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Abstract. A one-dimensional (1-D), time-dependent,
adaptive-grid MHD model with solar wind structure has been
used in the past to study the interaction of shocks. In the
present study, we wish to study some fundamental processes
that may be associated with slow shock genesis and their pos-
sible interactions with other discontinuities. This adaptive-
grid model, suitable for appropriate spatial and temporal nu-
merical simulations, is used for this purpose because its finer
grid sizes in the vicinity of the steep gradients at shocks make
it possible to delineate the physical parameters on both sides
of the shocks. We found that a perturbation with decelera-
tion of solar wind will generate an ensemble consisting of
a forward slow shock, a fast forward wave and a reverse
slow shock. On the other hand, a perturbation with an in-
crease in acceleration of solar wind will generate both a slow
shock and a fast shock. These two perturbations, although
not unique, may be representative of momentum and pres-
sure changes at the solar surface.

During the transition of a fast shock overtaking a slow
shock from behind, the slow shock might disappear tem-
porarily. Also, during the process of the merging of two
slow shocks, a slow shock-like structure is formed first; later,
the slow shock-like structure evolves into an intermediate
shock-like structure. This intermediate shock-like structure
then evolves into an intermediate wave and a slow shock-like
structure. Finally, the slow shock-like structure evolves into a
slow shock, but the intermediate wave disappears by interact-
ing with the non-uniform solar wind. This complex behavior
demonstrates the non-unique nature of the formation of slow
shocks, intermediate shocks and their derivative structures.

We emphasize the main aim of this work to be both:
(a) non-unique input physical parameters to explain the
paucity of observed slow shocks, as well as (b) the impos-
sibility of backward tracing to the history of input bound-
ary conditions in view of the present inability to describe
unambiguous inputs at the Sun.
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1 Introduction

There are six classical shock solutions – one fast and one
slow shock, and four intermediate shocks (DeHoffmann and
Teller, 1950), according to the theory of magnetohydrody-
namic (MHD) Rankine-Hugoniot relations. All six shocks
are coplanar: the upstream and downstream magnetic field
and velocity vectors are in the same plane. Fast shocks
produce a jump from the upstream flow speed from above
the fast speed to below the fast speed downstream; also the
transverse component of the magnetic field increases across
the fast shock. Slow shocks change the flow speed from
above the slow speed upstream to below the slow speed
downstream, and the transverse component of the magnetic
field decreases across the slow shock. Intermediate shocks
take the flow speed from above the intermediate speed up-
stream to below the intermediate speed downstream; in addi-
tion, they rotate the transverse component of the magnetic
field by 180◦ (Kennel et al., 1989). From simulation re-
sults, Chu and Taussig(1967) showed that the intermedi-
ate shock is nonevolutionary, and claimed that the interme-
diate shocks should not be expected in nature. However,Wu
(1987) showed that, via simulation of a set of resistive MHD
equations, that the intermediate shock can be stable in some
situations. In addition,Chao et al.(1993) identified an in-
termediate shock near 9 AU from the Voyager 1 plasma and
magnetic field data.

Whang(1987) suggested that the decrease in the Alfvén
speed at increasing heliocentric distance causes the normal
Alfv én Mach number of a forward slow shock to become
greater than 1, and the shock should eventually evolve from a
slow shock into a fast shock.Chao et al.(1987) andWu et al.
(1996a) employed two ideal finite-difference MHD simula-
tion codes to simulate a slow forward shock propagating in
a non-uniform solar wind. The simulation demonstrated that
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the speed of the slow shock decreases and that the slow shock
does not evolve into a fast shock in a special situation that in-
volves propagation into a positive density gradient.

In this paper, we use a one-dimensional, time-dependent,
adaptive-grid, MHD model with a representative solar wind
structure to study the interaction of slow shocks. Actually,
the model is a 112D code in the sense that the transverse ve-
locity and magnetic field components are considered; how-
ever, their variation with respect to the azimuthal direction
is taken to be zero. Three cases with different types of per-
turbation are studied in this paper. In Case 1, we will show
that a forward slow shock (FSS) and a reverse slow shock
(RSS) can be generated by a perturbation that incorporates
a decreasing pressure and radial velocity. In Case 2, a per-
turbation with increasingpressure and radial velocity will
generate both a slow shock and a fast shock.

In order to understand further the interaction between the
fast and slow shocks, two perturbations will be put into the
lower boundary (at 28R�, whereR� is the solar radius,
6.95×105 km) at a different time period for Case 3. First,
we introduce a perturbation with decreasing pressure and ra-
dial velocity at the lower boundary in order to generate slow
shocks. Later, we introduce another perturbation with in-
creasing pressure and radial velocity at the lower boundary,
in order to generate a fast shock and allow it to overtake a
slow shock from behind. The results will show that the slow
shock disappears temporarily during the transition of the fast
shock overtaking the slow shock from behind; during the
temporal transition of the two merging slow shocks, a slow
shock-like structure will first be created. The slow shock-
like structure will then evolve into an intermediate shock-like
structure later. Then, the intermediate shock-like structure
will evolve into a slow shock-like structure and an interme-
diate wave. The former will steepen into a slow shock, but
the latter will disappear by interacting with the non-uniform
solar wind.

The main aim of this work is to explore two points via a
limited search in input parameter space. The first point is to
examine some possible reason(s) for the paucity of observed
slow shocks. The second point is to explore the possibility of
backward tracing of various interplanetary discontinuities to
the history of input boundary conditions at the Sun. We are
not aware of published work in either of these two contexts.
The parameter space for this objective is almost limitless.
Nevertheless, we have chosen a limited and a specific set of
momentum and thermal pulses that might represent activity
within active regions or coronal holes. We do not consider
changes in the magnetic field in this study.

The basic MHD equations are listed in the next section en-
titled “Magnetohydrodynamic Equations.” We will discuss in
more detail the interaction of two slow shocks and the evo-
lution of slow shock-like and intermediate shock-like struc-
tures in a non-uniform solar wind in Sect. 3 on “Simulations
Results.” A discussion and summary of our results are given
in the final section.

2 Magnetohydrodynamics Equations

The large-scale dynamics in the interplanetary solar wind can
be theoretically modeled by the following MHD equations
(Priest, 1982; Hughes and Brighton, 1967) in SI units,
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denotes the total derivative,ρ is the mass density,
V is the velocity of the flow,p is the isotropic gas pressure,
GM(r) is the gravitation force,B is the magnetic field,e is
the internal energy per unit mass (e=p/(γ−1)ρ) andγ is
the specific heat ratio. Equations (1), (2) and (3) express the
conservation of mass, momentum and energy, respectively.
In Eq. (2), we have ignored the viscous term but included the
gravitational force. Equation (4) is the induction equation
for a perfectly conducting medium. The formulation is then
closed by the ideal gas lawp=2ρRT and the divergence free
magnetic field,∇·B=0. HereR is the gas constant;T is the
isotropic plasma temperature; and a factor of 2 is due to the
fully ionized nature of the hydrogen solar wind plasma.

3 Simulation Results

In the following, the transition of interaction of slow shocks
will be presented in detail. The numerical scheme used in
this analysis is an extension of the two-step Lax-Wendroff fi-
nite difference method (Lax and Wendroff, 1960). An adap-
tive grid finite difference scheme (Panitchob, 1987; Pan-
itchob et al., 1987) is used here to understand the particu-
larly interesting cases of the interaction of slow shocks. The
simulation domain is between 28 R� and 230 R�. The rea-
son we chose the lower boundary to be at 28 R� is that the
solar wind is already supersonic and super-Alfvénic there;
hence, the perturbation can be chosen arbitrarily at the lower
boundary (Wu and Wang, 1987). The steady-state represen-
tative solar wind is obtained here from Panitchob’s (1987)
non-relativistic MHD solar wind model. Table 1 summarizes
the steady-state values at 28 R� and 1 AU. Figure 1 (from
Wu et al., 1996b) shows a plot of the physical parameters of
the steady-state solar wind. This calculation is sometimes
referred to as a 112D simulation, where only spatial gradi-
ents in the radial direction of the two vector components of
velocity and magnetic field are considered. According to ear-
lier simulation results (Wu, 1993; Wu et al., 1996b), a nega-
tive, nearly-square wave pulse with decreasing density, tem-
perature or radial velocity will create a pair of slow shocks
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Table 1. Summary of steady-state solar wind values at 28R� and
1 AU.

Dependent Variable Steady-State Value Steady-State Value
At 28R� At 1 AU

T, K 3.7684×105 1.3×105

ρ, gm/cm3 1.026×10−21 1.453×10−23

Vr , km/s 261.28 312.890
Vφ , km/s 4.0012 1.263
Br , gauss 2.948×10−3 5 ×10−5

Bφ , gauss -6.1357×10−4 -7.143×10−5

γ : Polytropic Index 1.25 1.25

(a forward and a reverse slow shock). Also, a nearly-square
wave pulse with increasing density, temperature or radial ve-
locity will create a pair of slow shocks and a pair of fast
shocks (a forward fast shock and a reverse fast shock).

In order to generate these shock ensembles, we introduce a
perturbation at the lower boundary with respect to the steady
solar wind condition, as given in Fig. 1. Two specific simu-
lations are studied. Case 1 involves a decrease in both radial
velocity and pressure; Case 2, an increase of these parame-
ters.

In the first case, we put a perturbation withv
′
r

vr◦
=0.4 and

T ′

T◦
=0.4 at the lower boundary, wherevr◦ , T◦ represent the

initial value of radial velocity and temperature at 28 R�; v′
r

andT ′ represent the temporal evolution of density and tem-
perature at 28 R�. The rise and decay time of the disturbance
is one hour, and the total duration time is 9 h. At t=15 h, a
reverse slow shock (RSS) and a forward slow shock (FSS)
are generated, propagating toward Earth (see Fig.2). This
ensemble follows behind a forward fast wave (FFW) which
is seen at r=57R� at t=15 h (see Fig. 2a). At t=97 h, this
expanding ensemble propagates outward while the sunward
properties recover to their original conditions, as indicated in
Fig. 2b. These results are a repetition of those fromWu et al.
(1996b).

In the second case, we initialized a perturbation at 28 R�

with v′
r

vr◦
=1.6 andT ′

T◦
=5. At t=5 h, a forward fast shock (FFS)

was formed at 40.1 R� and an FSS was formed at 38.6 R�

both continuing to propagate toward the Earth (see Fig.3).
Note that a substantial length of time (∼77 h) is required be-
fore the sunward side of the FSS relaxes to its original set of
properties. This is a result of the relaxation time of the added
kinetic and thermal energy to be distributed to the outer he-
liosphere. Figures3b and3c show the development, respec-
tively, at t=11 h and t=77 h. Note that the FSS decays into a
forward slow wave (see Fig.3c).

Many fast mode MHD shocks have been observed by
in-situ spacecraft, but only a few limited number of slow
shocks have been observed at heliocentric distances greater
than 0.3 AU. In order to understand why only a few limited

Fig. 1. The initial representative steady-state of the solar wind. Note
that theBφ direction is in the direction of a typical, Archimedean
IMF outward polarity.

number of slow shocks were observed, we assume that the
slow shock might be overtaken by the fast shock from be-
hind. Therefore, based on the results of the above two cases,
we put a perturbation ofv

′
r

vr◦
=0.4 and T ′

T◦
=0.4 at the begin-

ning (t=0 h). Then, we put another perturbation withv′′
r

vr◦
=1.6

and T ′′

T◦
=5.0 at t=15 h at the lower boundary, where “v′′

r ” and
“T ′′” represent the temporal evolution of the second input
pulses of temperature and radial velocity at 28 R�. The rise
and decay time of each disturbance is 1 h, and the duration
time is again 9 h. We refer to this combined example as
Case 3.

In Case 3, before we introduce a second perturbation (ini-
tiated at t=15 h), a reverse slow shock (RSS) and a forward
slow shock (FSS) are generated 15 h after the first perturba-
tion was initiated. The results of first 15 h is the same as that
shown in Case 1 (see Fig. 2a) just at the moment of the sec-
ond pulse’s initiation as noted above. We now look at this
process in more detail. Figure4 shows a set of high time
resolution profiles of the evolutionary development of the
complex set of discontinuities that are described as follows
for Case 3. At t=21 h (see Fig.4a for Case 3), a FSS(A) is
located at about 41 R�; a FFS(B) and FSS(B) follow it. “A”
denotes the shock that was generated by the first perturbation,
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Figure 2. Solar wind solution versus heliocentric distance for Case 1: �
��

�
� �

� ��� ��� � �� �
� ��� �

.

(a) and (b) show the solar wind solution versus heliocentric distance for t=15 and 97 hours,

respectively.

Fig. 2. Solar wind solution versus heliocentric distance for Case 1:v′
r

vr◦
=0.4, T ′

T ◦ =0.4. (a) and (b) show the solar wind solution versus
heliocentric distance for t=15 and 97 h, respectively.

and “B” denotes the shock that was generated by the second
perturbation (initiated at t=15 h). At t=22.06 h (see Fig.4b)
the FFS(B) overtakes the FSS(A) from behind and appears to
eliminate it temporarily. In Fig.4c, at t=22.31 h, the FSS(A)
reappears behind the FFS(B). This FSS(A) merges with the
other FSS(B) after it was overtaken by FFS(B) from behind.
These two slow shocks merge into a nonlinear slow shock-
like structure, SSLS (see Fig. 4d). This entire ensemble is
trailed by a reverse fast shock, RFS(B). The reverse slow
shock generated by the first perturbation (Case 1, Fig. 2) is
not able to be identified.

Figure 5, in a continuation of temporal development in
Case 3, shows the transition of the slow shock-like structure
evolution in detail. This nonlinear wave is a slow shock-like
structure (SSLS) (see Fig. 4d for t=22.8 h), which evolves
into an intermediate shock-like structure, ISLS (see Fig.5a
for t=23.3 h). The magnetic field in theφ-direction drops to
a minimum at t=25.08 h (see Fig. 5b). The ISLS exists only
for a short period (about∼4 h, see Figs.5b, c, d), evolving
into a SSLS (see Figs.5c and d) and a nonlinear interme-
diate wave (IW, identified by a vertical long-dashed line).
This ensemble is followed by the survival of a reverse fast
shock, RFS(B) and a reverse slow wave, RSW. The SSLS
evolved into a forward slow shock, FSS(A+B) (see Fig.6).
The nonlinear intermediate wave decayed and was not able
to be identified after interacting with non-uniform solar wind
(see Figs.6c and d).

4 Discussion and Summary

The purpose of this study is intended to be an exploratory ex-
amination of numerical studies of shock interaction in the so-
lar wind; we made no attempt to perform a parametric study.
In the first case of numerical simulation, a pair of slow shocks
(one FSS and one RSS) was generated by a perturbation at
r=28R�, consisting of a combined decrease of pressure and
radial velocity. In the second case of numerical simulation,
a forward fast shock and a forward slow shock were gener-
ated by a perturbation consisting of an increase in both pres-
sure and radial velocity. Physically, these two cases may be
considered to be a combination of momentum and pressure
decreases (Case 1) or increases (Case 2).

The perturbations for Cases 1 and 2 were then combined
to be Case 3, in order to examine in detail the evolution of a
fast-slow shock interaction. In this latter case, the slow shock
disappeared temporarily but then reappeared after the fast
shock overtook and passed through the slow shock. At the
moment of disappearance of the slow shock, it seemed that
it was destroyed by the fact that it had been overtaken by the
fast shock. The merging of two slow shocks appears, at first,
to produce another slow shock; however, the evolution of
the merging of these two slow shocks generates other forms
of discontinuities, namely shocks and waves. In the begin-
ning of this merging, a slow shock-like structure (SSLS) was
created. A SSLS was temporarily created, evolving into an
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Figure 3. Solar wind solution versus heliocentric distance for Case 2: �
��

�
���
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� 
 �	�

.

(a), (b) and (c) show the solar wind solution versus heliocentric distance for t=5, 11 and 77

hours. Note that non-physical oscillations, linked to the use of the Lax-Wendroff scheme, are

found behind the fast slow wave, FSW.

Fig. 3. Solar wind solution versus heliocentric distance for Case 2:v′
r

vr◦
=1.6, T ′

T ◦ =5.0. (a), (b) and(c) show the solar wind solution versus
heliocentric distance for t=5, 11 and 77 h. Note that non-physical oscillations linked to the use of the Lax-Wendroff scheme are found behind
the fast slow wave, FSW.

intermediate shock-like structure (ISLS). This latter structure
existed for only∼4 hours, evolving again into another slow
shock plus an intermediate wave; this latter wave, itself, dis-
appeared via interaction with the upstream non-uniform solar

wind. Our Case 3 then demonstrated the extremely complex
set of discontinuities by changing the set of boundary condi-
tions which may relate to physically-changing solar bound-
ary conditions. We have not compared our simulations to
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Figure 4. Solar wind solution versus heliocentric distance for Case 3: �
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distance for t=21.05, 22.06, 22.31 and 22.81 hours, respectively.

Fig. 4. Solar wind solution versus heliocentric distance for Case 3:v′
r

vr◦
=0.4, T ′

T ◦ =0.4 v′′
r

vr◦
=1.6, T ′′

T ◦ =5.0. (a), (b), (c) and(d) show the solar
wind solution versus heliocentric distance for t=21.05, 22.06, 22.31 and 22.81 h, respectively.
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Figure 5. Solar wind solution versus heliocentric distance for Case 3: �
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. (a), (b), (c) and (d) show the solar wind solution versus heliocentric

distance for t=23.32, 25.08, 27.84 and 28.35 hours, respectively. Note that the RSW represents

reverse slow wave and IW represents intermediate wave.

Fig. 5. Solar wind solution versus heliocentric distance for Case 3:v′
r

vr◦
=0.4, T ′

T ◦ =0.4 v′′
r

vr◦
=1.6, T ′′

T ◦ =5.0. (a), (b), (c) and(d) show the solar
wind solution versus heliocentric distance for t=23.32, 25.08, 27.84 and 28.35 h, respectively. Note that the RSW represents a reverse slow
wave and IW represents an intermediate wave.
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Figure 6. Solar wind solution versus heliocentric distance for Case 3: �
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�
� �

� ����� � � �� �
� ��� �

�
� ��

�
� �

� � �	� � � � �� � � 
 �	�
. (a), (b), (c) and (d) show the solar wind solution versus heliocentric

distance for t = 29.35, 30.11, 60.09 and 93.08 hours, respectively. Note that the RSW represents

reverse slow wave and IW represents intermediate wave.

Fig. 6. Solar wind solution versus heliocentric distance for Case 3:v′
r

vr◦
=0.4, T ′

T ◦ =0.4 v′′
r

vr◦
=1.6, T ′′

T ◦ =5.0. (a), (b), (c) and(d) show the solar
wind solution versus heliocentric distance for t=29.35, 30.11, 60.09 and 93.08 h, respectively. Note that the RSW represents a reverse slow
wave and IW represents an intermediate wave.
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Figure 7. Radius-time profile for Case 3. The upper panel shows the details, from the lower

boundary to 60 ��� , of the various discontinuities (see text) as well as the adaptive grid’s ability

for fine tuning the grid sizes. The lower panel shows the continuation of these discontinuities

to larger distances.

Fig. 7. Radius-time profile for Case 3. The upper panel shows the details, from the lower boundary to 60R�, of the various discontinuities
(see text), as well as the adaptive grid’s ability for fine tuning the grid sizes. The lower panel shows the continuation of these discontinuities
to larger distances.
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observations, since that objective is beyond the scope of the
present investigation.

For the SSLS, the density, radial velocity and temperature
increase, and the transverse component of the magnetic field
decreases. However, the jump conditions do not satisfy the
Rankine-Hugoniot relations. Therefore, we call it an SSLS
instead of a slow shock.

For the ISLS, the density, radial velocity, and temperature
increase; the transverse component of the magnetic field of
the ISLS changes direction, but the Alfvéen Mach number
is less than one. Therefore, we call it an ISLS instead of
an intermediate shock. The procedure of the shock strength
Mach number calculation method is based strictly on steady-
state mass flux through the shock, regardless of its type (fast,
slow, intermediate, etc.). We also used a straightforward
method of calculating the average shock Mach number be-
tween two radial positions as the shock propagating from one
position at time,t1 (say) to a second position att2. We call
this latter procedure the Wave Transit Method (WTM). The
detailed computational procedure for WTM is given byWu
et al.(1996a,b). (We used higher resolution data to carefully
identify the upstream location of ISLS for each time step.
Only a single point data is used.)

The intermediate shock-like structure evolves into a slow
shock-like structure and an intermediate wave. The slow
shock-like structure steepened into a slow shock, but the
intermediate wave disappeared by interaction with the non-
unique solar wind. This slow shock does not evolve into any
other type of shock or discontinuity.

The grid location is changing all the time for the adaptive
grid model used. The grid resolution is higher around the
area with higher velocity gradient (e.g. around the shocks). It
helps to identify the waves’ location by seeing the grids’ his-
togram for the entire simulation result. For example, Fig.7
shows the radius-time profile for Case 3. The top panel is the
enlargement of the bottom panel near the Sun. The vertical
axis shows the radial distance and the horizontal axis shows
the time series. The location of major waves (e.g., FFS, FSS,
RFS, RSW) are clearly shown. The interaction between the
fast and slow shock waves are also clear, as shown in the top
panel of Fig.7.

In summary, the forward slow shock and the reverse slow
shock will be generated by a perturbation with a decelera-
tion of solar wind. A forward slow shock is not destroyed
by being overtaken by a forward fast shock. However, the
evolution of this interaction shows that the slow shock might
disappear temporarily, but it will reappear after the fast shock
interacts with the slow shock. The present simulation also
shows that the merging of two forward slow shocks will
create another stronger slow shock. However, during the
evolution of the two merging slow shocks, a slow shock-
like structure is first developed. Then this slow shock-like
structure evolves into an intermediate shock-like structure.
Later, the intermediate shock-like structure evolves into a
slow shock-like structure and an intermediate wave. Finally,
the intermediate wave disappears, and the slow shock-like
structure evolves into a slow shock by interacting with the

non-uniform solar wind. This slow shock does not evolve
into any other type of shock or discontinuity.

Finally, we note that this limited study of slow shock inter-
actions was made possible by the development of the adap-
tive grid numerical technique. The results described above
are not unique; instead, they are representative of a wide class
of solutions that may be generated by a variety of physically-
based changes in solar conditions.

As a result of this non-uniqueness, one might safely con-
clude by noting that, if a complex set of discontinuities were
to be observed by a spacecraft, a correct inference of the re-
sponsible boundary conditions at the Sun would (except for
simple cases) be impossible.
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