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Abstract. A simple model of ion fluctuations (ion acoustic
and ion cyclotron fluctuations for example) driven by an elec-
tron current which leads to intermittent fluctuations when the
linear growth rate exceeds the wave packet dispersion rate is
analized. The normalized fluctuation amplitudeeφ0/T can
be much larger than the mass ratio(me/mi) level predicted
by the conventional quasilinear theory or Manheimer’s the-
ory (see references in this document), and whereφ0 repre-
sents the amplitude of the main peak of the ion fluctuations.
Although the ion motion is linear, intermittency is produced
by the strong nonlinear electron response, which causes the
electron momentum input to the ion fluctuations to be spa-
tially localized. We treat the 1-D case because it is espe-
cially simple from an intuitive and analytical point of view,
but it is readily apparent and one can put forward the conjec-
ture that the effect occurs in a three dimensional magnetized
plasma. The 1-D analysis, as shown in this manuscript will
clearly help identify the subtle difference between turbulence
as conventionally understood and intermittency as it occurs
in space and laboratory plasmas.

Keywords. Meteorology and atmospheric dynamics (Tur-
bulence) – Ionosphere (Wave-particles interactions) – Space
plasma physics (Waves and instabilities)

1 Introduction

1.1 Historical background

Isolated coherent fluctuations have been observed in both
physical and simulation plasma. When such fluctuations are
formed randomly in the presence of lower level background
turbulence, the turbulence is called intermittent. A quantita-
tive measure of intermittency is the Kurtosis, which is a mea-
sure of the flatness of the probability distribution function
(see for example Frisch, 1995). There are many examples
of such intermittent fluctuations, but here we shall be mainly
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interested in a very simple example, namely 1-D ion fluctu-
ations driven by an electron current (in the ion acoustic and
ion cyclotron regimes), illustrating the development of large
and coherent ion fluctuations in a current driven plasma. Our
preliminary studies indicate that the 1-D effects dealt with
here persist when extended to the case of a 3-D plasma in
a magnetic field (see for example Hamza, 1988, 1993). Al-
though the 1-D model is limited in direct application to phys-
ical problems, this deficiency is more than compensated for
by the relative simplicity of the analytic treatment and the
more definitive and unambiguous nature of the relevant com-
puter simulations. It is also illuminating that even in this
simplest of cases, the conventional theoretical understanding
is wrong.

Sato and Okuda (1979,1981) were apparently the first to
observe such fluctuations in numerical simulations. Barnes
et al. (1985) obtained similar results but provide much more
detailed phase space information. Berman et al. (1986) ex-
tended the work to include additional diagnostics and to show
that such fluctuations could occur in linearly stable plasma.
These simulations were motivated, in part, by satellite obser-
vations (see for example Koeskinen et al. (1988) and Mozer
et al. (1982)) of isolated large amplitude fluctuations in au-
roral plasma thought to be driven by an electron current (see
for example Mozer et al. (1982)). More recently a number of
satellite observations from Freja and FAST have clearly iden-
tified intermittent, spatially localized ion fluctuations (see for
example Potelette et al. (2004) and references therein).

In particular we are interested in the early stages of the
simulations in which the ion acoustic wave is linearly un-
stable. In these simulations, isolated wave-like fluctuations
occur at an early stage when the amplitude is low and the
ion motion is clearly linear. These fluctuations ultimately
grow to very large amplitude, trap ions, and turn into BGK
holes (see Bernstein et al. (1957)). This later phase of
the simulation seems to be well understood (see for exam-
ple Dupree (1986) and references therein). The question
we address here is the nature of early time isolated low
amplitude fluctuations.
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Figure 1: A symmetric wave Packet illustration with maxima and minima.
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Fig. 1. A symmetric wave Packet illustration with maxima and min-
ima.

There are essentially two questions to be addressed. First,
how can the fluctuations grow to the large amplitudes,
of order e|φ0|/T ≈1 (noting that large amplitudes can
exceed the value of one), observed in the simulations
when the conventional analysis predicts amplitudes of order
e|φ0|/T ≈me/mi or less? (φ0, which is negative in the case
of interest, is the value of the potentialφ(x) at its maximum
amplitude (see Fig. 1),T is the electron temperature, and
the other symbols have their usual meaning.) And secondly,
what is the physical nature of the localized ion fluctuation?

1.1.1 Conventional answers

The first question involves electron free energy (or momen-
tum) and the relaxation of the electron distribution func-
tion by the potential fluctuations (see for example reference
Dupree, 1986). Historically there have been two treatments
of this question depending on the ratio of the fluctuation au-
tocorrelation rateγc to the electron reflection or trapping rate
γe. Whenγc�γe, quasi linear theory applies and predicts
that the ultimate fluctuation level (in a closed system) is very
small, of ordere|φ0|/T ≈me/mi or less. Manheimer (1971)
has analyzed the other limit,γc�γe. His analysis predicts
that the ultimate value of the potential is of the same order as
the previous case.

That these two seemingly disparate approaches should
both predict very small final fluctuation amplitude is not sur-
prising. In both cases, the growth of the ion fluctuation is de-
termined by the momentum lost by the relaxation (“plateau-
ing”) of the electron distribution function over a small frac-
tion of its width in velocity space, i.e. of order(me/mi)

1/2

or less. Quasilinear theory and the Manheimer theory treat
a problem in which ion fluctuations are closely packed and
fill the physical space. When the momentum lost by the elec-
trons is uniformly allocated to the closely packet ion fluctu-
ations to determine the amount absorbed by each fluctuation
and therefore the amplitude of each fluctuation, one obtains
the amplitude estimates given above.

1.1.2 The intermittency argument

Consider, however, the case in which the ion fluctuations are
not closely packed. It is obvious that if the same amount
of lost electron momentum is allocated to a smaller num-
ber of isolated ion fluctuations, the amplitude of each fluc-
tuation must necessarily be larger. Furthermore there is an
additional effect that leads to an even greater enhancement
of fluctuation level. The momentum imparted to the ions
comes from the relaxation of the electron distribution func-
tion over a velocity interval,1ve, equal to the trapping width
(e|φ0|/me)

1/2. In the isolated fluctuation case the potential
is no longer limited to a small value and as it increases so
does the electron trapping width and therefore the electron
free momentum available to drive the ion fluctuations. The
amplitude pulls itself up by its bootstraps.

Following the conventional approach (see for example
Drummond, 1965; Kadomtsev, 1965), one can make an ap-
proximate estimate of the final amplitude for isolated fluctua-
tions by generalizing Manheimer’s argument. We consider a
plasma which initially contains an electron current and an ar-
ray of negative potential pulses a distanced apart (see Fig. 1).
In the rest frame of the potential pulses, an electron whose
speed is less than the trapping width1ve≈(e|φ0|/me)

1/2

will be reflected by the potential pulses. Electrons moving
in both directions will be reflected, but because there is a
current, there will be a net momentum loss by the electrons
and therefore a net momentum gain by the ion pulses and
consequently the ion fluctuations will grow. As the pulse po-
tential grows so does the maximum electron speed,1ve, that
can be reflected. If the potential is growing exponentially
at the rateγ , then during each successive time interval of
lengthγ −1 the potential increases by a factor ofe times its
previous value and a whole new additional group of electrons
can be reflected. This process will continue until the bulk of
the electrons being reflected by a pulse have been previously
reflected by another pulse. This would require that in one
time interval,γ −1, a reflected electron traveled a distanced.
Thus the fluctuations will cease growing whenγ −11ve≈d.
If the fluctuations are not isolated, but consist of an infinite
wave train, thend is set equal to the reciprocal wavenumber
k and one obtains Manheimer’s criterion. On the other hand
sinceφ0∝1v2

e , makingd>k−1 enhances the potential fluc-
tuation over the Manheimer value by the factor(kd)2. By
makingd sufficiently large one may obtain fluctuations with
e|φ0|/T ≈1, or larger, as convincingly demonstrated by the
simulations.

The preceding argument shows how isolated fluctuations
can grow to large amplitude, but it does not explain why
a physical system produces isolated (as opposed to closely
spaced) fluctuations in the first place. This feature can also
be understood from the preceding arguments. A fluctuation
grows until the electrons it reflects have been reflected by
another fluctuation. Thus growing fluctuations compete with
each other for electron momentum. But the larger fluctua-
tions have an advantage in this contest and can grow at the ex-
pense of the smaller ones. The larger fluctuations can reflect,
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and are therefore driven by, electrons whose speeds are too
great for them to have been reflected by smaller fluctuations,
so the growth of the big fluctuations is not inhibited by the
smaller ones. On the other hand, the converse is not true,
the larger fluctuation do shadow the smaller ones and de-
prive them of momentum. Therefore as time evolves, only
progressively larger fluctuations survive, and these, of neces-
sity, must be progressively further apart since otherwise they
would have shadowed each other at an earlier epoch in their
growth and could not have grown to large amplitude. It is a
case of “survival of the fittest”.

1.1.3 The ion acoustic wave packet case

The point of the preceding discussion is that if isolated fluc-
tuations exist, one can explain their apparent anomalously
large amplitude. The open issue, to be addressed here, is to
explain the nature of the observed ion fluctuations when they
still have small amplitude, are localized, and have a nega-
tive potential peak. Not only is the negative potential peak
observed in the auroral and simulation plasma, but it is the-
oretically necessary in order to reflect electrons and thereby
obtain a momentum input to the fluctuations to make them
grow. There are several obvious candidates for the observed
fluctuations. As mentioned earlier, BGK holes qualify, but
we are interested in amplitudes which are too small to trap
ions. Another candidate, frequently proposed in the litera-
ture, are Kd.V solitons. However these fail on several counts.
First the compressive Kd.V soliton has a positive potential
peak, not the required negative peak. Also the Kd.V soliton
propagates with a speed that is amplitude dependent contrary
to the results of the simulations. Finally the localization of
the compressive Kd.V soliton is achieved by balancing the
dispersion against ion nonlinearities. However, the simula-
tions show localized fluctuations at small amplitudes where
the ions are linear.

Another possibility is a linear wave packet. This candidate
would also appear to fail since dispersion will cause such a
packet to decay in amplitude and spread out in space at a
rateγd which is rapid compared to the observed lifetimes in
the simulations. Nevertheless it is possible to make the lin-
ear wave packet work. The principal result of this paper is
that when the linear growth rate exceeds the dispersion rate,
an electron nonlinearity (as contrasted to an ion nonlinearity)
will counteract the effects of dispersion and keep the fluctu-
ation localized.

The physical basis of this effect is quite simple, although
unexpected. In Sect. 2 we consider electron reflection and
trapping in a growing wave packet consisting of a central
peak with progressively smaller ”foothills” (lower amplitude
wave packet peaks, see Fig. 1) on either side of the main
peak. We show that, although electron reflection occurs at
all peaks including the main peak, the net momentum in-
put to the ions occurs only around the main peak. Since,
for linear ions, fluctuation amplitude is proportional to mo-
mentum content, this means that the electrons drive only
the main peak of the wave packet. There is no momentum

input by the electrons to the “foothills” since the input by re-
flected electrons is canceled by electrons trapped between the
“foothills”. As the electrons feed momentum into the main
peak, dispersion will feed momentum into the foothills caus-
ing their amplitude to grow. However, if electron momentum
is fed into the main peak faster than it is lost by dispersion,
the main peak will grow.

1.1.4 Linear theory of ion acoustic instability

The linear theory of ion acoustic waves is elementary and
well known so we shall only quote the results here. For a
wave of frequencyω and wavenumberk, the real part of the
appropriate dielectric function forvi�ω/k�ve is

εR(k, ω) = 1 + (k2λ2
D)−1

− ω2
pi/ω

2 (1)

whereεR, λD, andωpi are the real part of the dielectric func-
tion, the electron Debye length and the ion plasma frequency
respectively. SettingεR=0 produces the dispersion relation

ω2
k = k2c2

s (1 + k2λ2
D)−1 (2)

wherecs=ωpiλD=(T /mi)
1/2 is the sound speed. When the

imaginary part ofε is small, the linear growth rate of ion
acoustic wavesγ` is given by

γ` = (π/2)kcsv
2
ef

′

0e(u) (3)

where ve=λDωpe is the electron thermal speed,
f ′

0e(u)=(∂/∂u)f0e(u), and f0e(u) is the unperturbed
electron distribution function evaluated at the phase speed of
the wave packetu=ω/k.

The broadening of a linear wave packet due to dispersion
is treated in reference (Jackson, 2000), but the essential re-
sults are easy to derive by approximate arguments. We de-
fine the dispersion rateγd as one-half the rate of increase
of the logarithm of the width of the wave packet. For a
wave packet containing a wave number spread of1k, the
spread in group velocity is1k(∂2ωk/∂k2). If the spatial
width of the wave packet isπ/1k the dispersion rate will
beγd≈k2(∂2ωk/∂k2)/2π . Using Eq. (2), we find

γd ≈
3

2
(kλD)3ωpi/π . (4)

1.1.5 On the evolution of a linear ion acoustic wave packet

In the absence of any driving mechanism, the wave packet
envelope will broaden at the rate 2γd . The total energy and
momentum of the wave packet is proportional to the spatial
integral of the potential squared over the length of the enve-
lope. To conserve energy and momentum the amplitude of
the envelope will have to decrease at the rateγd . This means
that dispersion will cause momentum to be lost (and spread)
from the main peak at the rate 2γd .

We show in Sect. 3) that electrons whose distribution func-
tion in the absence of a wave packed isf0e(v) will transfer
momentum to a wave packet whose peak potential isφ0 at
the rate

Ṗ = ω2
peπ

−1f ′

0e(u)φ2
0 (5)
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whereu is the phase velocity of the wave packet. The rate
of total momentum lossṖ depends only on the maximum
potentialφ0, not on the shape or length of the wave packet.
However, as we have explained, the lost electron momentum
is all deposited in the spatial region containing the main peak
of the wave packet. The foothills get no net momentum di-
rectly from the electrons, they get it only through dispersion.

If all the momentum lost from the electrons goes into the
main peak, the rate of change of fluctuation momentum,Ṗ ,
can be related to the rate of change of potential using the
standard relation

Ṗ =
k2

4π

∂ε(k, ku)

∂u

d

dt

∫
dxφ2 (6)

where the integral is over the width of the main peak. Us-
ing k2∂ε/∂u=2(csλ

2
D)−1 and

∫
dxφ2

≈(π/2k)φ2
0 this may

be written

Ṗ = (2πcsλ
2
D)−1 ∂

∂t

∫
dxφ(x)2

≈ (4kcsλ
2
D)−1 d

dt
φ2

0 . (7)

Equating (5) and (7) and solving forγ=φ−1
0 (dφ0/dt) we ob-

tainγ=γ`.
As explained earlier, growth due to electron reflection is

not the only thing affecting the main peak. It is also losing
momentum and amplitude due to dispersion at the rateγd .
Therefore the amplitude of the main peakφ0 will grow at the
approximate rate

γ ≈ γ` − γd . (8)

For the amplitude of the main peak to have a positive growth
rate (γ>0) it is necessary that

γ`/γd > 1 . (9)

The ratesγ` andγd both depend on the average wavenumber
k. The ratioγ`/γd is proportional tok−2. Clearlyγ`/γd can
be made arbitrarily large by makingk small enough. On the
other hand the growth rateγ given by Eq. (9) decreases for
smallk. In fact it is easy to show thatγ has a maximum at
(kλD)2

=(π2/6)v2
ef

′

0e, γ`/γd=3, γ /γd=2, andγ=(2/3)γ`.
These values are in reasonable agreement with the simula-
tions (for v2

ef
′

0e≈0.5, π/k≈15λD). Fluctuations with this
value ofk would dominate since they would grow fastest and
shadow the slower growing fluctuations.

2 The wave packet equation

The basic equations that describe the 1-D system under con-
sideration are the Vlasov and Poisson equations:

∂fe(x, v, t)

∂t
+ v

∂fe(x, v, t)

∂x

+
e

me

∂φ(x, t)

∂x

∂fe(x, v, t)

∂v
= 0 (10)

and

∂2φ(x, t)

∂x2
= 4πe

∫
+∞

−∞

dvfe(x, v, t) − 4πqini (11)

which describe the evolution of the electron distribution
functionfe(x, v, t) and the electrostatic potentialφ(x, t).

In Poisson’s equation (Eq. (11)) we assume that electrons
whose energiesE=mev

2/2−eφ(x) are greater than−eφ0
can be described by the linear theory. This portion of the
electron charge density and the entire ion charge density can
then be included in the real part of the dielectric function
εR(k, ω). The trapped and reflected electrons with energies
such thatE<−eφ0 contribute nonlinear terms that can be
separated from the linear ones. Following the standard pro-
cedure (see for example Denavit and Sudan, 1972; Karpman,
1979; Taniuti, 1974), the Fourier transform in space and time
of the linearized Vlasov equation and Poisson’s equation be-
come

k2εR(k, ω)φ(k, ω) = −4πeñe(k, ω) (12)

whereñe(k, ω) is the Fourier transform of

ñe(x, t) =

∫
E<−eφ0

dv[fe(x, v, t) − f0e(v)) (13)

and the integration is limited to the energy rangeE<−eφ0.
This means that the charge density on the right hand side
includes all electrons not included in the linear portion in-
cluded inεR(k, ω). Also included in the integral is the charge
neutralizing portion of the ions equal to−f0e(v). Expanding
the real part of the dielectric function in Eq. (12) around the
ion acoustic frequencyωk given by Eq. (2) leads to:

(ω − ωk)φ(k, ω) = −
4πeñe(k, ω)

k2∂εR(k, ωk)/∂ωk

. (14)

The frequency may be approximated by expanding Eq. (2),
ωk=kcs − k3csλ

2
D/2+· · ·. Without loss of generality we

have retained only the positive frequency root ofεR(k, ω)=0.
Since we assume thatñe(k, ω) is already of the same order
as ω−ωk, (i.e. of order γ≈γd≈γe, where γ represents
the growth rate of the main peakφ0, γd , the dispersion
rate, andγe the electron reflection or bounce rate) we may
compute∂εR(k, ω)/∂ω to lowest order ink2λ2

D to obtain
∂εR(k, ωk)/∂ωk=2(kcsλ

2
D)−1(1+k2λ2

D)3/2
≈2(kcsλ

2
D)−1.

With these approximations and multiplying by−i Eq. (14)
becomes:

−iωφ(k, ω) + ikcsφ(k, ω) +
cs

2
λ2

D(ik)3φ(k, ω)

= ikcs(λ
2
D/2)4πeñe(k, ω) . (15)

An inverse Fourier transformation of this equation produces
the equation governing the evolution of the electrostatic po-
tentialφ(x, t):

∂φ(x, t)

∂t
+ cs

∂φ(x, t)

∂x
+

1

2
csλ

2
D

∂3φ(x, t)

∂x3

= 2πcsλ
2
D

∂

∂x
eñe(x, t) . (16)

The left hand side of this equation is basically the linear Ko-
rteweg de Vries equation which describes the linear evolution
of ion acoustic wave packets. The term on the right hand side
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of the equation accounts for the nonlinear response of the
electrons, namely the response of the trapped, and reflected
electrons.

Unfortunatelyñe(x, t) turns out to be very complicated
in the nonlinear case so that Eq. (16) is virtually impossi-
ble to solve analytically. However some insight concerning
the growth ofφ(x) can be gained by multiplying Eq. (16)
by (2πcsλ

2
D)−1φ(x) and integrating overx from x to +∞.

This gives an equation for the rate of change of wave packet
momentum (and therefore amplitude) in the region between
x and∞.

(2πcsλ
2
D)(−1) ∂

∂t

∫
+∞

x

dxφ(x)2
− J (x) = S+(x) (17)

where

J (x) = (4πλ2
D)−1φ(x)2

+
1

4π

[
φ(x)

∂2

∂x2
φ(x) − (1/2)

(
∂φ(x)

∂x

)2
]

(18)

S+(x) = Ṗ+(x) − eñe(x)φ(x) (19)

and

Ṗ+(x) = −e

∫
+∞

x

dxñe(x)
∂

∂x
φ(x) . (20)

The quantityJ is a momentum current. The first term inJ is
due to the wave phase velocity, the second term arises from
dispersion and is always negative if the potential is always
concave towards the x axis. We have assumed thatφ(∞)=0.

The quantityS+(x) is the rate of momentum input to the
wave packet by the trapped and reflected electrons in the re-
gion x0<x<∞ (i.e. located to the right of the main peak of
the wave packet). The quantity−eñe(x)φ(x) is a momen-
tum current due to the trapped and reflected electrons. In
the next Section we will show that, when the nonlinear re-
sponse of the electrons is taken into account,S+(x) vanishes
for x=x+ (S+(x+)=0) wherex+ lies betweenx0 and the
value ofx at the first zero of the potentialφ(x) to the right
of x0 (see Fig. 2). IfS+(x) vanishes atx+, then the electrons
make no contribution to the growth ofφ(x), as measured by∫

∞

x
dx′φ(x′)2, in the regionx+<x<∞. Thus the electrons

cause the potential to grow only in the region of the central
peak. Of course dispersion as described by the second term
of J in Eq. (18) will cause momentum to flow out of this
region.

It is enlightening to contrast the nonlinear case with the
linear theory. It is easy to show that in the linear theory that if
φ(x)=φ0cos(kx) then the component of the density in phase
with ∂φ/∂x is ñe=γ`φ0sin(kx). For this case it is clear that
the electron source termS+(x) will not have zeros but in fact
will be proportional to

∫
∞

x
dxsin(x)2, expressing uniform

growth along the entire (infinite) spatial extent of the wave
packet.

An equation analogous to Eq. (17) can be derived for the
regionx < x0. We obtain

(2πcsλ
2
D)(−1) ∂

∂t

∫ x

−∞

dxφ(x)2
+ J (x) = S−(x) (21)

Figure 2: The positions x+ and x- related to the zeroes of momentum input.

x0

 x+x-

Fig. 2. The positions x+ and x- related to the zeroes of momentum
input.

where

S−(x) = Ṗ−(x) + eñe(x)φ(x) (22)

and

Ṗ−(x) = −e

∫ x

−∞

dxñe(x)
∂

∂x
φ(x) . (23)

In analogy to S+(x), S−(x) has a zero atx=x−<x0
(S−(x−)=0) wherex− is the first zero of the potentialφ(x)

on the left hand side ofx0.
Using

∫ x+

x−
=

∫ x0
−∞

+
∫

∞

x0
−

∫ x−

−∞
−

∫
∞

x+
and

S+(x+)=S−(x−)=0 we can obtain the rate of change
of φ(x)2 averaged over the regionx−<x<x+

∂

∂t
(2πcsλ

2
D)−1

∫ x+

x−

dxφ(x)2
+ J (x−) − J(x+)

= Ṗ−(x0) + Ṗ+(x0) . (24)

SinceS−(x0)+S+(x0)=Ṗ−(x0)+Ṗ+(x0) is the total momen-
tum lost by the electrons to the wave, this equation shows that
all of the lost electron momentum is deposited in the spatial
region of the main wave packet peakx−<x<x+.

3 Spatial dependence of electron momentum input to
wave packet

Our objective in this section is to show thatS+(x) andS−(x)

have zeros atx+ andx− respectively. Although the electron
response to the wave potential is very nonlinear, the calcu-
lation is tractable when the growth rateγ and the dispersion
rateγd are comparable and both are much less than the elec-
tron reflection or bounce rateγe

γ ≈ γd � γe (25)

where

γe = k

(
−2eφ0

me

)1/2

= kλDωpe

(
−eφ0

T

)1/2

. (26)
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Using Eq. (4) the conditionγe�γd can be expressed as a
restriction on the amplitude of the wave packet, i.e.,

−eφ0

T
� π−2(kλD)4

(
me

mi

)
. (27)

Therefore withk−1
'10λD (the value observed in the simu-

lations),γe�γd requires

−eφ0

T
� 10−5

(
me

mi

)
(28)

which is an exceedingly small amplitude level. The signifi-
cance ofγe�γd is that in this case the electron energy

E = mev
2/2 − eφ(x) (29)

is approximately constant in the rest frame of the wave packet
making it easy to solve for the electron dynamics in terms of
trapped, reflected, and passing particles.

To evaluateS+(x) we introduce the perturbed electron dis-
tribution function

f̃e(x, v) = fe(x, v) − f0e(v) (30)

Next we go to the rest frame of the wave packet (u=0) and
change the velocity integration into an energy integral

ñe(x) = 2
∫

−eφ0

−eφ(x
′
)

dEf̃e(E, t)[
2me(E + eφ(x

′
))

]1/2
. (31)

When a distribution function contains the argumentE, it
is to be understood that the velocity argumentv has been
replaced withv(E)=[(2/me)(E+eφ(x))]1/2, for example
f̃e(E)=f̃e(v(E)). The quantiyṖ+(x) given by Eq. (20) can
be written

Ṗ+(x) = −2e

∫
+∞

x

dx
′ ∂φ(x

′

)

∂x
′

∫
−eφ0

−eφ(x
′
)

dEf̃e(E, t)[
2me(E + eφ(x

′
))

]1/2
.

(32)

One must bear in mind that̃fe(E, t) in Eq. (32) is more com-
plex than it appears since in general it is a different function
of E in different spatial regions. In other words̃fe(E, t) has
an implicit x dependence. However it is possible to break
the spatial integration in multiple regions in each of which
f̃e(E, t) is notx dependent. In other words, we will use the
fact that phase space density is conserved along particle or-
bits.

For the purpose of calculating momentum input to the
wave packet by the electrons, we shall assume the packet
consists of a central potential energy peak,−eφ0 located at
x=x0 with a series of progressively smaller potential energy
peaks (”foothills”) on either side. Because of the negative
electron charge, we focus on the potential energy instead of
potential. Progressively smaller means that the peak ampli-
tudes are monotonically decreasing functions of|x−x0|. The
foothill peak immediately to the right of the main peak is lo-
cated atx=x1 and has the potential valueφ(x1)=φ1. Succes-
sive peaks occur atx2, x3, · · · and have potential valuesφ2,

φ3, · · ·. In general, the distribution function can be a differ-
ent function ofE in the intervals(x0<x<x1), (x1<x<x2),
(x2<x<x3), etc. We shall refer to these as intervals 1, 2, 3,
etc. respectively. In each spatial interval there are two energy
regions forE<−eφ0. One energy region consists of those
electrons which come fromx=+∞ and are reflected back
to x=+∞. We refer to these electrons as “reflecting” elec-
trons. For reflecting electrons,̃fe(E) has the same value it
has atx=+∞ namelyf̃ +

0e(E). The other energy region con-
sists of trapped electrons whose distribution can in principle
be described arbitrarily, but in the present problem can be
related tof̃ +

0e(E) since these electrons originally came from
x=+∞ and were, at an earlier time, trapped by the growing
potential. For example, in spatial region 1, reflecting elec-
trons are those for which−eφ1<E<−eφ0 and the trapped
electrons haveE<−eφ1.

Although f̃e(E) is a different function ofE in each of
the spatial intervals, within each spatial interval it is not a
function ofx. Therefore thex′ integral rangex<x′<+∞ in
Eq. (32) may be broken into a sum of integrals over intervals
in which f̃e(E) is independent ofx. Denoting theith inter-
val by i, and its upper and lowerx boundary byui and li
(i.e. in theith intervalli<x<ui) we can write the integral in
Eq. (32) as

Ṗ+(x) =

−

∑
i

∫ ui

li

dx
′ ∂

∂x
′

∫
−eφ0

−eφ(x
′
)

dE

[
2

me

(E+eφ(x
′

))

]1/2

f̃ i
e (E, t)

=

∑
i

[Gi(φ(li) − Gi(φ(ui))] (33)

where

Gi(φ(x)) =

∫
−eφ0

−eφ(x)

dE

[
2

me

(E + eφ(x))

]1/2

f̃ i
e (E, t) (34)

and the superscripti indicates thatf̃ i
e (E) is the energy dis-

tribution in the ith spatial interval. As an example, let us
calculateṖ+(x) in spatial interval 1, i.e. forx0<x<x1. From
Eq. (33) we obtain

Ṗ+(x) = [G1(φ(x)) − G1(φ1)] + [G2(φ1) − G2(φ2)]

+[G3(φ2) − G3(φ3)] + ... (35)

WhenGi(φ) is evaluated at a potential energy peak, for ex-
ample atφ=φ1, the integral forGi(φ) involvesfe(E) for re-
flecting particles only, i.e.f +

0e(E). Sincef +

0e(E) is the same
function ofE in all spatial regions,Gi(φ) evaluated at a po-
tential energy peak does not depend on the spatial interval
i. Thus it follows that in the sum above, the last term in
each bracket exactly cancels the first term in the succeeding
bracket. The only surviving terms are the first term of the
first bracket and the last term of the last bracket. We obtain
for x0<x<x1

Ṗ+(x) = G1(φ(x)) − G∞(φ+∞)

= G1(φ(x)) −

∫
−eφ0

0
dE

(
2E

me

)1/2

f̃ +

0e(E) . (36)
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To calculateS+(x) from (19) we need, in addition tȯP+(x),
eφñe which can be written

eφñe =

∫
−eφ0

−eφ(x)

dE

[
2

me

(E + eφ(x))

]1/2

f̃ 1
e (E)

[
1 −

E

E + eφ(x)

]
. (37)

Using Eq. (34) this becomes

eφñe = G1(φ(x))

−(2/me)
1/2

∫
−eφ0

−eφ(x)

dE
Ef̃ 1

e (E)

[E + eφ(x)]1/2
. (38)

Using Eqs. (36) and (38) in Eq. (19), we obtain

S+(x) = (2/me)
1/2

∫
−eφ0

−eφ(x)

dE
Ef̃ 1

e (E)

[E + eφ(x)]1/2

−(2/me)
1/2

∫
−eφ0

0
dEE1/2f̃ +

0e(E) . (39)

Following a similar procedure forx<x0 we obtain

S−(x) = −(2/me)
1/2

∫
−eφ0

−eφ(x)

dE
Ef̃ −1

e (E)

[E + eφ(x)]1/2

+(2/me)
1/2

∫
−eφ0

0
dEE1/2f̃ −

0e(E) (40)

wheref̃ −1
e (E) in the first integral is the distribution function

for the first spatial region on the left hand side of the main
peak andf̃ −

0e(E) is the distribution function for untrapped
electron forx<x0.

We now evaluateS+(x) at the location of the central peak,
i.e. atx=x0 whereφ=φ0.

S+(x0) = −(2/me)
1/2

∫
−eφ0

0
dEE1/2f̃ +

0e(E) . (41)

If in the absence of a wavepacket the distribution function is
f0e(v) then for|v|<s0=(−2eφ0/me)

1/2

f +

0e(E) = f0e(u − |v|) , f −

0e(E) = f0e(u + |v|) . (42)

Using this in Eq. (30) we obtain

f̃ +

0e = f0e(u − |v|) − f0e(v) ≈ −2f ′

0e(u)v . (43)

Substituting this into Eq. (41) we find

S+(x0) = 2mef
′

0e(u)

∫ s0

0
v3dv =

ω2
pe

2π
f ′

0e(u)φ2
0 . (44)

Whenf ′

0e(u)>0 we obtain the physically plausible result that
S+(x0)>0.

The calculation ofS−(x0) is completely analogous to
S+(x0), and we find thatS−(x0)=S+(x0). The total rate of
electron momentum loss from the electrons and transferred
to the wave packet is

Ṗ = S+(x0) + S−(x0) = Ṗ+(x0) + Ṗ−(x0)

= ω2
peπ

−1f ′

0e(u)φ2
0 . (45)

We can also evaluateS+(x) at the pointx=xs where the po-
tential φ(x) has its first zero on the right hand side ofx0.
From Eq. (39)

S+(xs) =

∫
−eφ0

0
dEE1/2

[f 1
e (E) − f 1

0e(E)] . (46)

The tilde disappears from the distribution functions since the
f0e’s in Eq. (30) cancel. To evaluate this expression, one
needs to knowfe(E) for region 1. One can relatef 1

e (E)

to f +

0e(E), the distribution function for untrapped particles
valid for x0<x<∞. An electron of energyE at time t was
trapped (captured) at an earlier timetc when its energy was
Ec. Since phase space density is a constant along particle
orbits, one can setf 1

e (E, t)=f +

0e(Ec). Using this result in
Eq. (46), the last factor in the integrand becomes

[f +

0e(Ec) − f +

0e(E)] . (47)

It seems apparant as we will prove, that for a growing wave
packet, the energy of an electron decreases after it becomes
trapped, i.e.E=mev

2/2−eφ<Ec. This result is obvious
for the special case of a square well. For a square wave
∂φ(x)/∂x=0 except at the well edge where it is infinite. The
electron velocity is constant except that it changes sign when
it is reflected at the well edge. Therefore the kinetic energy
is constant and the electron energyE decreases as the well
depth increases, i.e. as−eφ assumes a larger negative value.
Indeed it is easy to show that the total energy of an electron
E satisfies the following equation

dE

dt
= −e

∂φ

∂t
(48)

integrating this equation (48) over time from the timetc to
alater timet>tc leads to:

E(t) − Ec = −e

∫ t

tc

dτ
∂φ(x(τ), τ )

∂τ
(49)

if we now express that the potential is growing and that
∂φ/∂t=γφ, with γ>0, then the expression for the energy
difference Eq. (49) becomes

E(t) − Ec =

∫ t

tc

dτ [−eγ φ(x(τ), τ )] (50)

let us look at timest=tc+δt with ωbδt�1, whereωb is the
electron bounce frequency. Then we have

E(t) − Ec ≈ γ δtEc (51)

but sinceEc<0 for trapped electrons, we therefore conclude
thatE<Ec for a general wave form.

Referring to Eq. (42), we see thatf +

0e(v) is a decreasing
function of |v| and therefore ofE=mev

2/2 for E<−eφ0.
This means thatf +

0e(Ec)≤f0e(E) and that the factor Eq. (47)
is negative and therefore thatS+(xs)<0. We have previ-
ously shown thatS+(x0)>0. It follows thatS+(x) must van-
ish for x=x+ wherex0<x+<xs . A similar argument shows
thatS−(x) vanishes forx=x− wherex− lies betweenx0 and
the first zero of the potential to the left ofx0. Demonstrat-
ing the existence of these zeros ofS−(x) andS+(x) justifies
Eq. (24).
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4 Summary

Equation (24) can be used to determine the growth ofφ2 in
the regionx−<x<x+. We approximate∫ x+

x−

dxφ(x)2
≈ (π/k)φ2

0 (52)

and we use Eqs. (3) and (45) to write

2kcsλ
2
D[Ṗ−(x0) + Ṗ+(x0)] = 2γ`φ

2
0 . (53)

Dispersion will cause a loss of momentum from the region
of the main peak which we can estimate fromJ given by
Eq. (18) and using∂/∂x≈k. Thus

2kcsλ
2
D[J (x−) − J (x+)] ≈ 2γdφ2

0 . (54)

Using all these approximations in Eq. (24) and setting
∂φ/∂t=γφ, we obtain for the growth rate of the main peak
of the wave packet

γ ≈ γ` − γd . (55)

This is the same result that was argued in the Introduction
and implies that the main peak of a wave packet will grow
in amplitude if the linear growth rate exceeds the dispersion
rate.

In the 3-D case, dispersion causes the wave packet to
broaden in three dimensions, i.e. both parallel and perpen-
dicular to the electron current. Although we have not done a
detailed calculation, preliminary studies of the three dimen-
sional case with a magnetic field along the direction of cur-
rent flow show that in the direction of the field lines the 1-D
result holds, i.e. the electron momentum is deposited in a spa-
tial region of the width of the main peak. In the perpendicular
direction it is obvious that all of the momentum lost by those
reflected electrons lying in the cross section of the main peak
will be deposited in the main peak since the electrons are
constrained to move along the field lines. Perpendicular dis-
persion does not cause a reduction in the momentum input
to the main peak. Thus the main peak will grow if the linear
growth rate exceeds the parallel dispersion rate. In the di-
rections perpendicular to the electron current, the dispersive
spreading of the potential will increase the total cross section
of the wave packet but this will be balanced by an increasing
number of reflecting electrons.

5 Conclusions

In conclusion, a proof based on a fundamental physical prin-
ciple has been put forward to explain the evolution of ion
acoustic wave packets into the nonlinear phase. It is often
the case in ion acoustic turbulence to take into account the
ion nonlinearity, but it has been shown in this paper that the
electron nonlinearities can be equally important, and can pro-
vide the mechanisms necessary to sustain large amplitude ion
fluctuations. Two fundamental arguments have been put for-
ward to understand the development and evolution of large

amplitude ion fluctuations. The first argument relies on the
fact that isolated structures will likely evolve to larger ampli-
tudes than the amplitudes of packed ion structures, while the
second argument suggests that early on in the evolution of the
ion structures, the electron nonlinearities play a more signif-
icant role than the ion ones. Conventional wisdom has it that
the ion nonlinearity would allow for the development of KdV
like turbulence with solitary structures. The structures that
evolve from a KdV like description of a two-species drift-
ing plasma are purely compressive as opposed to rarefactive.
Moreover, a sign difference in the nonlinearity would lead to
wave-like Airy function solutions to the nonlinear KdV equa-
tion. The solutions to the KdV equation are very sensitive to
the initial conditions too. Conventional wisdom also sug-
gests that growth is associated with momnetum input. How-
ever we have shown that only the main peak grows and that
the secondary peaks do not. Clearly, this is due to the fact
that there is a net momentum input by the electrons to the
main peak, which then feeds the secondary peaks through
dispersion. The secondary peaks do not compete, as we have
argued , for the nonlinear electron momentum; They live in
the shadow of the dominant peak indeed, so they tend to de-
cay.

We have argued that, and quantified our arguments in this
paper, the electron nonlinearity can be a fundamental player
in the development of isolated, selfconsistent nonlinear struc-
tures. The reflection and trapping of electrons early on in the
development of ion acoustic structures plays a fundamental
role in determining the existence of BGK like equilibria.

Ion acoustic turbulence is believed to play a significant
role in auroral physics. One of the fundamental issues in
turbulence is to understand the seeding mechanisms for large
amplitude fluctuations. The present study suggests that given
the linear instability conditions an emitted wave packet can
evolve into a large amplitude structure by tapping the elec-
tron momentum. Moreover, an argument based on the prob-
ability distribution of fluctuations favors the evolution of tur-
bulence towards a state of large amplitude isolated structures.

The proposed model relies heavily on momentum conser-
vation. A balance between linear momentum dispersion and
nonlinear momentum input from electrons is shown to occur
when the linear plasma instability growth rate is larger than
the dispersion rate. Moreover, it is shown that a net momen-
tum input goes directly to the peak of a linearly excited ion
acoustic wave packet.

Finally, a complete model would have to be three dimen-
sional with the inclusion of a background magnetic field. A
study that involves multiple structures would have to be put
forward in order to extrapolate the results of the one dimen-
sional model presented in this paper.
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