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Abstract. The research objective is the detection of the
mechanism of the water mass exchange through a naviga-
tional channel connecting two adjacent coastal basins. The
research involves the application of a mathematical model in
parallel to in-situ measurements. The hydrodynamic circu-
lation in the greater area of the NW Aegean Sea is modeled
by means of a barotropic circulation model. Wind, Corio-
lis and Tide are the main forcings taken into account. The
flow through the channel is resolved at a subgrid scale by
means of a local open channel flow model. The comparison
between field measurements, recorded during a limited pe-
riod, and the model results supports the model verification.
The study is integrated by an operational application of the
model under various realistic forcings. The results help to
gain a better understanding of the mechanisms regulating the
water mass exchange and the consequent interaction between
two adjacent connected coastal basins. From the case study
of the Potidea channel it is revealed that the water mass ex-
change under mean wind forcing is of the same order as the
one induced by the tidal forcing.

Key words. Oceanography, physical (currents, sea level
variations) – Oceanography, general (numerical modelling)

1 Introduction

Two adjacent coastal basins, connected through a naviga-
tional channel, form a dynamical system characterized by
mutual water and particulate matter exchange and intermix-
ing. An integrated study of such a hydrodynamic system can
be realised with the combination of mathematical modelling
and fieldworks. Successful examples of modelling studies
(i.e. development and application of models for the study
of the hydrodynamic circulation of the seawaters, as well as
the transport of particulate matter) include works published
by Koutitas (1987), Blumberg and Mellor (1987), Valioulis
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and Krestenitis (1994), Drakopoulos and Laskaratos (1999),
Krestenitis et al. (2000), Kourafalou (1999, 2001), Sav-
vidis et al. (2001), Pinardi et al. (2003) and Kourafalou
et al. (2004). Furthermore, field measurements based on
the valuable contribution of electronic oceanographic instru-
ments have also been successfully conducted by Laskaratos
et al. (1990), Krestenitis et al. (2000), Ursella and Gacic
(2001) and Pinardi et al. (2003) for the study of the marine
environment worldwide.

The objective of this paper is to present a procedure for the
study of the water mass exchange that takes place through a
navigational channel connecting two adjacent coastal basins.
This water mass transport may influence the water quality of
the two adjacent gulfs and is related to the depositional prob-
lems of a channel, due to transport of suspended sediments,
which is a very serious issue for the navigation through a
channel. This environmental and morphological influence,
with its socioeconomic consequences, constituted a basic
reason for the initial study of this water mass exchange –
as a first step/approach to a general study, which should fol-
low. As a case study, the water mass exchange through the
Potidea Channel, connecting the Toroneos and Thermaikos
Gulfs, in the North Aegean Sea, (East Mediterranean Sea) is
studied in detail for the first time, by the use of mathematical
modelling combined with field measurements The two gulfs
are depicted in Fig. 1, which also shows the whole area and
the bathymetry of the North Aegean Sea.

The water depths of the greater basin vary from very shal-
low along the coastal zones up to maximum depths reaching
1350 m. However, the main part of the two gulfs is char-
acterized by relatively shallow waters. Axios, Loudias, Ali-
akmonas and Pinios are the main rivers in the area, flow-
ing into the west part of the Thermaikos Gulf. During the
last decades, the river discharges decreased steadily due to
the operation of hydroelectric plants and irrigation projects.
Minimal river discharges of the order of some m3/s have been
observed during the summer period and recorded between
1997 and 1998 by Karamanos and Polyzonis (1998). Be-
sides, according to Krestenitis et al. (1997), the rivers of the
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Fig. 1 The Northern Aegean Sea the modeled area, and the Potidea channel. 

Fig. 1. The Northern Aegean Sea the, modeled area and the Potidea
channel.

west coasts of Thermaikos, mainly influence the north part
of the inner Thermaikos Gulf, while they can hardly affect
the east coasts, where the channel lies. It is also important
to note that there are not significant rivers or other sources of
fresh water input in both areas, close to the west and east side
of the channel. Consequently, the influence of the river water
discharges, especially to the summer water circulation in the
Thermaikos Gulf, is not important, and is therefore neglected
in the present study. A more detailed illustration of the study
area of the two adjacent gulfs and the channel, connecting
the two basins, is given in Fig. 2.

The Potidea Channel is an artificial navigational channel
connecting the Thermaikos and Toroneos Gulfs. This chan-
nel allows the water mass exchange and the consequent trans-
port and intermixing between the two adjacent gulfs. For the
estimation of the geometrical characteristics of the channel,
field measurements are made. The channel cross section is
approximated with a trapezoid. The channel length is 1100 m
(L=1100 m) while the mean channel width on the surface is
taken equal to 40 m (W=40 m). The depth of the channel
varies between 3.5 and 5.5 m, with a mean value of 4.5 m
(D=4.5 m). A sketch of the typical cross section of the chan-
nel is given in Fig. 3.

At the beginning of the present work, a current recorder
was installed at a representative cross section of the chan-
nel in order to record current velocity and direction for cer-
tain time periods. Repeated model runs, under specific wind
forces, corresponding to the real meteorological conditions
during the field measurements were then conducted. The
tidal influence was modeled in parallel. The results of the
model in combination with the field data ensured the validity
of the particular methodology. The study was integrated by
the application of the model for all the wind directions (eight
directions), and the mean wind velocity. The tidal signals
that reach the basins of Thermaikos and Toroneos Gulfs are
semidiurnal, with a mean tidal range equal to 0.25 m. Fur-
thermore, barometric pressure gradients between the channel
ends are obviously negligible due to the small extension of
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Fig. 2 The greater study area with the two gulfs and the particular area of the Potidea channel 

 (the arrow marks the channel) 
 
 

        

 
 

Fig. 3 Geometrical characteritics of a typical cross section of the channel. 

Fig. 2. The greater study area with the two gulfs and the particular
area of the Potidea channel (the arrow marks the channel.

the channel. The seawater density differences could not con-
stitute an important reason for the generation of the circula-
tion and water mass exchange through the channel because
the eastern part of the Thermaikos Gulf has similar temper-
ature and salinity characteristics as the western part of the
Toroneos Gulf. Therefore, it is expected that the sea level
difference between the two adjacent gulfs is mainly caused
by the wind and tidal forcing.

Consequently, we consider the hydrodynamic circulation
of the channel area as barotropic, even if the circulation in
the extended area of the whole basin is baroclinic. Thus in
this study we use a 2-D hydrodynamic model.

More specifically, the numerical modelling of the hydro-
dynamic conditions over a large portion of the sea area is
used to compute the velocity and surface elevation field over
the two gulfs and the surface elevation differences across the
channel. The sea level difference is then used for the study of
the water transport through the channel and the consequent
water mass exchange between the two gulfs.

2 Design of the modeling approach

The overall modelling approach consists of two discrete
steps. The first step refers to the hydrodynamic modelling of
the large scale of the North Aegean Sea. For the computation
of the water circulation over the greater basin (containing the
two gulfs), the wet part of the channel is considered as dry
land. So, the free surface elevation on the two sides (right
and left) from the narrow part of the land, where the channel
lies, is initially computed.

The next step refers to the small scale of the channel. At
this step the channel is no longer considered as land. For
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the hydraulic computation of the open channel, the sea level
difference/variation between the two ends constitutes the key
point for the computation of the mean velocity of the cur-
rents, as well as the flow rate through the channel. The above
approach is based on the fact that the feedback of the mass
exchanged through the channel on the formation of the cir-
culation patterns is considered as negligible. The modelling
work is supplemented by in-situ measurements that support
the model results. The description of the hydraulics and the
modelling approach, as well as the field measurements, is
given in the following paragraphs.

As the main hydrodynamic parameter, regulating the wa-
ter exchange between the two basins through the connecting
channel, is the free surface elevation; the hydrodynamic cir-
culation in the two shallow coastal basins is described by the
application of a 2-D H hydrodynamic model. The governing
equations, based on the well-known principles of momentum
and mass conservation and corresponding to a homogeneous
medium, are given below:
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whereh is the water depth,U andV are the depth-averaged
horizontal velocities,ζ is the surface elevation,f is the Cori-
olis parameter (here 10−4 s−1), τsx andτsy are the wind shear
stresses, with

τsx=ρ×Cs×Wx×

√
W2

x +W2
y

τsy=ρ×Cs×Wy×

√
W2

x +W2
y .

Wx andWy are the wind velocity components,Cs is the sur-
face friction coefficient with values of the order of 10−6 (here
2×10−6), τbx andτby are the bottom shear stresses, with

τbx=ρ×Cb×U×

√
U2 + V 2

τby=ρ×Cb×V ×

√
U2+V 2,

where the bottom friction coefficient is computed according
to the following Von Karman relationship

Cb=[0, 4/ln[h/zo]−1)]2,

where zo is the height of bed roughness (zo=1 cm), νh is
the horizontal eddy diffusion coefficient related, according
to Smagorinsky, to the local vorticity gradient,ρ is the mean
seawater density, equal to 1025 kg/m3, andg is the gravity
acceleration.

For the wind-generated circulation, the Somerfield radia-
tion boundary condition is adopted on the south and east open
sea boundaries. For the case of the tidal-generated circula-
tion, the total surface elevation along the south open bound-
ary is estimated as a superposition of an incoming periodical
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Fig. 2 The greater study area with the two gulfs and the particular area of the Potidea channel 

 (the arrow marks the channel) 
 
 

        

 
 

Fig. 3 Geometrical characteritics of a typical cross section of the channel. 
Fig. 3. Geometrical characteritics of a typical cross section of the
channel.

signal and a radiated one, while a free radiation condition
was adopted on the east open sea boundary. The flow field
is discretised horizontally by a 70×67 grid, with mesh size
Dx=2.5 km. The time step isDt=10 s, on the grounds of the
well-known Courant Criterion (Dt<Dx/

√
2gh, whereh is

the maximum water depth). A classical explicit difference
scheme on a staggered grid is used for the solution of the
mass and momentum conservation equations.

Following the computation of the surface level elevation
differences on the two ends of the channel, the mean velocity
um and the rate of the water mass exchange through the chan-
nel Qm are computed by the well- known Manning equation,
which, for the case of steady uniform flow in an open chan-
nel, takes the following form:

um=
1

n
×R2/3

×J 1/2

and

Qm=A×um,

whereR is the hydraulic radius,J the energy gradient or
the free surface slope of the flow (equal to the1ζ/L, i.e.
the computed elevation difference between the two ends of
the channel divided by the length of the channelL), n is an
empirical bed roughness coefficient, andA is the area of a
cross section of the channel.

Fieldworks were also made in order to support the over-
all modelling study. More specifically, a current recorder
was employed for the in-situ measurements of the current ve-
locity and direction. The instrument was installed under the
road bridge, where the water depth isD=3.7 m. This specific
cross section is considered as a representative typical section
of the channel. The instrument was placed 1 m below the sea
surface. Both the velocity and the direction of the current
are recorded. These data allowed for the computation of the
water mass exhange between the Thermaikos and Toroneos
Gulfs through the Potidea Channel.

3 In-situ measurements – application of the model

3.1 In-situ measurements

The specific study was focused on the modelling of the wa-
ter mass exchange through channels connecting two adjacent
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  Fig. 4. (a) Current velocity versus time (19 September 2002),(b)
Current direction versus time (19 September 2002).

coastal basins, with an application to the channel of Potidea
(NW Aegean Sea). The collection of a short data set was
considered as a useful tool for the calibration/validation of
the modelling results.

The first set of the field measurements was collected on 19
September 2002 between 14:00 and 20:00 while the second
one was on 22 September 2002 between 12:00 and 18:00.
During the first day of the field measurements the wind was
northwest (NW) while during the second day the wind was
southeast (SE). The recorded time series are depicted in the
following diagrams (Figs. 4a and 4b, 5a and 5b). The di-
agrams show the current velocity and the current direction
versus time.

As far as the current direction is concerned, it is confined
along the channel axis with values from 75 to 275◦. Sud-
den changes from the first to the second direction are due to
the changes in the sea levels on the channel ends. Consider-
ing that the 0◦ corresponds to a southerly current, i.e. current
heading to the north, the following observations are made:
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  Fig. 5. (a) Current velocity versus time (22 September 2002),(b)
Current direction versus time (22 September 2002).

Fig. 4b shows that during the first day of the field measure-
ments the current direction, generally varies between 75◦ and
275◦, indicating that the current changes from east to west
and vice versa. However, during most of this time the water
moves from west to east. Figure 5b shows that during most
of the time, corresponding to the second day of the field-
work (particularly during the first 4.5 h) the current direction
is around 270◦, indicating that the current is heading to the
west (i.e. the water moves from east to west). Only the last
1.5 h of the measurement, the recorded current direction is
around 75–80◦, indicating that the current is heading to the
east.

Concerning the intensity of the current velocity during the
field measurements, the following observations can be made:
for the first group of the recorded data, the current veloc-
ity reaches the maximum value of 0.18 m/s, while the mean
values, corresponding to the main sub-periods at which the
current direction remains the same, vary around 0.08 m/s
(Fig. 4a in combination with Fig. 4b); for the second group of
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Fig. 6. Depth average currents from the model runs due to NW
winds (19 September 2002).

the recorded data the current velocity reaches the maximum
value of 0.45 m/s while the mean value, corresponding to the
first 4.5 h, is≈0.20 m/s, and the mean value, corresponding
to the last 1.5 h, is≈0.11 m/s (Fig. 5a in combination with
Fig. 5b).

Summarizing, during the 6-h period of the first day of the
fieldwork, multiple successive changes in the current direc-
tion (up to 6 to 7 times) were observed while during the 6-h
period of the second day of the fieldwork, only one change
in the current direction was observed. This strong time vari-
ability of the currents’ direction in the channel, especially
during the 6-h period of the first day of the measurements,
could not be due to the tidal influence, since the tide in the
region is semidiurnal, which means that the current changes
direction only once during this time period. So, it is obvious
that the above aforementioned variability of the currents is
due to sudden changes in the sea level on the two channel
ends, which are caused mainly by the wind forcing.

3.2 Application of the hydrodynamic model

Surface wind data are drawn from a valid scientific database
provided onhttp://www.poseidon.ncmr.gr(as well as onhttp:
//www.in.gr). In detail, north and northwestern weak winds
(NW) of ≈3.5 m/s were blowing during the first day of field
measurements while moderate southeastern winds (SE) of
≈7 m/s were blowing during the second day of fieldworks. In
this study only the mean wind forcing values and direction,
corresponding to the period of the in-situ measurements,
were taken into account. The general patterns of the cur-
rent velocity and elevation fields, computed from the model
runs, just after steady-state conditions have been reached, are
shown in Figs. 6, 7, 8 and 9. In detail, Figs. 6 and 8 depict
the depth average currents’ velocity in the basins extending
around the channel due to NW and SE winds, respectively.
Figure 7 shows a general set down of the sea surface of the

 

 

 

Fig. 7. Surface Elevation field due to northwestern winds (19
September 2002).

two adjacent basins due to NW winds, while Fig. 9 shows a
general set up of the sea surface due to SE winds.

The surface elevation difference1ζ , (difference in the
free surface elevation level) between the two openings of
the channel was then computed from the model simulation.
Based on this information the following steps are made for
the estimation of the velocity and the water mass exchange
between the two gulfs:

a) – The cross sectionA of the channel is computed
from the trapezoid geometry and found equal to
135 m2.

– The wet perimeter,5, of the channel is computed
and found equal to 42 m.

– The hydraulic radius,R=A/5, of the channel is
finally found 3.2 m.

b) The energy gradientJ is taken equal to the gradient of
the free surface1ζ/L, produced by the mathematical
model of the circulation of the whole basin comprising
the two gulfs. More specifically, the difference in the
surface elevation between the two ends of the channel
is taken as1ζ=ζT o−ζT h, where the symbolT o denotes
the Toroneos Gulf and the symbolT h denotes the Ther-
maikos Gulf. The simulations for external forcing of
the northwestern winds of a mean magnitude of 3.5 m/s
results ino an elevation difference of1ζ=−0.67 mm in-
dicating seawater movement from the Thermaikos to
the Toroneos Gulf. Taking into account the length
of the channelL=1100 m, it is derived that the gradi-
ent J is equal to−0.00067/1100 orJ=−0.61×10−6.
The model application for the southeastern winds of a
mean magnitude 7 m/s results in an elevation difference
of 1ζ=+0.30 cm (+3.0 mm), indicating seawater move-
ment from the Toroneos to the Thermaikos Gulf. Tak-
ing into account the length of the channelL=1100 m, it

http://www.poseidon.ncmr.gr
http://www.in.gr
http://www.in.gr
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Fig. 8. Depth average currents from the model runs due to SE winds
(22 September 2002).

 

 

 
 

 

Fig. 9. Surface Elevation field due to southeastern winds (22
September 2002).

is derived that the gradientJ is equal to 0.003/1100 or
J=2.72×10−6.

c) According to bibliographical references, for unlined
Earth channels the value of the coefficient/parametern

varies between 0.18 and 0.025 s/m1/3 (Chadwick and
Morfett, 1998) i.e. values ofk between 5.555 and
40 m1/3/s (k=1/n). In Ganoulis (1983) it is found that
k generally varies between 12 and 100 m1/3/s while for
stable canals with seafloor material of gravel or sand,
or silt and clay, the values ofk vary between 30 and
50 m1/3/s. For the present study,n was taken equal to
0.025 s/m1/3.

Replacing the above computedn, R, J values in the Man-
ning formulae, the mean current velocity in the channel,
which corresponded to the wind direction and velocity pre-
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Fig. 10 Flow rate in the channel during a tidal cycle (the time is from the start of simulation) 

 

Fig. 10. Flow rate in the channel during a tidal cycle (the time is
from the start of simulation).

vailing during the in-situ measurements, were computed as
follows:

uNW=
1

n
·R2/3

·J 1/2
=40×3.20.666

×0.000000610.5
=0.068 m/s

uSE=
1

n
·R2/3

·J 1/2
=40×3.20.666

×0.000002720.5
=0.143 m/s,

whereuNW is the mean current velocity due to northwesterly
winds anduSE is the mean current velocity due to southeast-
erly winds.

As it is shown, the computed values of the current veloc-
ity along the channel, due to wind forcing for NW and SW
winds (0.07 m/s and 0.14 m/s, respectively), are comparable
to the field conditions during the period of the measurements
(mean values varying around 0.08 m/s for the first case and
0.2 to 0.11 m/s for the second case, respectively). The above
current values, computed from the model runs, correspond to
steady-state conditions, which for the first case was 158.6 h
(6.6 days) while for the second case was 64.7 h (2.7 days).
Of course, the time required for the hydrodynamic to reach
quasi-steady-state conditions cannot be precisely determined
but we choose to look at the relative change inKt of the
current kinetic energyK, whereKt=(d/dt (K))/K. In this
application, it was considered that a steady-state condition
was reached as theKt value became less than 1‰. It is obvi-
ous that taking into account another value ofKt , bigger than
the previous one, steady-state conditions would have been
reached in a shorter time period.

It should be noted that tidal influence, was not taken into
account, so far. This influence is studied separately in the
next section.

For the estimation of the water mass exchange (flow rate),
under steady-state conditions and wind forcing the one that
prevailed during the field measurements, the following com-
putations are made:

QNW=A×uNW⇒Q=135×0.068⇒Q=9.18 m3/s

QSE=A×uSE⇒Q=135×0.143⇒Q=19.37 m3/s.
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Table 1. Time,Tek , required for the hydrodynamic circulation to reach steady-state conditions, Elevation Difference,1ζ , between the two
channel openings, Energy gradientJ , Current VelocityU and Flow RateQ, in the channel for different winds.

Wind direction Tek 1ζ (m) J=1ζ/L U (m/s) Q (m3/s)

North winds 135.3 h +0.0039 +0.0039/1100 +0.164 +22.140
South winds 135.0 h −0.0035 −0.0035/1100 −0.155 −20.925
East winds 172.5 h +0.0088 +0.0088/1100 +0.246 +33.210
West winds 149.4 h −0.0076 −0.0076/1100 −0.228 −30.780
North east winds 140.3 h +0.0099 +0.0099/1100 +0.261 +35.235
North west winds 138.3 h −0.0026 −0.0026/1100 −0.133 −17.955
South east winds 64.7 h +0.0030 +0.0030/1100 +0.143 +19.305
South west winds 138.0 h −0.0086 −0.0086/1100 −0.243 −32.805

3.3 Modelling the hydrodynamics due to the tidal effect

As it was already pointed out, the tide in the region is semid-
iurnal, which means that the successive current changes
recorded during the 6-h period of the in-situ-measurements,
are not related to the tidal influence. However, the water mass
exchange due to the tidal effects was calculated by a separate
numerical integration of the model.

The model runs were based on a mean tidal range of
0.25 m inciting along the south open sea boundary line of
the computational domain. Current velocity and water mass
exchange (flow rate) referring to a full tidal cycle is given
in Fig. 10. The positive sign indicates flow from the Toro-
neos to the Thermaikos Gulf (westward flow) while the mi-
nus sign indicates flow from the Thermaikos to the Toroneos
(eastward flow). The above diagram in Fig. 10 shows that the
water mass exchange (flow rate) varies between≈−35 m3/s
and+35 m3/s during the time of a tidal cycle, while the mean
values for both the directions are of the order of 20 m3/s. The
maximum values of the flow rate correspond to current veloc-
ities of the order of 0.30 m/s (=40/135) with mean values of
0.15 m/s.

3.4 Modelling the hydrodynamics due to various wind di-
rections

After the comparative analysis of in-situ measurements and
numerical models, all the possible cases of wind directions
were examined. This computational stage was considered
as supplementary work of the study, so that the water mass
exchange, caused by different winds blowing over the area,
would be estimated. The tidal forcing was not included in
the simulations.

The numerical results produced by the model runs for the
eight basic wind directions, i.e. N, S, E, W, NE, NW, SE, SW
winds, and mean wind velocity 7 m/s, are presented in Ta-
ble 1 (n=0,025,R=3.2 m andJ=1ζ/L). This table presents
the timeTek necessary for the circulation to reach steady-
state conditions, the elevation difference between the two
channel ends1ζ , the energy gradientJ , the mean current
velocityU and the water mass exchangeQ.

Table 1 shows that the minimum value of the water mass
exchange between the two gulfs, under the wind forcing of
7 m/s, is≈18 m3/s while the maximum one is about 35 m3/s.
Of course the direction of the mass exchange also varies, de-
pending on the wind direction as well as the particular time
period of the tidal cycle. In more detail, the positive sign in-
dicates water movement from the Gulf of Toroneos towards
the Gulf of Thermaikos while the minus sign indicates water
movement from the Gulf of Thermaikos towards the gulf of
Toroneos.

4 Summary and conclusions

A preliminary study of the seawater mass exchange through a
navigational channel connecting two adjacent coastal basins
is realised. The application concerns the Channel of Potidea
that connects the Thermaikos and Toroneos Gulfs, in the
North Aegean Sea. Both field measurements (although for
short time periods) and numerical experiments have been
performed and combined. The recorded field data are com-
pared to the model output for the calibration and the final ver-
ification of the model. Based on the verified prognostic abil-
ity of the modelling efforts, the study is integrated through
the model application for various wind forcings over the ex-
tended area of the two gulfs. Using the hydrodynamic infor-
mation of the sea level variations on both channel ends, the
estimation of the water mass exchange between the two gulfs
follows. The research showed that the water mass exchange
through the channel, due to the wind forcing, varies from
18 to 35 m3/s. The results refer to steady-state conditions
and different wind directions, with mean wind speed equal to
7 m/s. It was also found that the maximum discharge value
due to the mean tidal forcing is of the order of 35 m3/s, with
a mean value of the order of 20 m3/s. The detailed hydrody-
namic study, based on the numerical modelling, revealed that
the water mass exchange under mean wind forcing is of the
same order as the one induced by the mean tidal forcing, for
the specific geographical area and the prevailing meteorolog-
ical conditions.

The above-presented methodology could have a gen-
eral applicability and it is useful for the investigation of
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the influence of different forcing factors affecting the wa-
ter exchange through narrow channels between large semi-
enclosed basins.
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