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Abstract. A combination of EISCAT incoherent scatter
radar measurements, optical and magnetometer data is used
to study the plasma in and around pre-noon structured pre-
cipitation and auroral arcs. Particular attention is paid to re-
gions of comparatively low E-region density observed adja-
cent to arcs or structured precipitation in the EISCAT Sval-
bard radar field-aligned measurements. Comparison between
luminosity and incoherent scatter electron density measure-
ments shows that the low-density regions occur primarily
due to the absence of diffuse precipitation rather than to a
cavity formation process. Two cases of arcs and low den-
sity/luminosity regions are identified. The first is related to
a strong Pc5 pulsation event, and the absence of diffuse pre-
cipitation is due to a large-scale modulation of the diffuse
precipitation. In the second case the equatormost arc is on
a shielding boundary and the low-density region coincides
with a strong flow region just poleward of this arc. Regions
of high electric field and low luminosity and conductance are
observed prior to intensification of the structured precipita-
tion in both cases. The ionospheric current is enhanced in
the low conductance region, indicating that the strong elec-
tric fields do not result solely from ionospheric polarization
electric fields, and thus are mainly driven by magnetospheric
processes. The average energy of the precipitating electrons
in the arcs and structured precipitation is, according to EIS-
CAT measurements, 500 eV and the energy spectra are simi-
lar for the pulsation and shielding cases. The average energy
is thus significantly less than in the diffuse precipitation re-
gion which shows central CPS-like energy spectra. We sug-
gest that the low ionospheric conductance of 0.7 S in the low
density regions is favorable for the arc formation process.
This is in quantitative agreement with recent simulations of
the ionospheric feedback instability.
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1 Introduction

The main objective of this paper is to study the characteristics
of the plasma in the vicinity of dayside auroral arcs by means
of field-aligned incoherent scatter radar data. Particular at-
tention is paid to the conductance, as this is a key factor de-
termining whether the ionosphere may play an active role in
the arc formation process through ionospheric feedback (e.g.
Lysak and Song, 2002). While many detailed studies have
estimated the conductance in and around nightside auroral
arcs (seeAikio et al., 2002, for a recent paper), there are no
reports of such measurements in and around dayside aurora.
There are two main reasons for this: (1) The scarcity of data,
as it is only the EISCAT Svalbard radar which can yield con-
jugate optical and incoherent scatter radar data from dayside
auroral arcs, and this only for a few weeks per year during
the polar night; and (2) most attention has been paid to the
cusp-related aurora where estimates of plasma flow are con-
sidered more important than conductance estimates, so that
the radar mode used usually does not yield useful conduc-
tance estimates (i.e. low elevation measurements are often
used to observe line-of-sight velocities, rather than magnetic
field-aligned measurements, e.g.Moen et al., 2001). Even
when the radar has been operated in a field-aligned position,
no attention has so far been paid to conductance estimates
(e.g.McCrea et al., 2000; Lockwood et al., 2000).

The fact that the background conductance plays a role for
the large-scale distribution of auroral acceleration events is
well-established (e.g.Newell et al., 1996). If this is due
to an ionospheric feedback instability, then low background
conductance will also be favorable for electron acceleration
on smaller spatial and temporal scales (e.g.Lysak and Song,
2002; Pokhotelov et al., 2002a,b) than the diurnal variations
determined byNewell et al.(1996). In general, ionospheric
conductance must affect arc formation directly on the arc for-
mation time scale, so that if it is important for the summer-
winter asymmetry, as suggested in the previously cited re-
ports, it must be important for single events, as well. The
level of the background conductance can also be important
for the distribution of field-line oscillations, as low enough
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conductance can reduce the ionospheric reflectivity and thus
strongly dampen the imposed oscillations (Lysak, 1990). As
such oscillations may be associated with aurora (e.g.Sam-
son et al., 1991; Kozlovsky and Kangas, 2002) this may
in turn influence the presence of aurora. Furthermore, the
ionospheric conductance may affect the threshold for the in-
terchange instability, which is another mechanism proposed
for auroral arc formation (e.g.Golovchanskaya and Malt-
sev, 2003). In general terms, high ionospheric conductance
will have a damping effect on any magnetospheric instabil-
ity which depends on large electric fields developing during
the course of the instability, as these may be short-circuited
through the ionosphere.

Magnetospheric current systems may not only create arcs
and associated conductance enhancements. The cause and
effect may be the opposite, as discussed above, with down-
ward current systems associated with magnetospheric pro-
cesses causing low density and thus low conductance regions
in the ionosphere. This phenomenon, “E-region cavity for-
mation”, has been modeled byBanks and Yasuhara(1978);
Doe et al.(1995); Karlsson and Marklund(1998), and cav-
ity formation against a solar EUV produced E-region back-
ground in the dayside cusp region was observed byNilsson
et al. (1998). Such cavity formation may in turn contribute
to further ionospheric feedback, as modeled byStreltsov and
Lotko (2002).

Even though ionospheric conductance may be important,
it will only provide a modification of a magnetospheric en-
ergy input. This energy input can essentially come from ei-
ther the dayside (direct solar wind-magnetosphere interac-
tion, mainly through the cusp) or the nightside (i.e. the day-
side aurora can be regarded as an extension towards midday
local time of the nightside auroral oval). An aim of all de-
scriptions and classifications of auroral arcs in the dayside is
to distinguish between these two major sources. The com-
monly used arc classification ofSandholt et al.(1998) de-
scribes and classifies all kinds of dayside aurora in relation
to the interplanetary magnetic field (IMF), as at least the lo-
cation may be affected by the IMF even if the aurora occur on
closed field-lines. We will relate to the classification scheme
of Sandholt et al.(1998) when we discuss our arc observa-
tions.

Most published studies on dayside aurora concern
poleward-moving auroral forms (PMAF) on open magnetic
field-lines, closely linked to the reconnection of magneto-
spheric field-lines to the solar wind (e.g.Sandholt et al.,
1996; Fasel, 1995). However, the closed field-line dayside
region is also rich in auroral phenomena, as reported in a
number of papers. We will just mention a few of particu-
lar relevance to this study here:Milan et al.(1999) reported
short-period (1–2 min), poleward-moving auroral forms sim-
ilar to the cusp-related auroral forms, but apparently related
to the post-noon convection reversal. It was thus proposed
that this aurora was the optical signature of boundary plasma
sheet precipitation in the region 1 field-aligned current sys-
tem. The periodicity was attributed to ULF wave activity.
Prikryl et al.(1999) showed evidence that subcusp ULF wave

activity in the form of Pc5 pulsations was driven by changes
in the solar wind and could thus be very similar to phenom-
ena on open field-lines. It was even suggested that field-line
resonances occurring just equatorward of the cusp could lead
to a reverse feedback, modulating the reconnection rate.Ko-
zlovsky and Kangas(2002) explained poleward moving au-
roral forms on closed field-lines in terms of field-line eigen-
mode oscillations. Another suggested that a source process
for dayside arcs is the interchange instability (e.g.Kozlovsky
et al., 2003; Safargaleev et al., 2003). The interchange in-
stability is expected to lead to current sheet splitting, and
upward current regions should be favorable for arc forma-
tion. At the inner plasma sheet boundary the same mecha-
nism leads to a stability, deflecting the plasma from reaching
lower latitudes. This shielding effect leads to the formation
of the Alfvén layer and region 2 field-aligned current (e.g.
Blanc and Caudal, 1985), which is upward in the morning
auroral oval and thus favorable for arc formation.

In this study we complement previous studies using joint
optical (all-sky camera), convection (EISCAT VHF radar at
low elevation, IMAGE magnetometer chain) and EISCAT
Svalbard field-aligned measurements in the vicinity of pre-
noon arcs, obtained during the polar night on 21 December
1998. The data set allows us to determine the geophysi-
cal region in which the aurora occur, as well as the electric
fields and current systems associated with the arcs. Further-
more, we can study the relation between ionospheric conduc-
tance and pre-noon auroral arcs, including the possible role
of background conductance in the arc formation process, as
well as the role of the arc current system, in creating structure
in the ionospheric conductance.

2 Instruments

For the present study we have used data from the EISCAT
Svalbard radar (ESR), the EISCAT VHF radar located in
Tromsø, the Finnish Meteorological Institute all-sky camera
in Longyearbyen, the IMAGE magnetometer chain, the Wind
and IMP-8 solar wind satellites and data from the Polar satel-
lite.

The EISCAT Svalbard radar is located near Longyearbyen,
at 78.153◦ N, 16.029◦ E, corrected geomagnetic coordinates
75.19◦ N, 112.13◦ E. The radar was operated in the GUP3
mode, providing estimates of electron density, electron and
ion temperature and line-of-sight velocity. The radar beam
was directed along the geomagnetic field, using 81.6◦ eleva-
tion and 180.6◦ azimuth (0 to the north, positive clockwise).
Altitude profiles of E-region densities allow for an estimate
of ionization rates (due to the low life time of density en-
hancements at these altitudes, though an estimate of the time
derivative of electron density or steady state assumption must
be used), and can thus serve to indicate whether an auro-
ral arc caused by emissions from the E-region was within
the radar beam. Precipitation may also enhance electron
temperatures, in particular the F-region electron temperature
responds quickly and strongly to soft electron precipitation
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(100 eV), as, for example, expected within the ionospheric
projection of the cusp (Lockwood et al., 1993; Watermann
et al., 1994; Nilsson et al., 1994). Ion temperatures are sig-
nificantly enhanced by Joule heating in the presence of en-
hanced electric fields, so that ion temperature enhancements
can be used to obtain a morphological picture of the presence
of enhanced electric fields. Using modeling work such as that
of Schunk et al.(1975), it is also possible to obtain a rough
estimate of the magnitude of the electric field enhancement
(ignoring any influence of the neutral wind, which must be
assumed to be insignificant).

Ionospheric plasma drift (ion velocity) in the F-region
over Svalbard was observed using the EISCAT-VHF com-
mon program CP-4B experiment. The radar is located in
Tromsø (69.58◦ N, 19.21◦ E), but the CP4 program allows
one to reach higher latitudes, approaching 80◦. It uses the
VHF radar in split-beam mode to measure at an elevation
of 30◦ to the horizon both towards the geographic north and
somewhat to the west simultaneously. For both beams, data
was obtained from twenty scattering volumes (gates), 40 km
apart, with a temporal resolution of 1 min. Vectors of the
plasma velocity were calculated for a given geomagnetic lat-
itude by combining the line-of-sight velocities from the two
beams and using the beam-swinging method (seeKozlovsky
and Kangas, 2002, for more details). East-west flow esti-
mates are obtained from the difference between the two radar
beams, i.e. longitudinal homogeneity is assumed. The north-
south estimates are thus much more reliable. Estimates of
the ion temperature can also be used to infer high drift ve-
locity. Further support for the convection studies can be
obtained through magnetic field data from the NyÅlesund
(NAL), Longyearbyen (LYR), Hornsund (HOR), Hopen Is-
land (HOP), and Bear Island (BJN) stations of the IMAGE
magnetometer network. By assuming mainly east-west cur-
rents (magnetometer X-component), one may also utilize
the information from the Z-component and the combined
magnetometer data from the chain to obtain the structure of
the currents in more detail through an inversion technique
(Kotikov et al., 1987).

The Finnish Meteorological Institute (FMI) all-sky cam-
era (ASC) in Longyearbyen (LYR, 78.20◦ N, 15.70◦ E) mon-
itored auroras providing one frame every 20 s. The all-sky
camera operates in the 557.7-nm emission line. Corrected
geomagnetic coordinates (CGM) of the camera are 75.33◦ N,
111.52◦ E.

The interplanetary conditions were obtained from two
satellites, IMP-8 located at [X, Y, Z] GSM=[12.5,−33.7,
−6.8]RE , and Wind located at [X, Y, Z] GSM=[43.4,−62.0,
8.4]RE . Both satellites provided interplanetary magnetic
field (IMF) data. The solar wind velocity and dynamic pres-
sure (measured by Wind) were fairly stable at 360 km s−1

and 1.7 nPa, respectively. By comparing IMF disturbances
(variations) observed by the two satellites, the propagation
time from IMP-8 to Wind was determined to be 5 min (i.e.
Wind observed the same IMF features that were observed
at the IMP-8 location 5 min earlier). Simple calculations
show that in the X-Y plane the solar wind features were
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EISCAT CP4 split beam data[ms−1

] (see text for details). Circles
indicate latitude of the arcs discussed in the paper. The horizontal
white line indicates the latitude of the EISCAT Svalbard radar.

stretched at an angle of 30◦ to the Earth-Sun line. Hence,
the solar wind parameters at the Earth’s bow shock (assumed
at 14.6RE) corresponded to those measured 21 and 26 min
later by IMP-8 and Wind satellites, respectively. Transition
from the bow shock to the ionosphere takes 7 min, including
5 min for passing the magnetosheath to the subsolar magne-
topause and 2-min Alfv́en transit time to reach the near-noon
ionosphere (Lockwood et al., 1989). Taking into account the
above calculations, data from the IMP-8 satellite should be
time-shifted by 14 min to show the expected time of the IMF
impact in the near-noon polar cap ionosphere.

Finally, global ultraviolet images of the auroral oval ob-
tained from the Visible Imaging System (VIS) on board the
Polar satellite (Frank et al., 1995) were used to monitor the
large-scale auroral background.

3 Observations

3.1 Convection and general ionospheric background condi-
tions

The convection was estimated using EISCAT CP4 data and
IMAGE magnetometer chain data. The standard “beam-
swing” analysis of CP4 split-beam data assumes longitudi-
nal homogeneity on the spatial scale of the separation of the
two beams. If this assumption is not valid, the east-west drift
may be exaggerated in the standard analysis. Keeping this
uncertainty in mind we show the CP4 derived east-west flow
in Fig. 1, together with estimates of the latitude of the optical
aurora which will be discussed in more detail in Sect.3.4.

The ESR ion temperature enhancements also confirm the
presence of strong ion flows at the periods when such are
indicated by the CP4 data, but that the velocity never ex-
ceeds 2 kms−1, as indicated by the standard analysis CP4
data. We will show in a later section currents in the east-west
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Fig. 2. Polar VIS ultraviolet image of the auroral oval in mag-
netic latitude and magnetic local time coordinates. The field-of-
view of the Longyearbyen all-sky camera at the indicated time
(06:32:55 UT) is shown by the red circle.

direction derived from IMAGE magnetometer chain X- and
Z-components (using the inversion technique ofKotikov
et al., 1987), together with all-sky camera keograms. From
Fig. 1 we can see that the ESR was making observations in
the vicinity of a border between the eastward flow on the
poleward side and the low flow (corotation) with significant
Pc 5 pulsations on the equatorward side. Polar VIS data
shows that the observations were made inside the main UV
auroral oval, as shown in Fig.2.

Finally, we notice that the measurements were obtained
during the polar night, with the solar zenith angle at
Longyearbyen being in the range from 113.2◦ at 05:00 UT
to 107.3◦ at 07:00 UT.

3.2 Overview of EISCAT Svalbard radar data

Data from the EISCAT Svalbard radar, as well as the lumi-
nosity in the all-sky images which correspond to Longyear-
byen, are collected in Fig.3. Also shown are the IMF data
from the IMP-8 satellite. As can be seen from panel (a) of
this Figure the interplanetary magnetic field was dominated
by theBy component, withBz mostly weakly negative until
about 06:10 UT. The electron density measured by the ESR
is shown in panel (b) of Fig.3. Three features are of impor-
tance for this study:

1. The presence of significant electron densities at E-
region altitude throughout most of the period, with a
peak density at around 115 km. Considering the fact
that the measurements were made in ionospheric dark-
ness, this indicates precipitation, most likely precipi-
tation of electrons with an energy up to about 5 keV
(Rees, 1989; Kirkwood and Osepian, 1995). An inver-
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line-of-sight integrated luminosity (arbitrary scale, red line) from
the FMI Longyearbyen all-sky camera,(f) average energy of pre-
cipitating electrons[eV ] derived from EISCAT ionization profile.

sion technique can be used to obtain the source energy
spectrum from the ESR data (Sect.3.3).

2. There are several structures with enhanced electron den-
sity in the upper E-region and lower F-region which ap-
pear quite typical for dayside auroral arcs, as previously
reported inWatermann et al.(1993); Nilsson and An-
dersson(1997); Nilsson et al.(1998). The peak energy
of this precipitation appears to be about 1 keV, judging
from the ionization altitude interval (see also Sect.3.3).

3. There are some regions with very low electron den-
sity in the time periods just adjacent to the arc obser-
vations. This could be a phenomenon related to high
electric fields, cavity formation in the return current re-
gion just adjacent to the arcs, or just an absence of the
more energetic precipitation (feature 1 above). Two pe-
riods show clear, low-density regions, arcs, and (as will
be discussed later), the strongest electron and ion tem-
perature enhancements. These are marked in Fig.3 as
event 1 (low-density region centered around 05:37 UT)
and event 2 (low-density region around 06:30 UT).

From the incoherent scatter radar data we have calcu-
lated the Hall and Pedersen conductances (Fig.3e, green and
blue lines, respectively). We have used the MSIS90 model
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(Hedin, 1991) and assumed equal electron, ion and neutral
temperatures in the calculation of conductance (seeSenior,
1991, and references therein for details on the calculation of
conductance from ISR data). The Pedersen conductance in
the diffuse precipitation region is 3.2±0.6 S, where the indi-
cated uncertainty is the variance in the estimate over the ob-
servation interval. The uncertainty in each estimate (based on
the uncertainty estimate from the EISCAT analysis) is signif-
icantly smaller. In the arcs of events 1 and 2 the conductance
is about 2 to 3 S. The highest conductance observed is for an
arc observed at the end of event 2 (at 06:48 UT), with a Ped-
ersen conductance of 5 S. The lowest conductance observed
was 0.5 S, and the conductance observed in the low-density
regions were in the range 0.7±0.2 S.

The conductance enhancements (a signature of precipi-
tation) are compared with an estimate of the luminosity in
Fig. 3e. Ten pixels from the keogram around the location
of the ESR field-of-view at 150 km were added to obtain an
ESR site luminosity estimate (Fig.3e, red line). It is not ob-
vious that this luminosity in “arbitrary units” should show
anything but a rough morphological similarity to the ESR
measurements. Furthermore, there are indications that some
clouds were present which may provide scattered light which
appear as diffuse aurora. However, as can be seen in Fig.3,
panel (e), the conductance and luminosity follow each other
closely in the regions of harder precipitation. Indeed this is
the theoretically expected behavior if the flux of electrons is
modulated while the characteristic energy remains constant.

We have also performed calculations of the expected vari-
ance of the luminosity based on the EISCAT density profiles
(see Sect.3.3, confirming that such close covariation can be
expected for the current conditions). It is thus clear that the
low-density regions (in particular the main low-density re-
gions in the beginning of cases 1 and 2) correspond to very
low luminosity, indicating that the absence of precipitation
is a major factor behind the appearance of these E-region
low-density structures. An alternative possibility could be
cavity formation in a downward current region against the
background of diffuse precipitation, which would yield low
density without a corresponding decrease of the luminosity.

The F-region electron temperature is enhanced on a num-
ber of occasions throughout the studied period, as can be
seen in Fig.3, panel (c). There are sporadic electron tem-
perature enhancements throughout the observation period.
Whereas some arcs as identified from E-region density en-
hancements also show F-region electron temperature en-
hancements, there is no one-to-one correspondence. Often
there is no obvious E-region density enhancement associated
with the electron temperature increase. This is similar to ob-
servations in the cusp, and a likely cause is a significant flux
of soft electron precipitation, typically around 100 eV. Such
precipitation may thus be present to a varying degree in all
the regions observed.

The ion temperature is enhanced on a number of occasions
just as the electron temperature. As can be seen in panel
(d) of Fig.3, temperatures of 4000 K are observed, and even
higher in some cases. This corresponds to an ion velocity of

roughly 2 kms−1, using the modeling work ofSchunk et al.
(1975). The EISCAT ion temperatures are somewhat noisy
and there may be reason to doubt the very highest temper-
ature estimates. The uncertainty estimates from the EIS-
CAT analysis are small, but temporal and/or spatial change
of the ion drift on time scales shorter than the analysis pre-
integration/smaller than the radar beam can yield a broaden-
ing of the EISCAT spectra and thus an apparent increase in
the ion temperature. However, the high ion temperatures are
nevertheless a good indicator of strong or moderately strong
and variable electric fields. By comparison of panels (b) and
(d) of Fig. 3, it can be seen that the strongest ion tempera-
ture enhancements are seen in the regions with low density,
adjacent to arc structures.

3.3 Energy spectra derived from EISCAT data

The atmospheric ionization altitude profile resulting from en-
ergetic particle precipitation is energy- and pitch-angle de-
pendent. Briefly, more energetic particles can penetrate to
lower altitudes (Rees, 1989). Measurements of ionospheric
density profiles can therefore be inverted, to obtain the source
distribution, giving rise to the observed ionospheric electron
density distribution (assuming steady state or using observed
temporal variability) (e.g.Kirkwood and Osepian, 1995). We
have used a similar calculation based on the algorithm de-
scribed inSergienko and Ivanov(1996), solving the linear
system of equations in an iterative fashion. A large number
of Maxwellian distributions were assumed in the final calcu-
lation rather than the typical mono-energetic beams. In this
way a smooth energy spectrum is achieved. It is assumed that
all ionization is produced by electrons, as the energy flux of
ions is typically much smaller. The result of the energy spec-
tra calculations is summarized in Fig.4, which shows three
energy spectra from the structured precipitation observed at
05:40 (blue), 06:37 (blue bold) and 06:45 UT (blue dotted)
in the ESR data. The green and red lines show sample en-
ergy spectra of the diffuse, harder precipitation, from 05:25
and 06:02 UT, respectively. It is clear that the arcs all have
similar source spectra, and that the energy is significantly
lower than for the diffuse precipitation. The diffuse precipi-
tation has an average energy of about 2 keV. The more ener-
getic part is clearly consistent with a central plasma sheet
(CPS) source. The arcs are created by a colder electron
population, with an average energy of about 500 eV (calcu-
lated for energies above 200 eV), consistent with a boundary
plasma sheet (BPS) or low-latitude boundary layer (LLBL)
source. However, this population may also be even colder
(i.e. ionospheric) with electrons accelerated by a parallel po-
tential drop, as can be expected for discrete aurora. These
ESR measurements do not have sufficient resolution to dis-
tinguish between these two possibilities. Panel (f) of Fig.3
shows the average energy as a function of time.

The energy input can also be determined, and is
about 0.5 erg cm−2s−1 for the diffuse precipitation and 1–
3 erg cm−2s−1 for the arcs studied in detail. Using the model
of the auroral green line (Ivanov et al., 1993) and the electron
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spectra derived from the EISCAT data as input parameters
of the model, we calculated the 557.7-nm emission inten-
sity. The calculations showed that in the diffuse precipitation
region the conductance and luminosity should indeed vary
together in the way shown in panel (e) of Fig.3. Further-
more, the altitude of maximum emission was determined to
be 115 km for the diffuse precipitation.

3.4 Overview of all-sky camera data

The all-sky camera data for the period between 05:00 and
07:00 UT is summarized using a keogram along the mag-
netic meridian, shown in Fig.5 (arbitrary units). The lati-
tude scale (y-axis) assumes an emission altitude for the dif-
fuse precipitation of 115 km, determined from simulations
of the expected emissions based on ESR measurements (see
Sect.3.3). The structured precipitation occurs at higher alti-
tude, about 150 km, as determined from ESR measurements
in the same way, which is also consistent with typical morn-
ing structured aurora, as determined byStarkov(1968); Jack
and Hallinan(1994). For this study the structured aurora of
interest occur close to zenith, so that the altitude assumption
is not very important.

Superimposed on the keogram are contour lines of the
ionospheric Hall current (green lines, eastward current; yel-
low lines, westward current, A/km). The zero line is shown
with a thick yellow line. A thick red line at the latitude of
ESR indicates the times when ESR observed the more ener-
getic precipitation of CPS-like character. The times of events
1 and 2 are indicated by vertical red lines. The Hall current
estimates show that the large-scale convection was eastward,
consistent with the standard interpretation of the CP4 data.

For event 1 the most important feature to note is the gen-
eral decrease in the diffuse luminosity, which was also seen
in the estimate of the luminosity over ESR shown in Fig.3,
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Fig. 5. Keograms along the magnetic meridian. The colour scale
is in arbitrary units. Contour lines show ionospheric Hall current,
A/km. Green contour lines show the eastward current and yellow
contour-lines the westward current. The zero line is shown with a
thick yellow line. A thick red line at the latitude of ESR indicates
the times when ESR observed the more energetic precipitation of
CPS-like character. Vertical red lines indicate the times of events 1
and 2. The y-axis shows geomagnetic latitude.

panel (e). This confirms that the low-density region observed
by ESR corresponds to low luminosity. It also shows that the
low density is not a result of the luminosity region moving
away from the radar (at least not with a convection speed in
the latitudinal direction), but rather a larger scale modula-
tion of the diffuse precipitation. We are also able to identify
some structured precipitation occurring during the absence of
the large-scale diffuse precipitation, intensifying at and after
the time of minimum diffuse precipitation. Event 1 corre-
sponds to a pulse of strong east-west flows and currents being
initiated over a large latitude range, approximately simulta-
neously. This, and the longer periodicity of the pulsations
at higher latitudes, is consistent with field-line, eigen-mode,
toroidal oscillations.

For event 2 the first thing to note from Fig.5 is the low-
luminosity region observed around 06:28–06:29 UT, coin-
cident with enhanced current. This is somewhat similar to
event 1 and indeed corresponds to the lowest density re-
gion observed in the ESR data. The luminosity was very
low throughout the all-sky camera field-of-view. Just after
06:30 UT low luminosity and density is found in a narrow
region between two arcs. The equatormost of these arcs is lo-
cated at the boundary between strong convection and the low
flow/corotation region (as will be discussed later, the current
shown in Fig.5 extends equatorward of this). This is con-
sistent with the upward field-aligned current expected at this
shielding boundary. The strong convection is estimated to
be eastward by the somewhat uncertain CP4 estimates, and
this is indeed consistent with the magnetometer-derived Hall
current estimates.
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Fig. 6. All-sky images integrated to 1-min time resolution. The x and y axis show pixel number. The ESR field-of-view at 150 km is in the
center of the red circle. Magnetic meridional and zonal lines are indicated by red lines. Yellow lines starting from a dot indicate the EISCAT
CP4 beam-swing derived velocity vectors. The CP4 line-of-sight velocities are shown as red lines originating from dots along the radar beam
projection. A white line starting from a dot indicates the length corresponding to 1 km/s. The time of observation and ESR ion temperature
are indicated above each image.

For the two detailed cases we show sequences of all-sky
frames in Figs.6 and7. Only the central part of each im-
age is shown, together with a circle centered on the expected
location of the ESR field-of-view at 150 km altitude, the
magnetic meridional and zonal lines, the line of sight ve-
locities of the EISCAT VHF CP4 experiment, and the es-
timated convection from the standard analysis of the CP4
beam-swing data. Note that this is likely to be an overes-
timation of the real convection (see Sect.3.1). The all-sky
images have been integrated to obtain the same time resolu-
tion as the ESR and CP4 data (1 min). Time and correspond-
ing ion temperature from ESR are shown above each image.
The ion temperature is an average over the 120 to 190 km al-
titude range. The time follows the EISCAT convention and
marks the end of the integration interval.

3.5 Detailed observations, event 1

Figure6 shows a sequence of all-sky images from event 1,
starting at 05:30 UT. There is initially a large-scale patch of
diffuse luminosity which possibly fades to west and south
(panel (1)). Some structured luminosity, enhanced com-

pared to the background, is also seen, at least from panel
(5). The large-scale diffuse luminosity then fades over the
entire field-of-view, with no discernible motion, and remains
low throughout panels (6) to (12). The agreement between
the low luminosity over ESR from these images and the low
E-region plasma density measured by ESR gives confidence
that this is indeed mainly due to a large-scale modulation of
the diffuse precipitation, and not to clouds. The ESR ion tem-
perature estimates show that the ion temperature, and thus the
electric field, increased from panel (4) (05:34 UT), reached
a peak of 2700 K at 05:37 (panel (7)) and then returned to
the background level at 05:40 (panel (10)). This is consis-
tent with (1) the CP4 data which shows increased electric
field and with (2) the magnetometer data which show an in-
creased current for this time. Notable is that the low lumi-
nosity reasonably indicates low conductance, but the current
increases anyway, further consistent with a strong enhance-
ment of the electric field (though probably not as strong as is
indicated by the CP4 beam-swing data). After this a patch of
structured precipitation intensifies just east and north of ESR
(panel (13)), which must be the same structure as was seen
in the ESR data at 05:40 UT, though it is barely discernible
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06:30       Ti: 2500K 06:31       Ti: 6200K 06:32       Ti: 4100K 06:33       Ti: 2800K

06:34       Ti: 1100K 06:35       Ti: 1100K 06:36       Ti: 2100K 06:37       Ti: 3000K
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Fig. 7. All-sky images integrated to 1-min time resolution. The x and y axis show pixel number. The ESR field-of-view at 150 km is in the
center of the red circle. Magnetic meridional and zonal lines are indicated by red lines. Yellow lines starting from a dot indicate the EISCAT
CP4 beam-swing derived velocity vectors. The CP4 line-of-sight velocities are shown as red lines originating from dots along the radar beam
projection. A white line starting from a dot indicates the length corresponding to 1 km/s. The time of observation and ESR ion temperature
are indicated above each image.

in the all-sky image (panel (10)). After this the diffuse pre-
cipitation re-intensifies (panels (15) and onward), both north
and south of the structured luminosity. This is noteworthy
because the structured precipitation has a different source
population compared to the diffuse precipitation (according
to the EISCAT-derived energy spectra of the source popula-
tion) while it occurs inside the region of diffuse precipitation.
Finally, we note that whereas the strongest structured lumi-
nosity (panel (13)) occurred after the intense electric fields
and the decrease in diffuse luminosity, there is considerable
structure within the diffuse background precipitation during
and after “recovery” (panels (15) to (20)).

3.6 Detailed observations, event 2

Figure7 shows a sequence of all-sky images from event 2,
starting at 06:31 UT. The ion temperature is enhanced just
poleward of the arc which forms (panels (1) and (2)), then
reduces somewhat as the arc intensifies and a new arc forms
poleward of ESR and presumably poleward of the flow chan-
nel (panels (3) and (4)). After this (panels (5) and (6)) lower
ion temperatures are observed as the equatorward arc fades.
Ion temperatures increase again when the equatorward arc

re-intensifies (panels (7) and (8)). Finally, the equatormost
arc moves poleward past the radar site and we again ob-
serve lower ion temperatures. The data are fully consistent
with a region of enhanced perpendicular electric field on the
poleward side of the equatormost arc, consistent with the di-
rection of the background convection (implied by the CP4
convection and magnetometer data). The equatormost arc
clearly occurs at the equatorward border of the strong flow,
i.e. at the shielding boundary. If the flow was indeed east-
ward, this would be consistent with an upward field-aligned
current in the same region. The luminosity is also clearly en-
hanced over a large area equatorward of the equatormost arc,
consistent with a simple picture of CPS diffuse precipitation
occurring only equatorward of the arcs and strong flow.

4 Discussion

4.1 Relative location of observations

The first question to answer when discussing the location of
dayside aurora is whether it occurs on open or closed field-
lines. The arcs reported here (i.e. those seen both in radar and
ASC data) occur in an eastward flow region in the morning
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sector or on the border towards a corotating (shielded) region.
This strongly indicates closed field-lines. The precipitation,
giving rise to the diffuse luminosity and corresponding iono-
spheric density enhancement, is clearly of CPS origin. This
is in turn consistent with the statistical results concerning ap-
parent source regions of dayside precipitation ofNewell and
Meng(1992). The pulsations (Pc5) seen equatorward of the
eastward flow region and aurora (in CP4 and magnetome-
ter data) are another possible indicator of magnetospheric re-
gions. The latitude above where no Pc5 pulsations are seen
could be the open/closed field-line boundary, but this is not
consistent with the other data. The near-Earth current sheet is
another geophysical border which may limit field-line oscil-
lations poleward of its ionospheric projection. It is also pos-
sible that the field-line oscillations are excited by the periodic
flow and auroral intensification, and thus occur just equator-
ward of the flow region/auroral oval. IndeedPilipenko et al.
(2001) have reported a coupling between the electrojet and
Pc5 intensity.

The energy spectra of the arcs/structured precipitation sug-
gest that the source population is associated with the BPS or
LLBL, or is caused by an even colder but accelerated popu-
lation, whereas the diffuse precipitation is related to the CPS.
As the precipitation occurs in the return flow region, BPS is
more likely to be a source than LLBL. If the arcs/structured
precipitation are related to the BPS/LLBL, then they should
be observed poleward of the diffuse precipitation, which
agrees fairly well with optical observations for event 2. How-
ever, the structured precipitation observed during event 1 ap-
pears to occur within the spatial region where the diffuse
precipitation of CPS origin occurs in a modulated fashion.
The EISCAT-derived spectra can be interpreted as being a
mixture of two populations, where the low-energy popula-
tion dominates strongly in the structured precipitation, which
points further towards an accelerated cold (ionospheric) pop-
ulation dominating when the CPS precipitation is inhibited.

The shielding (i.e. region 2) current is upward in the morn-
ing sector, so that the situation may be similar to that reported
by Milan et al.(1999), where post-noon periodic aurora was
attributed to boundary plasma sheet precipitation within the
region 1 field-aligned current (which is upward post noon).
In that study the periodicity of the aurora was attributed to
ULF wave activity. For our case the time scale of auroral
intensification is 3 to 5 min whereas the Pc5 pulsations ob-
served equatorward of the aurora have a period of approxi-
mately 10 min. The causal relationship may thus be that peri-
odic intensification of the electric field and aurora at the con-
vection border (or the magnetospheric process behind them)
drive the pulsations, but the latter are strong only at resonant
frequencies, not at all frequencies represented by the driving
mechanism.

Finally, we note that the IMF conditions during event 1
and until 06:10 UT (Bz<0, By>0) correspond to the situa-
tion depicted in Fig. 1c of Sandholt’s arc classification (Sand-
holt et al., 1998). The diffuse precipitation (their type 3) is
always present in the equatormost part. Both events 1 and 2
are related to aurora just poleward of the diffuse (type 3) au-

rora, which is a type 6 aurora in the southward IMF case.
The shielding arc presented here (event 2) is clearly their
type 6 aurora located just poleward of the diffuse precipi-
tation. The picture thus agrees well with that ofSandholt
et al. (1998), though the type 6 aurora extends all the way
to 10 MLT (07:00 UT) and the latitude is higher than usual
(75◦ rather than 72◦ magnetic latitude) in our case. However,
during 06:10 to 06:35 UT a transition took place from south-
ward IMF to northward about 6 nT, according to our estimate
of the delay between solar wind observations and the iono-
sphere. Despite this, the direction and location of convection,
as well as the morphology of the aurora, is in perfect agree-
ment with the type 6 aurora as it is expected for southward
or approximately zero IMFBz. We can conclude that in our
case the type 6 aurora is related to the shielding boundary and
thus to the region 2 current. Such aurora should be affected
by substorm processes and be related to a CPS /BPS source,
just as noted bySandholt et al.(1998) for the type 6 aurora.

Finally, the more dynamic aurora poleward of the shield-
ing arc might be poleward-moving auroral forms coming
from the near noon MLT sector in the arc classification pic-
ture. After 06:35 UT the poleward arcs should be classified
as type 4 aurora, possibly corresponding to sun-aligned arcs
according toSandholt et al.(1998). As we have no ESR
observations in the vicinity of these auroras, we cannot in-
vestigate the associated current system.

4.2 Low-density regions

The E-region low-density regions are coincident with very
low luminosity. Absence of diffuse precipitation is thus the
first and simplest explanation of the low-density regions ob-
served adjacent to arcs in the ISR data. We can thus con-
clude that downward currents do not cause cavities against
the background of the diffuse precipitation, in the way in-
tense downward currents caused cavities against the solar
EUV produced background E-region densities in the case
studied byNilsson et al.(1998). There may still be cavity
formation, but because the background conductance (in the
absence of precipitation) is so low, this will probably not sig-
nificantly affect the conductance on the spatial scale studied.
There may be smaller structures which cannot be resolved by
the radar. Studying the E-region density profiles in detail (not
shown) does not show a pronounced minimum at the altitude
of peak Pedersen conductance, as predicted by theories (Doe
et al., 1995) and observed byNilsson et al.(1998), and thus
we cannot find clear evidence for any cavity formation.

In principle, the downward current region may inhibit the
diffuse precipitation through, for example, a field-aligned po-
tential drop accelerating electrons away from the ionosphere,
and the low-conductance region could then still be a signa-
ture of a downward current region. Lacking data from the
auroral acceleration region, we cannot investigate this possi-
bility with the data set used in this study.

For event 1 it is clear that the low density and luminosity
region precedes the appearance of structured precipitation.
For case 2 low E-region densities are observed prior to arc
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intensification. Thus, arcs and strong electric fields appear
in the regions where the diffuse precipitation is absent. This
is why the low-density regions are observed just adjacent to
the arcs in the ESR data. For event 1 the luminosity corre-
sponding to this diffuse precipitation changes over most of
the all-sky frame simultaneously so that it is clearly a large-
scale modulation of the diffuse precipitation, not the convec-
tive motion bringing a new region into the ESR field-of-view.
The ESR data show clear low-density regions just adjacent to
arcs / structured precipitation. At least for event 1, a straight-
forward explanation is that the low conductance is favorable
for arc formation. The actual conductance changes mea-
sured (lowest background conductance 0.5 mho, high back-
ground conductance 3 mho) are in quantitative agreement
with the ionospheric feedback model results ofPokhotelov
et al. (2002b). Pokhotelov et al.(2002b) performed a two-
dimensional simulation in a dipole magnetic field geometry,
including ionospheric feedback and shear Alfvén wave dy-
namics in the magnetosphere. It was concluded that iono-
spheric feedback could lead to narrow latitudinally-striated
auroral structures, in particular if background conductance
was low enough and magnetospheric energy input (back-
ground convection) was high enough. A background con-
ductance of 0.5 mho was used in the simulations as low con-
ductance and 3 mho as a conductance high enough to inhibit
the arc formation.

For event 2 it may also be that the low conductance / high
electric field corresponds to a different magnetospheric re-
gion (LLBL / BPS) and that the aurora is forming on the bor-
der between these regions. This interpretation is further sup-
ported by Fig.5, where one can see the border between the
equatorward diffuse luminosity and a low luminosity region
moving equatorward from 06:00 UT, when this boundary is
located at the top of the figure. At the time of event 2 this bor-
der is close to ESR, and the studied arc occurs on the border.
However it is still the case that the low density region pre-
cedes the arc intensification rather than the opposite which
would be expected from cavity formation. Furthermore there
is enhanced magnetospheric input (enhanced currents) also
equatorward of the shielding arc (evident from Fig.5), but
strong electric fields and the arc occur only poleward of the
diffuse precipitation, further indicating the importance of the
background conductance.

4.3 Auroral arcs and associated electric fields

The structured precipitation of event 1 is associated with
a field-line eigen-mode toroidal oscillation. The observed
shear is clearly consistent with an intense upward current.
According to the discussion in the previous section the struc-
tured precipitation occurs in the upward current region only
when the diffuse precipitation particles are not available as
charge carriers, and further structuring due to ionospheric
feedback occurs only in the case of low background conduc-
tance.

The relation between the equatormost arc of event 2 and
the electric field is the same as is common on the nightside,

i.e. strong transverse electric field on one side of the arc, in
the same direction as the background convection and point-
ing toward the arc. In the post-midnight sector there will thus
be an enhanced electric field on the poleward side just as in
our observation, e.g.Opgenoorth et al.(1990); Aikio et al.
(1993, 2002). This type of arc is normally associated with
a strong upward current in the arc and a downward current
in the enhanced electric field region adjacent to the arc. The
current system of these arcs is thus the same as is common
for nightside arcs in the same current (R2)/convection (post
midnight return flow) region. It is thus reasonable to regard
the arcs as part of the nightside auroral oval.

The strong electric field precedes the intensification of the
equatorward arc, which is located at the shielding boundary.
The time scale for the observed intensification of electric
field and aurora is 3 to 5 min for event 2. This is shorter
than the observed pulsations at neighboring lower latitudes.
Whereas the EISCAT data show that the electric field is much
reduced at the arc-associated shielding boundary, the magne-
tometer data clearly show that the shielding is not complete.
there is a significant current in the region of enhanced con-
ductance equatorward of the shielding arc. The arc thus ap-
pears at the conductance border, not at the border of the mag-
netospheric energy input, consistent with the importance of
ionospheric feedback.

5 Conclusions

The arcs studied in detail occur in the eastward flow region
associated with the morning return flow or on the border be-
tween eastward flow and corotation. For these arcs one may
note the following:

The conductance is enhanced in the arc regions compared
to the plasma just adjacent to the arcs, though only weakly
(rising from 0.5–1 S to 2–3 S) for the cases occurring within
the ESR field-of-view. The background conductance seen
outside arc/cavity events is larger, 3 S for the case studied.
The change of conductance and field-of-view integrated lu-
minosity agrees very well between this background and the
low-density regions (cavities) surrounding the arcs. This
shows that absence of precipitation is a major factor be-
hind the low conductance in the cavities. No evidence can
thus be found for cavity formation against the background
density enhancement caused by diffuse precipitation. Cav-
ity formation may still play a role after arc formation. It
is suggested that the background conductance enhancement
caused by diffuse precipitation inhibits arc formation in the
same way as solar-produced conductance enhancement may
inhibit auroral arc formation.

The low-density regions are associated with strong electric
fields and occur just adjacent to arcs. The close relationship
between arc and cavity observations in the ESR data does not
result from cavity formation in the downward current region
associated with the arc but rather indicates that low back-
ground conductance is favorable for arc formation.



H. Nilsson et al.: Radar observations in the vicinity of pre-noon auroral arcs 1795

The transverse electric field is strongly enhanced poleward
of the arcs which could be studied in detail, consistent with
post-midnight nightside arcs. The intensification of the arcs
is associated with a channel of strongly increased transverse
electric field. The strong flow is leading, and subsides as the
equatormost arc intensify. The time scale for these intensi-
fications and fadings was 3–5 min. The current calculated
from magnetometer measurements increases in the low con-
ductance high electric field regions, indicating that the strong
electric fields result from magnetospheric driving rather than
an ionospheric feedback. At least for one case reported here
the arc on the shielding border (associated with the region
2 upward current) has the same current system as is com-
mon for nightside arcs in the same current (and convection)
region.

The combination of incoherent scatter radar and optical
data allows us to determine that the structured precipita-
tion consisted of comparatively cold electrons (average en-
ergy 500 eV calculated for particle energies above 200 eV).
Electrons of ionospheric origin accelerated through a field-
aligned potential drop are a plausible source. The diffuse
harder precipitation seen around (event 1) and equatorward
(event 2) of the arcs had an average energy of about 2 keV.
For event 2 the energy difference may be because diffuse
and structured precipitation corresponds to different magne-
tospheric regions (CPS vs. LLBL/BPS).
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