radiation condition” in the upper layer. Such a formulation dx 9z T,

let us account for a few factors within a rather simple model , _

which play an essential role in the process of overflow of 22 — —pg, p=pRT, n' =RT,p'/p, (7)
real mountains: shape of the mountain, average wind veloc-9%

ity and existence of an internal dividing surface (tropopause)vhere is gravitational acceleratior® is gas constant for
between regions of the atmosphere with essentially differentiry air, 7' is absolute temperaturey is dry adiabatic lapse
rates of static stability. Mathematical formulation and a gen-rate, T, is an average temperature within the given layer,
eral solution of the task are given in Sect. 2. Theoretical in-is pressure, ang is density Gutman 1969. Here () rep-
vestigation of the solution is conducted under the additionalresents a local deviation of a given variable from its back-

assumption of smoothness of the relief (i.e. that characteristiground (undisturbed) value (which marked with overbar) at
length L of the obstacle is large compared to Lyra’s scale). an altitudes.

In this case the explicit analytic solution can be obtained for et § be the vertical displacement of a streamline from its
the stream line field in the hydrostatic limitN /U — oo by undisturbed heighto:

means of asymptotic evaluation of Fourier integral follow- _

ing Miles and Hupper{1969 (Sect. 3). Corresponding for- (. 2) =Z — Z0(¥, %) = —y'/ U,

mulae for first and second order approximations to the wave p - - -

drag are obtained in Sect. 4. Some results of numerical cal- V=92 - Uoz. ®)
culations for different mountain shapes and flow parameters,q proper dimensionless task parameters may be chosen as
based on two- and three-layer models of the atmosphere are

given in Sect. 5 and Sect. 6, respectively. The basic conclu-  Nihmax . H 2H LNy Acr_ N2

sions are formulated in Sect. 7. d= Uy k:;ZTd’ 8270’ :A_szﬁl’ ©)
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where N;=,/B;S; is Brunt-Vasila frequency, where¢i=m1H;, andX1=my/m1. Substitution of Eq.X4)
rej=2mUg/N; is Lyra’s scale yra, 1943 in the layer into Eq. (12) gives the integral equation
j. The other dimensionless variables are defined as follows: too

. hx) = FPL(x — x', dh)dx’, (19)
x=x/L, (z, H)=(z, H)N1/Ug, (u, w) —00
which should be solved fof (x). If d is small compared to
the unity andih /dx is uniformly bounded, the lower bound-

It was shown byGutman (1969 that the initial set of ary condition can be linearized by settidg0 in Eq. (L2) to
obtain

Egs. 3-5) under the assumptions formulated above may be
reduced to the corresponding Helmholtz’s equatiors fizeld 8(x,0) = h(x). (20)
in the given layer:

=(it, W)/ Uo, (h, 8)=(I, §) / imax. (10)

) , In this case, lettingz— 0 in Eq. (L9) and invoking Eq. 16),
0%6;  040; i
Po3 t g+ D=0 Di=1 Dp=X. (i1) we obtain
X
: PL(E, dh) = So(€), f(x) > h(x) (dh — 0), (21)
The lower boundary condition is ) ) ) )

wheredg is the Dirac delta function. Thus the approximate

8(x,dh) = h(x). (12) solution of Eq. 19) is f (x)~h(x) providedd<«1. This fea-

o ] ture allows an effective numerical solution of E49)in the
On the dividing streamlingos (x, z)=H, the lower and upper  case7<1 by direct inversion of the corresponding matrix op-

flows must satisfy the kinematic condition and the dynamicgrator, based on the “weak regularization” technique, as de-

requirementpy=p», which implies scribed byKozhevnikov and Moiseenk(2004).
a6 aé

81 = 82, —1=—2, at z=H +¢(x), (13) .
0z 0z 3 Long-wave limit

where¢ (x) is a deviation of;g; from its original heightH

(Kozhevnikov and Bedanokov993. As it follows from

the model calculations, the conditi¢n|<< H holds for typ-

ical atmospheric values dfip and N;. This suggests that

Z(x) may be set approximately to zero in Eq3), by anal-

ogy with the previous worksKozhevnikov and Bedanokov ;7 Frmax . ' _

1993 Kozhevnikov and Moiseenk@004). Y —deT <L ore>>with d fixed (22)
Using integral Fourier transform, we can write a solution

of Eq. (11) in the form (seeKozhevnikov and Bedanokov The asymptotic representation of the general solution

We now suppose that the characteristic length of the obstacle
is large compared to the characteristic vertical wavelength,
which is close to Lyra’s scale. Invoking E®)( the condition

of smoothness can be expressed as

1993 for details): Egs. (4, 15) ase— oo can be obtained by means of a tech-

nique similar to that one described Iiles and Huppert
+00 . . . .
/ p p (1969. Replacingx by the complex variable;=x+ix; in
8‘(x,z)=/ f&HPiE, )dx', £ =x—x/, (14) . . - -
/ oo / Eqg. (15) and integrating by parts with respectstave obtain:
oo . Pj(x1—x, 2) = Re{i(x1—x") "19; (0, )}/ + 0 (e ™)
Pj(6.2) = —Re / 9;(s. 20 ds, s !
0

(e—>00, x;—>0+). (23)

where f(x) is the equivalent dipole density of the obsta-

cle, Re denotes the real part of integral, apg(s, z) are the Substituting £q.23) into Eq. (4), we obtain the approxima-

general solutions of the corresponding ordinary diﬁerentialtion:

equations written in the form 8;(x,2) = Re{g;(0,2) fi(x1)} (xi — 04), (24)

@1(s, 2) = Ca(s) Sinm1z + cosmiz, (16)  wheref1(x1) is the Cauchy integral of (x), as defined by

@a(s,2) = Ca(s)etm2e M), T N g f LA o, (25)
’ iT ) 0 X —x1

_ /p2 i iafi ) i
wherem j=,/Dj—s?. The functiongy(s, z) satisfies the  nder the assumptions formulated Miles and Huppert
radiation condition for long waves, when; is real, and (1969, the following relation holds:
bounded, whem: is imaginary. Invoking the boundary con-

dition Eq. (L3) and Egs. {4, 16, 17), we obtain [l = f(x) —if*(x) (x; = 0+), (26)
. . +00 4
COoS¢1 — i X1 SIng; CoS¢1 —iX1SINg1 b4 oo X —x
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where P is the Cauchy principal value of the integral, and 4 Wave drag
the upper index*) denotes henceforth the Hilbert transform o
of the given function Titchmarsh 1948. Substitution of By definition, the exact value of the wave drag of the moun-

Eg. (26) into Eq. @4) gives: tain on the atmosphere is given by
8j(x,2) = ¢jr(0,2) f(x) + ;i (0,2) [ (x) (28) Dy = _/ (&, 5)dh, (38)
(henceforth, the subscriptsandi the denote real and imagi- 0

nary parts of the quantity). Using Eq2§(17,28), we obtain: \\here the integral must be calculated along a contour

81(x, z) = f(x){cosz + Cy, sinz} + f*(x)Cy;i sinz,  (29) Q(&, h). We also define a wave drag coefficient as
82(x, 2) = f(x){C2 cOSPp — Cp; Sing} Cp = —Dw/(0.5maxpoU3), po = 5(0). (39)

+ /7 (0){C2i cosp + Cor Sing}, B0 The pressure perturbatigii(%, /) at the lower boundary can
wherep=X (z—H), andC;,, Cj; are taken at=0 according  be found by means of the Bernoulli equation for Egs4)

to Eq. @98): applied to zero streamline. FollowinQutman(1969, we
Cu,=—05(X2 — 1)sin@H)-A~Y, Cu=Xx.A"1, (31 have

Ca =COSH - A™Y, Cp = XsinH - AL, (R2)  7'=p//p=—(P+i’-U§)/2—BT"?/(25), (40)
A =1+ (X%-1Dsir H. (33)  whereT’=—Sh, p=p(RT,)~L. For the sake of simplic-

It follows from Egs. 81-33), that if X>1 then the value of '» We shall replace(h) by po in Eq. (40), based on the

A is always positive and a solution in the form Ec29,(30) earlier conclusion that such a simplification does not lead

exists for any model parameters, for which the conditionst® 2" appreciable errors in wave drag computations, when

formulated at the beginning of page 2 hold. hmax=1km (Kozhevnikoy 1999. Substituting Eq.40) into
Settingy1=y» (X=1) in Egs. 81, 33), we obtainCy, =0, Eqg. @398), invoking Eq. 8), and substituting the result into

C1=1, and a solution for the one-layer flow in a half space Ed- @9, we obtain

directly follows from Eq. 29): 2 2.2
i Cp= d/ {25, — déZ — de™“8%})dh, (41)
8(x,z) = f(x)cosz + f*(x)sinz. (34) 0 -
This equation is equivalent to the “low-speed limit” approxi- )
mation byMiles and Hupper¢1969, Eq. (5.5b), and reduces  im Cp = Cpn =d /Q{251z — dé1 }dh, (42)

to Eq. (1) from DPrazin and Su1975 in the planar approx-
imation Eq. @0). Letting X—ooc in Egs. @9, 31, 33), we  where subscripts, z denote partial derivatives, arid; in
obtain Eq. @2) should be calculated from EqRY). Expandingsy.
s _ sin(H — z) in a powers off with account of Egs.29, 37) and substitut-
x,2) =h(x)—————, (35) . . . . .
Sin(H — dh(x)) ing the result into Eq.42), we obtain an approximation
which is a classical solution of Long’s task for a channel of
finite heightH in a long-wave limit Long, 1955.
Substitution of Eq. Z9) into Eq. (L2) gives the singular
integral equation

h(x)=f (x){coSdh)+C1, SiN[dh)}+ f*(x)Cy; sindh), (36)  &;=—2 / gidh, i=1,2,3, g1=—h*, go=2h*h-+(hD)*,
0

which can be solved fof by standard numerical techniques

(Verlan and Sizikoy1978. The approximate solution for the g3=(h*)?/2+(h*h)*. (44)
cased<1 can be obtained by expansion ffx) in a power

of d as f=fO+dfD+.... Substituting the expansion into If d«1, then only the leading term in E43) should be

Cpr=dC1; ®1+d?(C1,C1i B2+C% d3)+0(d%) (d—0), (43)

where

Ed. 36) and separating by order af we obtain: retained for which the notatio@'%), will be used. Invoking
f = h(1=d(Cih + Ciih*)) + 0(d?). (37) Egs. 0, 31, 43), we obtain the following representations:
The errors in relief reproduction associated with use of hmax

Eq. (37) can be estimated by computation of the displace-Cor = YN 21 @y, (45)

ment height of zero stream ling(x, dh(x))=0 by means of

Egs. @9, 37) and comparing the result with the prescribed dXdq
contou_rh(x?. It was found that the first and s_econd or_der = 1+ (X2 — 1) sir(epd)’ p
approximations given by Eq3{) produce a relative error in

relief reproduction of less thah5% and+15%, correspond- For the particular cas&=A=1, the Eqs. 45, 46) are
ingly, in the range B<d <0.8, for the examples considered identical to the formulae obtained Brazin and S 1975,
below. Eqg. (17), and.illy and Klemp (1979, Eq. (33).

(46)

7T hmax
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Using Eqg. @6), we can consider two different cases having
practical interest. Setting and X to constants in Eq.46)
and consideringﬁf% as a function ok=pd, we conclude
from Eqgs. 9, 33) that the maximal and minimal values of

drag coefficient are attained, when the tropopause height sat

isfies the conditions

k=K, or HY = Kx.1/2 (47)
and
k=K —-1/2, or HY = (2K — Dr.1/4, (48)

correspondingly, wher& =1, 2, .... The local extremes of
drag coefficient Eq.45) are given by

ilmax

Céolzlmaxz A_ngn(bl at k=K, (49)
c® = %an)l atk =K —1/2, (50)
ie.

CoLmas/ Coimin = X (51)

As it follows from the above given relations, the maximal
(minimal) value ong’}i (p) in atwo-layer flow equals taX?

3411
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Fig. 1. The first order (long dashed) and second order (dashed)
approximations to the wave drag for the Witch of Agnesi profile,
as given by Eq.45) and Eq. 43), relative to the hydrostatic value
(solid), as given by Eq4Q).

height of the mountain, i.e. can be rather significant in many
real situations.

times less than) the corresponding value in a one-layer flow, As an example, the first and second order approxima-

wheny=y»,. Thus, Eqgs.47-50) reveal a well-known prop-
erty of the hydrostatic solution in the limit—0 which deals

tions given by Eq.43) are compared with the nonlinear so-
lution of Eq. @2) in Fig. 1 for the Witch of Agnesi pro-

with a local increase (decrease) of flow disturbances, wheffile h1=hmax/[1+(X/b)?] (hmax=1km, b=10km) for X=2,
the wave components responsible for upward and downward=0.7, p=2.55-4.14 (k=1.79+-2.91), which corresponds

energy fluxes are in phase (anti-phase), respectivdgntp
and Lilly, 1975.
The effect of finite height of the obstacle on the condi-

to the upstream velocity/o=15ms™%, or 1.1=8.92 km, and
the tropopause height range-83 km, with the other dimen-
sional parameters, as in E§4j. The given range df covers

tions of partial resonance can be estimated by differentiatiorthe second quasi-resonant pe&k=2) and following mini-

Eq. @3) with respect top and evaluation of the roots of the
resulting equation by means of asymptotic expansiive,
1974. The corresponding values éfand H at which ex-

mum (K=5/2) of the curvecg)}, (k). One can see from the
figure that the nonlinear drag coefficient (solid curve) attains
its local maximum at H=9.65 km, i.e. about 750 m higher if

tremal values of drag coefficient are attained can be writtercompared with the value predicted by linear analysis (long

as:

k:K+Kd+0(d2), ﬁmaxzﬁéqogx+ﬂKﬁmax

+0 2% h g M), (52)
kZK_l/Z‘I-Kd‘I‘O(dZ), I:Imin = ﬁéﬁ?ﬁ—mcl;max
+021%h2, /)1, (53)

wherex=|®5|/27 ®1>0. Thus, the nonlinear effects asso-
ciated with the finite height of the mountain reveal itself in
higher values ok at which the local extremes of wave drag

dashed curve).

The similar conclusions follow from the consideration of
the drag coefficient as a function a@fwith p and X fixed.
The local extremes of the function are expressed in terms
of the equivalent value of as described above. In partic-
ular, the conditions of local extremes G‘Ig)L in this case
are defined by the relations whose leading terms are given by
Eqs. 47, 48) while the other terms haw@ (1/27%k(X%—1)),
i.e. can be neglected for typical atmospheric value¥.ohc-
cording to Eq. 46), the extremal values ofg)}, in this case
will be proportional tad. Calculations suggest that local ex-

are attained compared to those predicted by linear analysigfemes of the nonlinear drag coefficient are attained at higher
and such a shift is proportional to the dimensionless heightvalues ofk (smaller background wind velocities) relative to

d. For the examples considered below~1. It then follows
from Eqgs. 62, 53) that the equivalent increase in the opti-

the extremes oC;)OL, as seen in Figs3a—c for the exam-

ples considered below, and such a shift is proportional to the

mal height of the tropopause is of the order of the maximalvalues ofk and/max.
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1200 ] a) 20 - \.\
800 — 10 = %
400 — E .o f
1200 — J -
800 — (b) ((_c) Scandinavia 1 _§
400 — ]
0 ]
-100 50 0 50 100 01
km
b) 103
Fig. 2. The idealized terrain shapes for Ural and Scandinavian ]
mountains used in calculations. The flow direction for each of the ]
caseqa—c)considered in Sect. 5 is marked with an arrow. .
S 13
5 Examples of calculations for various mountain pro- .
files ]
In this section, the results of nonlinear calculations of 01
some flow characteristics obtained from use of both non- )
hydrostatic and hydrostatic models described above are ¢) fg_
shown and compared with each other. The mountain profiles
considered below are the meridional cross section of the Ural ]
Mountains at 60N, with flow direction from W to E (case a), a
and a NW=SE cross section of the Scandinavian mountains 13
for the region to the north west from Kiruna approximately 3
at 68 N. Because of its strong asymmetry, two cases were 1 .
considered for the latter profile, where background flow is 1

from NW (case b) and from SE (case c¢). These mountain
regions were chosen due to their quasi-2-D orography, as
well as enhanced wave activity observed frequently during - .
field observations (senell et al, 1999 Stebel et al.200q  Fig. 3. Drag coefficient as a function affor (a), Ural, and(b), (c),
Kozhevnikoy 1999. The profiles obtained by some averag- S(_:andlngwan mountams._ Flgures (a—c) correspoqd to the moun-
ing procedure with 1-km horizontal resolution are shown in @i Profiles (a—c) shown in Fig. The curves and circles are for

. ~ . the hydrostatic and non-hydrostatic solutions, correspondingly. The
Fig. 2. For all the cases the value bfax is close to 1100 m. . . :

The d ffici d d for th dashed curves and open circles mark the regionis mfer which

e .rag_coe icients ar! wave drag Or_t e casesare Long’s condition for a statically stable flow, Ech5), is violated.

plotted in Figs.3a—c and Figsd4a—c, respectively, as a func-

’ ’ The points A-D in Fig.3a and A, B in Fig.3b correspond to the
tions ofk for 0.8<k=4, X=2, p=2.9 which corresponds to  fiow fields presented in Figsa—d and Figs5a and b.
dimensional flow parameters

LI |
k 4

yi=7K/km, y,=0K/km, H=10km T,;=240K
T,p=210K, Up=420-84ms?, 1.,=250-54m (54) The results plotted ir_1 F_igs!la—c reveal tr_lat the values
of the wave drag are significantly (a 2—3 times) larger for
The given range ok comprises the first three peaks of the the profiles with steep leeward slopes (cases a, c), com-
wave drag (henceforth, the peaks are numerated in ascendirgaring with case b, in agreement with the conclusions of
order ofk). According to non-hydrostatic solutions, maximal Lilly and Klemp (1979. It also follows that sharp, small-
values of the wave drag vary fromS310° to 610° H/m for scale orography irregularities for the case of a steep wind-
the case b and from 80° to 11.5-10°H/m for the cases-ac. ward slope (case b) produce less effect on the flow, compar-
The latter values significantly exceed the upper boundanjing to the opposite cases a, c. As a sequence, the flow for
value of 75.10° H/m, obtained for the much higher St. Got- case b is nearly hydrostatic for the whole rangek afon-
thard section of the Alps during the ALPEX projefidvies  sidered, whereas the use of hydrostatic approximation in the
and Phillips 1989, as well as some model estimations of the other cases leads to a relatively stronger overestimation of
wave drag for the Ural Mountain&¢zhevnikoy 1999. Ob- the wave drag values in the vicinities of the quasi-resonant
viously, other accompanying factors, such as upstream lowpeaks and at small values/gfdue to the inability to account
level blocking/deflection and viscous effects, play an impor-properly for the short waves produced by the obstacle. On
tant role in real atmospheric situations. the other hand, the use of the linear approximation Eg). (
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Table 1. The ranges of andd in which the flow is statically unsta- a) 20
ble, with the corresponding bound values of drag coefficient. =16 ]
=16 —
i. J
(a) North Ural k 2.02-2.70 >2.95 w12
W-E d 0.68-0.91 =>1.00 =
Cpy 445-131  3.39 £ 8-
(b) Scandinavia & 2.14-251 >2.95 4 —]
NW-SE d 0.70-0.83 =0.98 .
Cpy 3.10-»1.10 1.30 0
(c) Scandinavia & 1.97-2.76 >2.89
SE-NW d 0.65-0.91 >0.95 b) °7]
Cpr 273127 2.15 T 8-
E
e 6
- -
i3
leads to an overestimation of the drag coefficientiferl.1 = 4
(Up>30 ms™1) and an underestimation at the higher values of 2]
k (lower wind velocities), comparing to the non-hydrostatic i
solution. 0|||||||||||||||||
As seen from Figs3 and4, the model calculations predict 1 2 3 k4
two ranges ofk andd in which Long’s condition of static 20 —
stability c) -
S'16 —|
061 I 1
d— <1 55 12 —
3z (55) Z12
X
is violated, i.e. the closed streamlines (rotors) exist in the g:‘ 8
flow field. These ranges, as well as the corresponding bounc
values ofCpy are presented below. These ranges, as well |
as the corresponding bound valuesyfy are presented in 0

Table 1.

Here the right arrow shows the decrease in the drag coef-
ficient when moving from the left to right boundary of the
];:Ztterl?/rl]cf;zl?\%tii; (;ar (tgﬁi;?;ggg |ps egli(gﬁﬁ;wserﬁ?te?jpfgox Scandinavian mountains. Notations are thg same as irBFilgqr

; SN each case, the results fbry, based on the linear drag coefficient,
the higher values oﬁ relatlve_ to the center of _the peak at Eq. @5), are also plotted as dashed curves.
k~2.2 because the increase in the corresponding valde of
along withk, produces more favorable conditions for over-
turning.) As follows from Eq.9), the lower boundary values ) o ]
k=2.0-2.17 correspond to the flow parameters, for which €= °- Thus the basic flow characteristics in the hydrostatic
the vertical wave length becomes equal to or less than thdmit proves to be aimost insensitive to individual small-scale
tropopause heighll. As it can be seen, the flow is unsta- pecullar_ltles of the relief, i.e. in agreement with the earlier
ble for k>3.0 in all the cases considered. According to the conclusion ofSmith(1977.
calculations, the ranges bfassociated with unstable flow in The quasi-periodical response to the tropospheric value
the stratosphere (not shown here) are close to those for thef the reduced frequency reveals itself distinctly in a flow
troposphere, although somewhat more extensive because tlield. Figures5a—d show the streamlines over the Ural
enhanced static stability provides more favorable conditionsMountains for the first two local maxima (FigSa and c)
for overturning Miles and Huppert1968 Klemp and Lilly, and minima (Figsbb and d) of the curveCpy (k) plotted
1978. in Fig. 3a. Flows in Figs.5a—d correspond to the points

Figures 3a—c and4a—c also show a good quantitative A-D in Fig. 3a and Fig.4a. One can see a smoothing of
agreement between the phases of curves, as well as boundathye flow field within a given rangek, K +1] (Figs. 5a and
values ofk andd for three types of the obstacles which are b, or Figs.5¢c and d) and a sharp increase in the amplitudes
essentially different in their shapes. According to the tableboth in the troposphere and the lower stratosphere, if3fig.
the lower bound values af for the first range ok wherethe  and Fig.5c are compared. Note that, for all the cases
flow is unstable are close to each other for the case&s as  considered, the strongest disturbances are located above
well as to the limiting boundary value=0.67 obtained by the main topographic elevations, in accordance with the
Miles and Hupper(1968, for a semi-elliptical obstacle as hydrostatic model prediction.

ig. 4. Wave drag as a function df for (a), Ural, and(b), (c),
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Fig. 5. Streamlines for hydrostatic solution, Eq29( 30) (dashed), over the Ural Mountains, compared with non-hydrostatic solution,
Egs. (L4, 15) (solid). The flow fieldga—d) correspond to the points A-D in Fia. The bold solid line denotes an internal dividing surface
(tropopause). The individual streamlines for non-hydrostatic and hydrostatic solutions are given with 1-km and 2-km increments in their
undisturbed height, correspondingly. Flow is directed from left to right.

that the flow disturbances in the troposphere can be suffi-
The similar dependence of the flow field on the value of theciently strong in a wide range of atmospheric parameters.
reduced frequency was also obtained for the Scandinaviaonsequently, the usage of linearized conditions on the di-
mountains. For all the reliefs the hydrostatic model predictsviding streamlines, as discussed on page 2, can lead to un-
correct values of stream line vertical shifts but, of course,predictable errors in the resulting field, whose magnitude will
fails to predict a thin structure of the flow formed by short accumulate as the number of layers increases. Thus, the re-
wave components of the resulting field. As an example,sults presented below should be treated as qualitative estima-
Figs. 5a and b shows the flow fields in case b for the first tions of the real effects connected to the interaction of model
and second quasi-resonant peaks, correspondingly (points Ryers.
and B in Figs3b and4b). The flow in Fig.5a corresponds to . : .
: i Here we discuss the results of calculations in the frame-
the troposphere having a thickness of one-half of the corre- . . .
: : : .~work of a three-layer model in which the troposphere is
sponding Lyra scale. This results in an overall downdraft in

. . represented by two layers with an internal dividing surface
the middle and upper troposphere above the windward slop Igced at heig);m <Hy The numerical experimengts have
and the main ridge (see figure). In the vicinity of the sec- L

. . k shown a strong response to the tropopause height for such
ond quasi-resonant peak, local regions of statically unstable . .

. A . . a model as well, with the hydrostatic component of the so-
flow persist over the main ridge in the middle troposphere

. . lution playing a dominant role in this phenomena, although
gnd above thg tropopause (compare Bcgan(_j Fig.5b), as considerable amplification of the flow disturbances associ-
it takes place in the case of the Ural Mountains.

ated with the variation of static stability in the troposphere

can also take place. As an example, FHigshows the de-

6 Three-layer solution pendence of hydrostatic drag coefficient on the incident flow
velocity in the case b for four different lapse rates (9, 8,

The solution given by Eqs2, 30) can be easily expanded 7, and 5K/km) in the upper tropospher#,;z<H), where

to the multi-layer flow by means of the above described tech-H,=7 km, with the same wind velocity range and lapse rates

nique to approximately account for the lapse rate variation inin the bottom and upper layers, as defined by B4),(i.e.

the troposphere. It should be taken into account, howevery=7K/km for O<z<H;, andy=0K/km for z>H. The bold,
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Fig. 7. Drag coefficient for the three-layer hydrostatic solution as a
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Fig. 6. Streamlines over the Scandinavian mountains, case b. No- i
tations are the same as in Figa—d. The flow fieldga), (b) cor- 5j
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right. ]
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solid curve in Fig.7 represents a solution with a constant
lapse rate below the tropopause (7K/km), identical to thatrig. 8. Streamlines over the Scandinavian mountains, case b. No-
shown in Fig.3b. According to Fig.7, the increase in the tations are the same as in Figa—d. The flow fields correspond
lapse rate in the upper troposphere, lowering the static stabilto the point A in Fig.7 near the second quasi-resonant peak gf
ity of the troposphere as a whole, leads to some decrease inlow is directed from left to right. The values of the drag coefficient
the optimal values of at which maximal values of the drag are 20.0 an_d 9.8 for the hydrostatic and non-hydrostatic solutions,
coefficient are attained, in accordance with the linear condi-correspondingly.
tion given by Eq. 47).

As it has been already mentioned, for sufficiently low ve-
locities Up<30ms 1), the major differences between the analysis of such situations, as well, except for the cases in
hydrostatic and non-hydrostatic solutions take place in thevhich the quasi-resonant effects are anomalously strong.
vicinity of the quasi-resonant peaks, where, along with the As an example of such a situation, the flow in the vicin-
hydrostatic component of the solution, the amplification of ity of the second quasi-resonant peak $6£9K/km in the
the short, partially trapped waves takes pladerkshire and  upper troposphere (point A in Fig) is shown in Fig.8.
Warren 1970. One can see from FigS.and 6, that this fea- Comparison of this flow with that shown in Fi. brings
ture reveals itself as a train of partially trapped lee waves into conclusion that it is the rotor motions above the most
the middle troposphere (whose horizontal lengths are close televated part of the relief that plays the dominant role in
the corresponding Lyra scale), as well as in a thin structure othe formation of exceptionally high values of the wave drag
the flow directly above the main tops. The magnitude of the(26.6 H/m). In this example, the intensification of short
short-wave component of a solution generally increases asvaves leads not only to lee waves generation but also to
the static stability in the upper troposphere decreg8esrér very strong up- and downdrafts immediately above the ridge
1949 Berkshire 1975, leading to a somewhat stronger over- downstream from the most intense rotors —the features which
estimation of flow energetics by the hydrostatic model, com-are not reproduced by the hydrostatic model. As a conse-
paring with the two-layer cases described above. Yet, the hygquence, the value of the hydrostatic drag coefficient (20.0)
drostatic approximation seems to be valid for the qualitativeproves to be approximately two times higher compared to
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that predicted by the non-hydrostatic model (9.8). Actu- Berkshire, F. H.: Two-dimensional linear lee wave modes for mod-
ally, the hydrostatic model fails to operate in the vicinity  elsincluding a stratosphere, Quart. J. Roy. Met. Soc., 101, 259-
of the second and third peaks (wind velocity ranges 13.1—- 266, 1975.

14.7ms ! and 8.3-9.4ms!, correspondingly) because the Blumen, W.: A random model of momentum flux by mountain
further intensification of the rotor motions seen in Fi. waves, Geophys. Pub., 26, No. 2, 1-33, 1965. o
leads to an almost complete blocking of the incident flow Claus, A. J.: Large-amplitude motion of a compressible fluid in the

. . atmosphere, J. Fluid. Mech., 19, 267—289, 1963.
throughout the troposphere. Evidently, the turbulence in th avies, H. C. and Phillips, P. D.: Mountain drag along the Gotthard

free atmosphere must play an exceptionally importantrole in- oo .i0n during ALPEX, J. Atmos. Sci., 42, 2093-2109, 1985.

such situations. Drazin, P. G. and Su, C. H.: A note on long-wave theory of airflow
over a mountain, J. Atmos. Sci., 32, 437-439, 1975.

Durran, D. R.: Another look on downslope windstorms, Part I:
The development of analogs to super-critical flow in an infinitely

. . . deep, continuously stratified flow, J. Atmos. Sci., 43, 2527-2543,
The results of the numerical calculations show a strong in-  1gg6

fluence of the effepts associated with the partial reflection ofpyrran, . R.: Mountain waves and downslope winds. In: Atmo-
upward propagating wave energy by the tropopause on the spheric Processes over Complex Terrain, edited by: Blumen, W.,
flow field above the mesoscale mountains for typical atmo- Meteor. Monogr., Am. Met. Soc., 45, 59-81, 1990.
spheric lapse rates and average wind velocities. In the case @&liassen, A. and Palm, E.: On the transfer of energy in stationary
a strong amplification the model predicts extensive statically mountain waves, Geophys. Pub,, 22, No. 3, 1-23, 1961.
unstable regions of decelerated flow located in the middieEnell, C.-F., Steen, A., Wagner, T, Frie, U., Pfeilsticker, K.,
troposphere and the lower stratosphere, above the main to- PIatF, U., Fricke, K.-H.: Occurence of polar stratospheric clouds
pographic elevations, where a strong turbulence can be pro- atKiruna, Ann. Geophys., 17, 1457-1462, 1999,
SRef-ID: 1432-0576/ag/1999-17-1457
duced. . . .
The hvdrostatic approximation proves to be valid for ar]_Gutman, L. N.:  An Introduction to the Nonlinear Theory of

_hehy all Pproxi lon prov vall qu Mesoscale Meteorological Processes, Leningrad, 1969.
t'Fat_'Ve evaluqtlons of the wave drag_, as We" a§ for the pre'Huppert, H. E. and Miles, J. W.: Lee waves in stratified flow, 3.
diction of sFatlcaIIy unstable flow regimes in a wide range of  Semi-elliptical obstacle, J. Fluid Mech., 35, 481-496, 1969.
atmospheric parameters, except for the case of exceptionallylemp, J. B. and Lilly, D. K.: The Dynamics of Wave-Induced
high wind velocities (expressed in terms of equivalent val- Downslope Winds, J. Atmos. Sci., 32, 320-339, 1975.
ues of the reduced frequencyl/asl), as well as close to the Klemp, J. B. and Lilly, D. K.: Numerical simulation of hydrostatic
local wave drag maxima, where its use can lead to substan- mount_&lin waves, J. Atmos. Sci., 35, 78-107, 1978.
tial overestimation of the wave energy associated with short<ozhevnikov, V. N.: A review of the present state of the theory
partially trapped waves. As a whole, the use of the linear ap- c_>f mesoscale oragraphic inhomogeneities of the vertical current
proach leads to a significant (a 2-4 times) underestimation of f'ﬁld' Trk (Tr;d/nz) ngné' gero.kObs&rv.},(saSN 1_52’ 197O-It' |
the energetic characteristics of the overflow procesg &, ozhevnikov, V. Il and bedanokov, . .. Noninearmuiti-iayer

) . p . model for flow over mountains of arbitrary shape, Izv. Atmos.
for typical mesoscale mountain systems. The finite height of

h . iable eff h Oceanic Phys., 29, 780-792, 1993.
the mountain can produce an appreciable effect on the C(-”"Kozhevnikov, V. N. and Bedanokov, M. K.: Wave disturbances over

ditions of flow amplification for sufficiently large. The ex- the Crimean mountains: theory and observations, Izv. Atmos.
treme values of wave drag have a tendency to shift to higher oceanic Phys., 34, 546-556, 1998.

optimal values ofk (or height of the tropopause) compared Kozhevnikov, V. N.: Atmospheric disturbances over mountains,
to those predicted by linear analysis, as the dimensionless Moscow, Nauchnii Mir, 1999.

7 Conclusions

heightd of the obstacle increases. Kozhevnikov, V. N. and Moiseenko, K. B.: Simulation of the flow
The results of analytic theory are to be verified against ex- Over a mountain range with height-varying free-stream charac-
perimental data which is the subject of further work. teristics, 1zv. Atmos. Oceanic Phys., 40, 142-152, 2004.
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