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Abstract. In this study we have analysed wind and wave
time series data resulting from hourly measurements on the
sea surface in Bushehr, the northern part of the Persian Gulf,
from 15 July to 4 August 2000. Wind speed (U10) ranged
from 0.34 to 10.38 m/s as alternating sea and land breezes.
The lowest wind speed occurs at about midnight and the
highest at around noon. The calculated autocorrelation of
wind speed data shows that when the sea-land breeze is
strong, the land-sea breeze is weak and vice versa. The
significant wave height (Hs) varies between 0.10 to 1.02 m.
The data of the present study reflects mostly the local waves
or the sea waves. The calculated correlation between wind
and wave parameters is rather weak, due to the continuous
change in the wind direction. Wave height distribution fol-
lows the well-known Rayleigh distribution law. The cross
correlation analyses betweenU10 andHs reveal a time lag of
4 h. Finally, we have shown that the time series ofU10, Hs ,
and wave period are stationary. We have modeled these pa-
rameters by an auto regressive moving average (ARMA) and
auto regressive integrated moving average (ARIMA) models.

Keywords. Oceanography: physical (Air-sea interactions;
Surface waves and tides; Upper ocean processes)

1 Introduction

During the daytime, in a calm atmosphere (absent of gradient
wind), solar radiation heats up the land surface more rapidly
than the water surface, causing a horizontal temperature gra-
dient between the land and sea surface air. The air over the
land heats up and hence expands more rapidly than the air
over the sea. Due to the hydrostatic conditions, the vertical
pressure gradient is greater in the cooler air over the water
than in the warmer air over the land. This means that, at a
given height, the pressure is higher over the land than over
the water. This pressure gradient produces a slight flow of
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air from the upper levels above the land to the upper levels
above the sea. This leads to an increase in the pressure over
the sea, so that air subsidence occurs. Departure from hydro-
static equilibrium leads to the flow from the sea to the land,
in the lower level. This is called the sea breeze. At night time
the reverse process occurs and a land breeze takes place. The
onset of the sea breeze is usually marked by an increase in
wind speed, a decrease in temperature and an increase in hu-
midity. If a gradient wind exists, the effects of the sea breeze
may be more difficult to detect. Sea and land breezes oc-
cur more frequently and with greater regularity in the tropics
than in the middle and high latitudes (Atkinson, 1981). Sea
breeze speed usually ranges between 6 and 10 m/s and from 3
to 5 m/s for a land breeze. The land breeze is always weaker
than the sea breeze. The on/off shore extent of the sea breeze
is about 10–20 km (Hsu, 1988).

Sea surface waves are caused by momentum exchange at
the air-sea interface and enhanced energy and momentum
flow between the atmosphere and the ocean. Winds moving
across open waters create pressure differentials on the wa-
ter surface and wave development depends on wind speed,
fetch, and duration. The wave generation mechanisms are
highly complex, involving nonlinear processes, where the
physics of the process is not fully understood. According to
the Philips theory (Inoue, 1967) wave energy increases lin-
early with time, in the early stage of wave growth. After this
stage, according to Mile’s theory (Inoue, 1967), shear flow
instability in the coupled air-water system results in an expo-
nential growth rate of wave energy.

Ocean waves are often irregular and multi-directional.
They are usually described by a superposition of many
monochromatic wave components of different frequencies,
amplitudes and directions.

Investigation of the wave components could provide valu-
able information for several practical applications, such as
wave forces on offshore structures and other coastal works,
shore protection measures, irregular wave run-ups, etc.

As the distance away from the immediate region of wave
generation increases, or as the wind speed reduces, waves be-
come “swell”. Since longer waves travel faster than shorter
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Fig. 1. Persian Gulf map (Ramesht, 1988).
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Fig. 2. Hourly time series of wind direction (UD) against time (24-
h interval).

ones, the wavelength and period of the swells gradually in-
crease with time and distance from the source. Swells de-
crease in amplitude, due to spreading and friction, so they
are usually linear, coherent and have small-amplitude. Varia-
tion of swell periods is between 8–12 s, but that of sea waves
is between 1.5–5 s (Brockwell and Davis, 1996).

2 Study area and data sources

The Persian Gulf is a shallow, semi-enclosed sea and its cli-
mate is arid, due to the excess of evaporation over precipita-
tion and river run-off. The high evaporation and saline water
lead to anti-estuary circulation through the Hormuz Strait.
The area of Persian Gulf is about 2.26×105 km2, with an av-
erage depth of 35 m.

All measurements were made at Bushehr (28◦59′ N
50◦50′ E). Figure 1 shows the map of the study area. We have
used the hourly time series wave and wind data measured by
the Ports and Shipping Organization of Iran.

Wind parameters were measured at the coastal station in
Bushehr and wave parameters were measured by a buoy (S4
model) at 29◦2′12” N, 50◦39′10” E, 12 km from the Bushehr
coast, where the water depth is 15 m, and the coastal line
direction is NW−SE.

 
Figure3. Hourly time series of wind speed (U10) against time (24h interval) 

 
Figure4. Hourly time series of onshore wind against time (24h interval) 

 
Figure5. Hourly time series of along shore wind against time (24h interval) 

Fig. 3. Hourly time series of wind speed (U10) against time (24-h
interval).

Wave characteristics are often measured by means of sub-
merged pressure transducers. The use of this instrument im-
poses some problems, the most important being the bias of
its output due to the dynamical effect of the relative motion
of water particles.

The usual analysis of zero-up crossing properties in a wave
record requires digitization of the record at a finite sampling
rate. Always in this buoy, large wave heights could be deter-
mined with relative errors of 0.5% for1/Tavg<1/20, where
1 represents the sampling time interval andTavg is the spec-
tral mean period. Other errors include statistical, numerical,
sea state bias and the assumption of linear wave theory. Usu-
ally the errors do not depend on the depth of the sea, and are
greater for higher wave numbers. The errors are greater for a
high sea state.

3 Wind characteristics in the area

One-hourly time series of wind direction and wind speed ob-
served during the 21-day period (15 July–4 August 2000) are
shown in Figs. 2 and 3. Wind data were recorded by the stan-
dard buoy, whereas wave parameters were obtained from the
raw data with hourly intervals. Data were recorded continu-
ously. It should be mentioned that, although the predominant
wind is NW-SE wind (shamal), the data we used are due to
temporal (summer) wind (Ramesht (1988)).

In Fig. 2 the direction of wind (UD) shows variations be-
tween 0◦and 330◦. This is in agreement with the climatolog-
ical data available from the meteorological stations for the
northern coast of the Persian Gulf. Figure 3 shows that the
wind speed at 10 m above sea level (U10) varies between 0.34
and 10.83 ms−1 with a characteristic diurnal oscillation. The
lowest wind speed occurred about midnight and the highest
speed around noon. The markings on the time-axis are made
at 24-h intervals (starting on 15 July), in order that the diurnal
pattern can be easily discernible.

In Figs. 4 and 5 wind speed is resolved into two compo-
nents, along and across the shore. In Fig. 4 positive (nega-
tive) values indicates a sea (land) breeze. These figures show
that the sea breeze occurs during the day and the land breeze
occurs at nighttime.
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Fig. 4. Hourly time series of onshore wind against time (24-h inter-
val).

 
Figure3. Hourly time series of wind speed (U10) against time (24h interval) 

 
Figure4. Hourly time series of onshore wind against time (24h interval) 

 
Figure5. Hourly time series of along shore wind against time (24h interval) 
Fig. 5. Hourly time series of along shore wind against time (24-h
interval).

The diurnal variations of wind characteristics in this area,
especially near the coastal zone, are normally attributed to
land and sea breeze effects. Wind speed associated with the
land-sea breeze is less than 6 m/s, but that of the sea-land
breeze is greater. The change in wind speed and direction is
almost simultaneous.

In this study, autocorrelation coefficients of wind speed
data are calculated. These coefficients, with hourly intervals,
are plotted versus time, in Fig. 6. Autocorrelation coeffi-
cients for a lag of 1 to 5 h are greater than 0.5. Between lag 8
to 19 h the autocorrelation function is negative. The physical
reason for this phenomenon is the air-sea temperature differ-
ence. During the day the land temperature is greater than the
water temperature, so the local wind is directed onshore in
the direction of lower surface pressure. At night, the water
temperature is less than the land temperature, but the magni-
tude of the difference is less and the land-sea breeze is weak.
Figure 6 shows that the autocorrelation function has a min-
imum and a maximum at lag 15 and a maximum at lag 24.
The minimum occurs when the maximum inverse correlation
between the sea-land and the land-sea breeze happens. The
maximum on lag 24 shows a diurnal cycle in the wind speed.

 
Figure6. Wind speed auto correlation function against time. 

 

Fig. 6. Wind speed autocorrelation function against time.
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Figur7. Hourly time series significant wave height (Hs), maximum wave height (Hm), 

wave period corresponding to Hm(Tm) and zero crossing period (Tz),. 
Fig. 7. Hourly time series significant wave height (Hs ), maximum
wave height (Hm), wave period corresponding toHm(Tm) and zero
crossing period (Tz).

4 Wave characteristics

The time series of wave parameters are shown in Fig. 7. In
this figure the significant wave height,Hs , is defined as the
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Figure8. Wave age (C/U10) vs. wave steepness (Hs/L) 
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Fig. 8. Wave age (C/U10) vs. wave steepness (Hs/L).
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Fig. 9. Variation of cross-correlation for wind speed (U10) and sig-
nificant wave height (Hs ) with time-lag.

mean of the highest one-third of the waves present in the sea
and the maximum wave height,Hm, is the maximum vertical
distance between the highest crest to the lowest trough;Tm

is the wave period corresponding toHm, andTz is the mean
zero-up crossing period of the wave field. As is seen, each
of these parameters varies between 0.10 to 1.02 m; 0.15 to
1.70 m; 3.56 to 4.59 s and 3.57 to 5.255 s, respectively. Thus,
the prevailing wave conditions mostly reflect the sea state 2
and 3 codes (WMO 1988) during the observation period.

The dimensionless wave parameters, namely, the wave
steepness (Hs/L) and the wave age (C/U10), whereC is
the phase speed, are often used to determine the nature of
the sea state. Wave steepness is usually expressed as the ra-
tio between the significant wave height and the wave length,
of the peak period. Thompson et al. (1984) gave a classifi-
cation scheme for ocean waves based on (Hs/L) criterion –
namely, sea young swell, mature swell and old swell. Ac-
cording to their classification, locally generated waves or sea
waves have steepness values greater than 0.025. Figure 8
does not show any correlation between wave age and wave
steepness. This figure mainly reflects local waves or sea
waves as (Hs/L) is greater than 0.025. Younger waves are
steeper than the older ones (Thompson et al., 1984).

5 Statistical correlation between wave and wind param-
eters

Statistical correlations obtained among various analysed
wave parameters and wind speed are given in Table 1. Wave

Table 1. Correlation coefficients of the analysed wave parameters
and wind speed.

U10 Hs Hm Havg Tz Tm

U10 0.376 0.373 0.375 0.297 0.295
Hs 0.999 0.998 0.675 *
Hm 0.998 0.671 *
Havg 0.670 *
Tz 0.996

* Indicates that the correlation coefficient values are not statistically
significant.

 
Figure10. Wind speed partial auto correlation with 1hr time lag 

 
Figure11. Predicted (solid line) and measured (dotted line) wind speed(U4.5) 

 
Figure12. Significant wave height auto correlation with 1hr time lag 

 

Fig. 10. Wind speed partial autocorrelation with 1-h time lag.

heights (Hs and Hm) and wave periods (Tz and Tm) show
positive and low correlation against wind speed (U10).

Positive correlation in wind speed (U10) againstHs and
Hm is due to the increase of wind energy. Low correlation
coefficients are perhaps due to the diurnal change in wind di-
rection. When the wind direction varies with time, the role of
wind speed on the wave height growth decreases. When the
wind and wave directions are opposite from each other, the
wind speed applies an opposing stress against the waves and
therefore the wave height growth is negative. So in this area
the correlation between wind speed and wave height is weak.
The correlation between onshore and along-shore wind speed
and wave parameters is weak as well.

The positive correlation of wave periods with wind speed,
which is observed in this case, reveals the complex nature of
the wave period evolution during the active wave growth con-
ditions.Hm shows a better correlation withU10 thanTm. The
correlation coefficient values obtained forTm againstHs and
Hm are not shown in Table 1, since they are not statistically
significant.

A strong positive correlation (corr. coeff.=0.999) exists
betweenHs and Hm. The concept of statistically statio-
nary wave heights was originally proposed by Longuet-
Higgins (1952). According to this concept, the ratios of sig-
nificant wave parameters (statistical averages) are expected
to be constant. The theoretical value proposed forHm/Hs is
1.53 (Longuet-Higgins, 1952). Our analyses show that this
ratio is 1.66. John (1985) suggested thatHm/Hs obtained
with different data sets varies between 1.29 and 1.91. It is



A. Parvaresh et al.: Statistical analysis of wave parameters in the north coast of the Persian Gulf 2035

Table 2. Statistical coefficient of wind speed time series model.

Variable Coeff. Std. Error t-Statistic Prob.

C 0.3584 0.0553 6.4725 0
SPEED(−1) 1.1495 0.0426 26.9650 0
SPEED(−2) −0.3059 0.0426 −7.1760 0
R-squared 0.7960 Mean dependent var 2.2870

Adjusted R-squared 0.7952 F-statistic 973.6508
Durbin-Watson 2.0138 Prob(F-statistic) 0

Table 3. Statistical coefficient of significant wave height time series
model.

Variable Coeff. Std. Error t-Statistic Prob.

C 0.0089 0.0039 2.2774 0
Hs(−1) 0.9676 0.0140 68.8966 0

R-squared 0.9045 Mean dependent var 0.2300
Adjusted R-squared 0.9043 F-statistic 4746.745
Durbin-Watson stat 1.9538 Prob(F-statistic) 0

important to note that the length of the time series used for
the wave analysis, as well as the differences in the wave mea-
suring devices employed, may lead to the differences in the
wave statistics derived from a given wave record. Our re-
sults generally agree with the Rayleigh distribution law. We
have foundH1/10/Hs to be 1.271 comparable to the Rayleigh
value of 1.275.

An important question is whether the waves begin grow-
ing when the sea-land breeze begins or whether a lag time (τ )
exists between these two. From simple physical considera-
tions one can safely assume a certain lag time for waves to
grow as wind starts blowing over the sea surface. Therefore,
we computed the cross-correlation betweenU10 andHs . The
time history of any two sets of the time series records can be
tested to know the general dependence of one set of data on
the other (Bendat and Piersol, 1986).

Cross-correlation functionRuh, betweenU10 andHs , is
defined as:

Ruh = lim(1/T )

∫
U10 × Hs(τ + t)dt, (1)

whereT is the total duration of the time series record andτ is
the time lag (Box and Jenkins, 1976). This function is plotted
in Fig. 9 and reveals two peaks. The primary peak is between
the lag of 3 to 11 h and the second one at 32 h. TheRuh val-
ues for these peaks are 0.41 and 0.12, respectively. The sec-
ond peak could be due to the presence of diurnal variability
in the data(24+(4+11)/2∼32). The first peak suggests that
the wave field lags behind the wind by at least about 3 h. The
constant value ofRuh between lag 4 to lag 11 is the result of
the variation of the wind direction in this area.

 
Figure10. Wind speed partial auto correlation with 1hr time lag 
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Figure12. Significant wave height auto correlation with 1hr time lag 

 

Fig. 11. Predicted (solid line) and measured (dotted line) wind
speed (U4.5).
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 Fig. 12. Significant wave height autocorrelation with 1-h time lag.

6 Prediction of wind and wave parameters by time se-
ries modeling

In this section the statistical models used will be de-
scribed. The theoretical background described and the tech-
niques used are presented. Consider the time series{Xt , :

t=0, ±1, ±2, ...}, i.e. a sequence of dependent random vari-
ables in time. The time series is stationary if

F(Xt1, Xt2, . . .Xtn) = F(Xt1+k
, Xt2+k

, . . ., Xtn+k
), (2)

wheren, k, t1, t2,. . .tn, are integer numbers andF(.) rep-
resents the joint probability distribution function of anyn

random variables of process{Xt }. The time series is said
to be weakly or second-order stationary, if the mean func-
tion is constant and the covariance between any two of them
just depends on the time difference between them but not
on time itself (γt,t−k=γ0,k). An important example of a
weakly stationary process is the white noise (at ) process,
which is defined as a sequence of independent, identical dis-
tribution of random variables. We shall usually assume that
the white noise has a zero mean and denote its variance as
(σ 2

at
) (Guedes Soares and Ferreira, 1996).

If the time seriesXt verifies a relation

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · · ϕpXt−p + (3)

at − θ1at−1 − θ2at−2 − · · · θqat−q ,

whereφ1, φ2, . . . ,φp, θ1, θ2, . . . ,θq are unknown constants,
it is said to be described by an ARMA model of orderp and
q, respectively, where the time series should be stationary
and{at , : t=0, ±1, ±2, . . .} should be a white noise process.
An ARMA (p, q) model, in which the orderp is zero, is
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Figure13. Significant wave height partial auto correlation with 1hr time lag 
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Figure15. Dominant wave period Tp auto correlation with 1hr time lag 

 

Fig. 13. Significant wave height partial autocorrelation with 1-h
time lag.
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Figure14. Predicted (solid line) and measured (dotted line) significant wave height 

 
Figure15. Dominant wave period Tp auto correlation with 1hr time lag 

 

Fig. 14.Predicted (solid line) and measured (dotted line) significant
wave height.

called the moving average of orderq−MA(q)− and when
the orderq is zero it becomes an autoregressive of order
p−AR(p).

A time seriesXt is said to follow an ARIMA if thedth
differenceWt=1dXt is a stationary ARMA process. IfWt

is ARMA(p, q), we say thatXt is ARIMA(p, d, q). Dif-
ferences can also be conveniently written in terms ofB, as a
backshift operator, i.e.1d

=(1−B)d . The ARIMA model is
then expressed as

8(B)(1 − B)dXt = 2(B)at , (4)

where8(B) and2(B) are:

8(B) = 1 − ϕ1B − ϕ2B
2
· · ·ϕpBp (5)

2(B) = 1 − θ1B − θ2B
2
· · · θpBp. (6)

Fundamental tools in time series analyses are the autocor-
relation function (ACF),ρk, and the partial autocorrelation
function (PACF),φkk, whereρk andφkk are:

ρk=
cov(Xt , Xt+k)

√
var(Xt )

√
var(Xt+k)

=
γk

γ0
(7)

φkk =
cov((Xt − Xt ), (Xt+k − Xt+k))√
var(Xt − Xt )

√
var(Xt+k − Xt+k)

, (8)

respectively, andXt stands for the best linear estimate ofXt

and subscriptt stands forX value in timet . (Guedes Soares
and Ferreira, 1996; Hidalgo et al., 1995).
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Figure14. Predicted (solid line) and measured (dotted line) significant wave height 

 
Figure15. Dominant wave period Tp auto correlation with 1hr time lag 

 Fig. 15. Dominant wave periodTp autocorrelation with 1-h time
lag.

 
Figure16. Dominant wave period Tp partial auto correlation with 1hr time lag 

 
 

 
Figure17. Predicted (solid line) and measured (dotted line) (1-B) 2Tp 

 

Fig. 16. Dominant wave periodTp partial autocorrelation with 1-h
time lag.

In this study we have examined whether the time series of
wind speed, significant wave height, and wave period, are
stationary. These parameters are modeled by ARMA and
ARIMA models. We have used Eviews software and the time
series have been evaluated by the Dickey-Fuller unit root test.

This test on wind speed data shows that this time series is
stationary at 99% level. We have plotted ACF and PACF of
wind speed data in Figs. 6 and 10. These figures show that
the behavior of this time series is autoregressive, AR. By re-
gression test on all lags, we found that the best predicted level
relates to lags 1 and 2 h. Adding other lags on regression has
no effect on the prediction level. Adding moving average
coefficients in this case is not efficient. Therefore, the best
model in this case is autoregressive, AR. Coefficients of this
model are given in Table 2. The table shows the following
relation, with a prediction level of 79.6%:

Ut = 0.358+ 1.149Ut−1 − 0.305Ut−2, (9)

whereUt stands for the wind speed at timet(h). The pre-
dicted and measured wind speeds are shown in Fig. 11.

The Dickey-Fuller unit root test on significant wave height
Hs shows that the significant wave height time series is sta-
tionary at the 95% level. ACF and PACF of this time series
are plotted in Figs. 12 and 13, respectively. Regressions on
all lags indicate that the best model for theHs time series is:

Hs,t (m) = 0.0089+ 0.976Hs,t−1(m). (10)

The predicted and measured significant wave heights are
shown in Fig. 14. The statistical coefficients of this time se-
ries model are shown in Table 3.
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The Dickey-Fuller unit root test on dominant periodTp

shows thatTp time series is stationary at 99% level. ACF
and PACF of this time series are shown in Figs. 15 and 16.
The best prediction level of the ARMA model for this time
series is 20% level, and therefore the ARIMA model should
be used for this time series. Using the ARIMA test for this
time series, we found that the best model for this time series
is:

(1 + 1.761B + 1.325B2
+ 0.5283B3)(1 − B)2Tpt

= −1.02ut−2, (11)

whereut−2 is the residual of two back lags,ut stands for
at andTp is the most probable period of the wave field. This
model predictsTp at the 83.52% level. Statistical coefficients
of this model are shown in Table 4. The predicted and mea-
sured values of(1−B)2Tp are shown in Fig. 17.

7 Conclusions

1. Observed winds (U10) behave as land and sea breezes,
with the minimum speed occurring around midnight and
the maximum around noon. The wind speed varied from
0.34 to 10.38 m/s.

2. Observed significant wave height (Hs) and mean zero-
up crossing period (Tz) varied from 0.1 to 1.02 m, and
3.56 to 4.95 s respectively. The wave conditions mostly
reflect sea states 2 and 3 (WMO code).

3. Due to continuous variations of wind speed with time,
correlations between wind speed and wave parameters
show low values.

4. The wave height distribution follows the Rayleigh dis-
tribution law. The ratio ofHs/Hm obtained with the
present data is 1.75.

5. Wave conditions mostly reflect local waves or sea
waves.

6. There is no correlation between wave age and wave
steepness. This is due to the fact that the wave never
ages during the diurnal wind cycle. The waves are local
waves.

7. Cross correlation ofU10 andHs reveals that waves lag
behind wind by about 4 h.

8. The time series of the wind speed (U10), significant
wave height (Hs) and dominant wave period (Tp) are
stationary at level 99%, 95% and 99%, respectively.
The best model and the prediction level of these param-
eters are:

Ut = 0.358+ 1.149Ut−1 − 0.305Ut−2 R2
= 79.6%

Hs,t (m) = 0.0089+ 0.976Hs,t−1(m) R2
= 90.4%

(1 + 1.761B + 1.325B2
+ 0.5283B3)(1 − B)2Tp,t

= −1.02Ut−2 R2
= 83.5%

Table 4. Statistical coefficient of dominant period Tp time series
model.

Variable Coeff. Std. Error t-Statistic Prob.

(1−B)2 TP(−1) −1.7618 0.0329 −53.4860 0
(1−B)2 TP(−2) −1.3258 0.06256 −21.2007 0
(1−B)2 TP(−3) −0.5283 0.0356 −14.8013 0

MA(2) −1.0268 0.0044 −228.7775 0
R-squared 0.8351 Mean dependent var −0.0001

Adjusted R-squared 0.8341 F-statistic 835.6557
Durbin-Watson stat 2.0115 Prob(F-statistic) 0

 
Figure16. Dominant wave period Tp partial auto correlation with 1hr time lag 

 
 

 
Figure17. Predicted (solid line) and measured (dotted line) (1-B) 2Tp 

 Fig. 17. Predicted (solid line) and measured (dotted line)
(1−B)2Tp.
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