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Abstract. We present a case study of Geotail, Interball-1,
IMP-8, and Wind observations of density and magnetic field
strength cavities excavated by the enhanced pressures asso-
ciated with bursts of energetic ions in the foreshock. Con-
sistent with theoretical predictions, the pressure of the ener-
getic ions diminishes rapidly with upstream distance due to
a decrease in the flux of energetic ions and a transition from
near-isotropic to streaming pitch angle distributions. Conse-
quently, the cavities can only be observed immediately up-
stream from the bow shock. A comparison of conditions up-
stream from the pre- and post-noon bow shock demonstrates
that foreshock cavities introduce perturbations into the on-
coming solar wind flow with dimensions smaller than those
of the magnetosphere. Dayside geosynchronous magnetic
field strength variations observed by GOES-8 do not track
the density variations seen by any of the spacecraft upstream
from the bow shock in a one-to-one manner, indicating that
none of these spacecraft observed the precise sequence of
density variations that actually struck the subsolar magne-
topause.

Key words. Interplanetary physics (energetic particles;
planetary bow shocks) – Magnetospheric physics (solar
wind-magnetosphere interactions)

1 Introduction

Kinetic processes occurring in the immediate vicinity of
the Earth’s bow shock can introduce considerable structure
into the solar wind shortly prior to its interaction with the
Earth’s magnetosphere. The relatively rare hot flow anoma-
lies (Schwartz et al., 1985) and much more common fore-
shock cavities (e.g. Sibeck et al., 2002) represent prominent
examples. The latter structures form on bundles of mag-
netic field lines connected to the bow shock that are embed-
ded in regions of magnetic field disconnected from the bow
shock. The bundles fill with enhanced fluxes of suprathermal
ions generated at the bow shock. The pressure of these ions
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perpendicular to the magnetic field causes the bundles to ex-
pand, resulting in cavities of depressed density and magnetic
field strength bounded by regions of enhanced densities and
magnetic field strengths.

We can use the predictions of the Fermi (e.g. Terasawa,
1979; Lee, 1982) and reflection (Sonnerup, 1969) models
for the ion foreshock to determine where foreshock cavities
should be most prominent. As illustrated in Fig. 1, mod-
els for Fermi acceleration predict intense, nearly isotropic,
fluxes of suprathermal ions with energies extending beyond
300 keV immediately upstream from the quasi-parallel bow
shock on magnetic field lines that have been connected to the
bow shock for many minutes (t3). Lower fluxes and particle
distributions streaming away from the bow shock occur both
further upstream and on magnetic field lines only recently
connected to the bow shock. Models for ion reflection from
the quasi-perpendicular bow shock (Sonnerup, 1969) pre-
dict highly anisotropic beams of suprathermal (∼4 keV) ions
streaming along interplanetary magnetic field (IMF) lines re-
cently connected to the bow shock (t2). No energetic ions
are present far upstream or on IMF field lines unconnected to
the bow shock (t1). Numerous observational studies confirm
these predictions (e.g. Gosling et al., 1978; Greenstadt et al.,
1980; Scholer et al., 1980). Other studies indicate that fluxes
also increase as2Bn decreases (Mitchell and Roelof, 1983),
where2Bn is the angle between individual IMF lines and the
normal to the bow shock at the point of intersection.

Based on these predictions, foreshock cavities should be
most prominent immediately upstream from the pre-noon
bow shock during typical periods of spiral IMF orientation.
As illustrated in Fig. 1, field lines at pre-noon local times
have been connected to the bow shock longer than field lines
connected to the post-noon bow shock. Furthermore,2Bn is
less for field lines connected to the pre-noon foreshock than
for those connected to the post-noon bow shock.

To test the proposed foreshock cavity scenario, we present
a case study of simultaneous foreshock observations by three
ISTP-era spacecraft upstream from the post-noon bow shock
and one spacecraft upstream from the pre-noon bow shock.
During this interval, the IMF generally assumed an unusual,
orthospiral orientation. The three spacecraft upstream from
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Figure 1.  Spatial distribution of suprathermal ion distributions in the
foreshock.  No suprathermal ions occur on magnetic field lines
unconnected to the bow shock (t1).  A beam of reflected or leaking
ions can be found on magnetic field lines connected to the quasi-
perpendicular bow shock (t2).  A high flux of nearly isotropic ions
can be found immediately upstream from the quasi-parallel bow
shock.  A lower flux of streaming ions can be found further
upstream (t3).

Fig. 1. Spatial distribution of suprathermal ion distributions in the
foreshock. No suprathermal ions occur on magnetic field lines un-
connected to the bow shock (t1). A beam of reflected or leaking
ions can be found on magnetic field lines connected to the quasi-
perpendicular bow shock (t2). A high flux of nearly isotropic ions
can be found immediately upstream from the quasi-parallel bow
shock. A lower flux of streaming ions can be found further up-
stream (t3).

the post-noon bow shock observed corresponding foreshock
cavities. The amplitudes of the density and magnetic field
strength perturbations associated with these cavities dimin-
ished with distance from the bow shock. As predicted by the
model described above, the flux of suprathermal ions also di-
minished with distance upstream and the particle pitch angle
distributions became more field-aligned. By contrast, neither
the length of time a field line had been connected to the bow
shock nor2Bn were important factors in determining event
strength. The spacecraft outside the pre-noon bow shock ob-
served completely different energetic ion bursts, foreshock
cavities, and density and magnetic field strength variations.
As a result, the solar wind did not apply a uniform pressure
across the entire dayside magnetosphere. In fact, a com-
parison of the upstream solar wind observations with those
by GOES-8 of the dayside magnetospheric magnetic field
strength indicates that none of the solar wind monitors ob-
served the precise sequence of pressure variations that buf-
feted the subsolar magnetopause.

2 Data sets

To consider the radial dependence of the properties describ-
ing foreshock cavities, we will present simultaneous Geo-
tail, Interball-1, IMP-8, and Wind solar wind plasma, mag-
netic field, and energetic ion observations. From Geotail,
we will present LEP plasma density observations with 12.2-

s time resolution (Mukai et al., 1994), MGF magnetic field
strength observations with 3-s time resolution (Kokubun et
al., 1994), and EPIC energetic ion flux observations with 6-s
time resolution (Williams et al., 1994). From Interball-1, we
will present VDP plasma flux observations with 15-s time
resolution (Safrankova et al., 1997), MIF-M magnetic field
strength observations with 6-s time resolution (Klimov et al.,
1997), and DOK-2 energetic ion observations with a vari-
able time resolution that depended on energetic ion flux lev-
els (Lutsenko et al., 1998). The IMP-8 MIT Faraday cup
takes snapshots of the density over 21.6 s at a maximum rate
of once each 58 s. We present IMP-8 magnetic field ob-
servations with a time resolution of 6 s and EPE energetic
ion observations with 21.6 s time resolution (King, 1982).
From Wind, we will present 3-DP plasma and energetic ion
observations with 3- and 6-s time resolution, respectively
(Lin et al., 1995), and MGI magnetic field strength observa-
tions with 3-s time resolution (Lepping et al., 1995). To de-
scribe the magnetospheric response, we will present GOES-8
geosynchronous magnetometer observations with 1-min time
resolution (Singer et al., 1996).

3 Solar wind observations

We present observations for the period from 16:00–19:00 UT
on 19 April 1996. As shown in Fig. 2, during this inter-
val Geotail moved duskward from Geocentric Solar Eclip-
tic (GSE x,y,z)=(20.0, 6.0,−1.9) to (20.4, 8.8,−2.2) Earth
radii (RE) immediately upstream from the post-noon bow
shock. Interball-1 moved equatorward and earthward from
GSE (x,y,z)=(23.2, 15.0, 4.1) to (21.9, 14.4, 2.3) RE from
a location somewhat further upstream and outside the equa-
torial post-noon bow shock. IMP-8 moved duskward from
GSE (x,y,z)=(30.6, 17.3, 17.6) to (29.4, 20.1, 16.3) RE from
a position still further upstream and outside the northern
post-noon bow shock. Wind moved sunward from GSE (x, y,
z)=(5.4,−26.3, 2.4) to (9.9,−28.3, 2.5) RE immediately out-
side the equatorial dawn bow shock. Also shown in Figure 2
are the nominal positions of the Earth’s bow shock (Fairfield,
1971) and magnetopause (Roelof and Sibeck, 1993). GOES-
8 moved through the dayside magnetosphere and local noon
from GSE (x,y,z)=(6.3,−2.0,−2.2) to (5.6, 2.7,−2.2) along
its geosynchronous orbit.

Figure 3 summarizes Geotail, Interball-1, IMP-8, and
Wind plasma, magnetic field, and energetic ion observations
during the three-hour interval on 19 April 1996. The EPIC
instrument on Geotail observed one brief and three prolonged
energetic (61.5–73.7 keV) ion bursts: from 16:05 to 16:07,
16:16 to 16:39, 16:59 to 17:29, and 17:44 to 18:13 UT. Dur-
ing these bursts, Geotail observed correlated large amplitude
plasma density and magnetic field strength variations. The
most prominent peaks in the energetic ion flux corresponded
to density and magnetic field strength minima (e.g. at 16:07,
16:22, 16:26, 16:29, 17:06, 17:19, 17:26, and 17:54 UT).
Consequently, these minima can be interpreted as foreshock
cavities excavated by the ion bursts.
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Figure 2.  Ecliptic and meridional projections of Geotail, Interball-1,
IMP-8, Wind, and GOES-8 trajectories from 1600 to 1900 UT on
April 19, 1996.  For comparison, the figure also shows the nominal
positions of the bow shock and magnetopause.

Fig. 2. Ecliptic and meridional projections of Geotail, Interball-1,
IMP-8, Wind, and GOES-8 trajectories from 16:00 to 19:00 UT on
19 April 1996. For comparison, the figure also shows the nominal
positions of the bow shock and magnetopause.

By contrast to the large amplitude fluctuations that oc-
curred during intervals when energetic ions were present,
Geotail observed relatively constant densities and magnetic
field strengths during intervals when the flux of energetic
ions fell to background levels, e.g. from 16:40 to 17:00
and after 18:10 UT. The modest density and magnetic field
strength variations during these intervals were in antiphase
(e.g. 18:30 to 19:00 UT), as is generally the case for intrinsic
solar wind tangential discontinuities (e.g. Burlaga, 1968).

Now consider the Interball-1 observations, made sev-
eral RE further upstream. Interball-1 observed bursts of en-
hanced energetic (46.3–60 keV) ion fluxes from 16:13 to
16:40 UT, 16:52 to 17:36, and 17:52 to 18:12 UT, corre-
sponding to the three prolonged bursts at Geotail. As in
the case of Geotail, Interball-1 observed correlated magnetic
field strength and plasma flux (nV) variations during each
of these intervals. However, the amplitudes of these per-
turbations were lower than those seen at Geotail. Also like
Geotail, Interball-1 observed weak antiphase plasma flux and
magnetic field strength variations during intervals when no
energetic ions were present (e.g. from 18:30 to 19:00 UT).
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Fig. 3. A summary plot of IMP-8, Interball-1, Geotail, and Wind
solar wind and foreshock observations from 16:00–19:00 UT on
19 April 1996. The first triplet of panels depicts the IMP-8 GSFC
magnetic field strength, MIT ion plasma density, and EPE energetic
ion observations. The second triplet of panels shows Interball-1
MIF-M magnetic field strength, VDP ion plasma flux, and DOK-2
energetic ion flux observations. The third triplet of panels shows
Geotail MGF magnetic field strength, LEP ion plasma density, and
EPIC energetic ion flux observations. The fourth triplet of panels
shows Wind MGI magnetic field strength, 3-DP ion plasma density,
and 3-DP energetic ion phase space density observations.

Located even further upstream, IMP-8 observed three
bursts of energetic (50–220 keV) ions, from 16:17 to 16:39,
16:50 to 17:33, and 17:52 to 18:11 UT, again corresponding
to the three bursts at Geotail. The time resolution of the IMP-
8 plasma observations does not suffice to determine whether
decreases in the density corresponded to bursts of energetic
ions or whether the density and magnetic field perturbations
were in phase or antiphase. However, because the energetic
ion bursts did not correspond to decreases in the magnetic
field strength, the bursts at IMP-8 cannot be interpreted as
foreshock cavities. Note, however, that there was a small
(∼1 nT) decrease in the IMP-8 magnetic field strength when
the energetic ion flux peaked at 16:38 UT.
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Fig. 4. Wind MGI observations of the IMF strength and direc-
tion (GSE coordinates), 3-DP ion plasma density, velocity along
the Sun-Earth line, and energetic ion phase space density observa-
tions. Wind observes energetic ions during intervals when the IMF
connects the spacecraft to the bow shock, i.e. when the IMF points
sunward and dawnward.

We can use Wind observations to demonstrate that the
bursts of energetic ions are observed during intervals when
the IMF connects each spacecraft to the bow shock. During
the three-hour interval shown in Fig. 4, Wind was located up-
stream from the pre-noon bow shock. A sunward and dawn-
ward IMF orientation should connect the spacecraft to that
boundary. As indicated in Fig. 4, Wind observed energetic
ions almost continuously from 16:00 to 18:30 UT, an inter-
val of sunward (+Bx) and dawnward (−By) IMF orientation.
By contrast, fluxes fell to background levels after 18:30 UT,
when the IMF pointed antisunward and dawnward, and did
not connect the spacecraft to the bow shock. Note also that
the solar wind velocity varied by no more than 5% about
a mean value of∼730 m s−1. Any plasma flux or dynamic
pressure variations on this day resulted primarily from den-
sity, and not velocity, fluctuations.

We wish to determine whether the differing amplitudes
of the perturbations associated with the foreshock cavities
observed by Geotail, Interball-1, and IMP-8 are consistent
with the model for foreshock cavities described above. To
do so, we should first demonstrate that pitch angle distri-
butions were more field-aligned at IMP-8 than Interball-1,
and more field-aligned at Interball-1 than Geotail. We should
then show that flux levels were lower at IMP-8 than Interball-
1, and at Interball-1 than Geotail.

Figure 5 provides information about the energetic ion
pitch angle distributions observed by Geotail, Interball-1,
and IMP-8. In combination, the northern and southern
heads of the EPIC instrument on Geotail provided good
pitch angle coverage throughout this interval. Geotail ob-
served nearly isotropic energetic (52.7 to 61.5 keV) ion pitch
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Interball-1.  Detector 1 observed ions with energies from 46.3 to 60
keV, whereas Detector 2 observed ions with energies from 48.2 to
59 keV.  The third panel shows Geotail pitch angle distributions for
52.7 to 61.5 keV ions.  It was obtained by combining observations
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ratios for the 52.7 to 61.5 keV ions, defined as the ratio of the ion
flux with pitch angles ranging from 0 to 90° divided by the flux with
pitch angles ranging from 90 to 180°.

Fig. 5. IMP-8, Interball-1, and Geotail energetic ion pitch angle dis-
tributions. The top panel shows pitch angle distributions for the L1
(50–220 keV) channel on IMP-8. The second panel compares traces
for the antisunward (Detector 1, crosses) and spinning (Detector 2,
solid curve) sensors of the DOK-2 instrument on Interball-1. Detec-
tor 1 observed ions with energies from 46.3 to 60 keV, whereas De-
tector 2 observed ions with energies from 48.2 to 59 keV. The third
panel shows Geotail pitch angle distributions for 52.7 to 61.5 keV
ions. It was obtained by combining observations from both heads.
The bottom panel shows Geotail front to back ratios for the 52.7 to
61.5 keV ions, defined as the ratio of the ion flux with pitch angles
ranging from 0 to 90◦ divided by the flux with pitch angles ranging
from 90 to 180◦.

angle distributions and small front to back ratios from 16:25–
16:30 UT, 17:05 to 17:09, 17:14 to 17:21, 17:52 to 17:57,
and 18:08 to 18:13 UT (solid bars), but broad beams were
streaming away from the bow shock along the magnetic field
and large front to back ratios from 16:15 to 16:25, 16:30 to
16:40, 17:00 to 17:05, 17:09 to 17:14, 17:21 to 17:30, 17:43
to 17:51, and 17:57 to 18:08 UT (dashed bars). These hor-
izontal bars are repeated in the LEP density panel of Fig. 3
(and other figures in this paper) to demonstrate that the in-
tervals of near-isotropic fluxes correspond to energetic ion
flux enhancements, and density and magnetic field strength
minima.

The EPE instrument on IMP-8 also provided relatively
good pitch angle coverage. By contrast to Geotail, IMP-8
never recorded energetic (50 to 220 keV) ions over the full
range of pitch angles observed. Instead, it only observed
strongly anisotropic bursts of energetic ions streaming sun-
ward along the magnetic field at 16:30 UT and from 16:50 to
17:10 and 17:50 to 18:02 UT. The absence of any foreshock
cavities at IMP-8 (Fig. 3) indicates that the pressures asso-
ciated with these anisotropic distributions failed to excavate
any cavities.

Although the DOK-2 instrument on Interball-1 did
not provide full pitch angle coverage, some inferences
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Fig. 6. A comparison of Geotail (circles), Interball-1 (crosses, and
IMP-8 (squares) energetic ion spectra near 17:54 UT on 19 April
1996. The spectra were selected when the flux peaked: 17:53:17 UT
on Geotail, 17:56:39 UT at Interball, and 17:53:55 UT at IMP-8.

concerning energetic ion anisotropies at Interball-1 can be
obtained by comparing the observations made by its two de-
tectors. Whereas Detector 1 pointed directly antisunward,
Detector 2 pointed 62.5◦ away from the sunward-oriented
spin axis. When the two detectors observe nearly identical
flux levels, and Detector 2 observes no spin modulation, we
may infer nearly isotropic particle distributions. The obser-
vations shown in Fig. 5 indicate that these conditions were
generally not met, i.e. that significant anisotropies were usu-
ally present. However, the energetic (∼47 to∼60 keV) ion
fluxes approached isotropy at 16:30, 16:40, 17:15–17:20, and
17:53 to 18:02 UT, precisely the times when Fig. 3 indicates
the in-phase plasma flux and magnetic field strength varia-
tions that identify cavities at Interball-1.

Having shown that pitch angle distributions were often
more isotropic at Geotail and Interball-1 than at IMP-8, we
now wish to determine whether energetic ion flux levels were
higher at Geotail than Interball-1 and higher at Interball-1
than IMP-8. Figure 6 compares energetic ion spectra ob-
served by Geotail, Interball-1 (crosses), and IMP-8 (squares)
near 17:54 UT at the moment when fluxes peaked at each
spacecraft. The comparison indicates that fluxes at Interball-
1 reached levels similar to those at Geotail, but that those
at IMP-8 were a factor of 3 lower. Over the range of en-
ergies from 67.3 to 154 keV, the Geotail spectra is best fit
by an exponential, f=f0e−E/E0, with an e-folding energy of
E0=26 keV.

To decide whether the observations at 17:54 UT typified
those for the entire three-hour interval, we must compare ion
fluxes at similar energies. Figure 3 presented IMP-8 obser-
vations of 50–220 keV ions, Interball-1 observations of 46.3–
60 keV ions, and Geotail observations of 61.5–73.7 keV ions.
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Fig. 7. A comparison of Geotail, Interball-1, and IMP-8 energetic
ion observations with factors thought to control flux levels. The top
panel presents energetic ion flux levels observed by Geotail (61.5–
73.7 keV), Interball-1 (46.3–60 keV), and IMP-8 (50–220 keV). For
comparison, the flux levels have been extrapolated to those expected
at 50 keV under an assumption of an exponential spectra with an e-
folding energy of 26 keV. The second panel presents the distances of
each spacecraft from the bow shock along the IMF. The third panel
depicts the length of time each field line had been connected to the
bow shock when it encountered the observing spacecraft. The bot-
tom panels presents cos2Bn, the angle between the IMF field line
connecting observing spacecraft to the bow shock and the normal
to the bow shock at the point of intersection.

The top panel of Fig. 7 compares the same observations, but
at energies of 50 keV, assuming exponential spectra with an
e-folding energy of 26 keV. Despite flux variations greater
than two orders of magnitude at each spacecraft, fluxes at
Interball-1 were almost invariably less than those at Geotail,
while those at IMP-8 were almost invariably less than those
at Interball-1. We conclude that the ordering of the observa-
tions at 17:54 UT typifies that for the entire three-hour inter-
val.

We now wish to determine whether the systematic differ-
ences in energetic ion flux levels, energetic ion pitch angle
distributions, and plasma and magnetic field perturbation am-
plitudes seen by IMP-8, Interball-1, and Geotail primarily re-
sult from: 1) different distances of the three spacecraft along
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the IMF to the bow shock, 2) different bow shock connection
times for the IMF field lines within the events, or 3) different
2Bn at the intersection of the IMF lines with the bow shock.

The lower three panels of Fig. 7 provide the information
needed to test these hypotheses. As can be seen in the second
panel of Fig. 7, the distance from IMP-8 to the model bow
shock (Fairfield, 1971) along the IMF was invariably greater
than that for Interball-1, while Interball-1 was invariably fur-
ther than Geotail. We have assumed that there are no kinks
in the IMF lines between the spacecraft and the bow shock,
and no values for the distance are shown when the IMF did
not connect the spacecraft to the model bow shock. Con-
sequently, the distance from the bow shock along the IMF
provides a good explanation for the transition from high flux
levels and isotropic ion distributions at Geotail, to low flux
levels and anisotropic distributions at IMP-8.

Now consider the two alternatives, namely that energetic
ion flux levels and pitch angle distributions are determined
primarily by the length of time field lines are connected to
the bow shock or by2Bn at the point the field lines intersect
the bow shock. To calculate the length of time a field line
has been connected to the bow shock, we simply convect the
line with the observed solar wind speed at 1-min time steps
from the point of its initial connection, where it lies tangent
to the bow shock, until it reaches the location of the observ-
ing spacecraft. As can be seen in the third panel of Fig. 7,
the field lines observed by Geotail were not systematically
connected to the bow shock longer than those observed by
Interball-1, nor were those observed by Interball-1 systemat-
ically connected longer than those observed by Geotail. In
addition, as shown in the bottom panel of Fig. 7, there were
no systematic differences in the angles between the IMF lines
observed by the spacecraft and the normal to the model bow
shock (Fairfield, 1971) at their point of intersection.

Consequently, we conclude that the primary factor con-
trolling flux levels and pitch angle distributions in the region

upstream from the bow shock is the distance of the observ-
ing spacecraft from the bow shock along the IMF lines. Fig-
ure 8 presents the normalized peak-to-peak amplitude of the
density/plasma flux (solid lines) and magnetic field strength
(dashed lines) variations at Geotail, Interball-1, and IMP-8,
as a function of distance from the bow shock during three
energetic ion burst intervals: 16:00 to 16:40 (crosses), 16:50
to 17:35 (circles), and 17:40 to 18:15 UT (boxes). Geo-
tail magnetic field observations were averaged to 6 s for this
plot. Density/plasma flux observations were averaged to 24-,
15-, and 21.6-s time resolution for Geotail, Interball-1, and
IMP-8, respectively. The peak-to-peak amplitudes were nor-
malized by the mean values during each interval, and the val-
ues were plotted at the value for the minimum distance con-
necting each spacecraft to the bow shock. With one excep-
tion, the figure clearly demonstrates the predicted decrease in
plasma and magnetic field perturbation amplitudes with dis-
tance upstream from the bow shock. The exception occurs
during the interval from 17:40–18:15 UT, during which IMP-
8 observed considerably larger magnetic field strength vari-
ations than Interball-1, and Interball-1 observed larger mag-
netic field strength variations than Geotail. These variations
were apparently caused by very weak fields at the former
spacecraft that went unobserved by Geotail.

4 Pre-noon foreshock and magnetospheric observa-
tions.

Neither IMP-8 nor Interball-1, nor even Geotail, observed the
precise sequence of solar wind or foreshock-modified plasma
and magnetic field parameters that actually struck the dayside
magnetosphere. To demonstrate this, we compare post-noon
observations of the IMF orientation by IMP-8, Interball-1,
and Geotail with pre-noon observations by Wind. We then
compare observations of the solar wind input by each of these
four spacecraft with observations of the magnetospheric re-
sponse by GOES-8.

Figure 9 presents observations of IMFBz by IMP-8,
Interball-1, Geotail, and Wind in GSE coordinates. As they
were all located upstream from the post-noon bow shock, one
would expect IMP-8, Interball-1, and Geotail to observe sim-
ilar solar wind features. In broad terms, they did observe a
gradual southward rotation from 16:50 to 17:15 UT, follow-
ing an abrupt northward turning shortly after 16:30 UT. How-
ever, close inspection reveals some discrepancies on shorter
time scales. For example, IMP-8 observed two intervals of
northward IMF prior to 16:30 UT, Interball-1 three intervals
but Geotail only one interval.

As Wind was located upstream from the dawn bow shock,
we expect its observations to differ from those of IMP-8,
Interball-1, and Geotail. Figure 9 confirms that this was in-
deed the case. While Wind observed an abrupt northward
turning at 16:55 UT, it also observed a much more rapid
subsequent rotation back to southward IMF orientations than
any of the other spacecraft. The preceding northward turn-
ing(s), so prominent at the other spacecraft, were far less
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Figure 9.  IMP-8, Interball-1, Geotail, and Wind observations of IMF
Bz in GSE coordinates from 1600 to 1900 UT on April 19, 1996.Fig. 9. IMP-8, Interball-1, Geotail, and Wind observations of IMF

Bz in GSE coordinates from 16:00–19:00 UT on 19 April 1996.

pronounced at Wind. Some or all of these discrepancies may
result from the differing lag times required for solar wind
features to move from one spacecraft to another (Weimer et
al., 2002).

We conclude that during the interval under study, the pris-
tine IMF structure, unperturbed by processes within the fore-
shock, varied over distances comparable to the dimensions
of the magnetosphere.

However, the processes that occur within the foreshock in-
troduce far greater spatial variations, at least in the plasma
parameters that batter the magnetosphere. IMF orientations
that connected IMP-8, Interball-1, and Geotail to the bow
shock did not connect Wind, and vice versa. Consequently,
foreshock cavities generated at the first three spacecraft can-
not correspond to those at the latter. Returning to Fig. 3, we
note that Wind observed a pattern of magnetic field strength,
density, and energetic ion phase space density variations that
differs from those seen by the other spacecraft. In particular,
with the exception of two very transient foreshock cavities
at 16:06 and 18:05 UT that occurred in response to strong
bursts of energetic ions, Wind observed far steadier magnetic
field strengths and densities than either Interball-1 or Geo-
tail. Nevertheless, Wind did observe prominent foreshock
cavities later on this day when the IMF connected it to the
bow shock (Sibeck et al., 2002).

Pressure variations generated within the foreshock, and
those intrinsic to the solar wind, launch fast mode waves
when they strike the bow shock (Thomas and Brecht, 1988).
Because the sum of the fast mode and magnetosheath ve-
locities is approximately equivalent to that of the solar wind
itself, pressure fronts in the magnetosheath keep pace with
those in the solar wind. Consequently, the sequence of pres-
sure variations striking the magnetopause should correspond
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Fig. 10.A comparison of the solar wind density observed by IMP-8,
the solar wind flux (nV) observed by Interball-1, the solar wind den-
sity observed by Geotail, the solar wind density observed by Wind,
and the dayside geosynchronous magnetic field strength observed
by GOES-8 from 16:00 to 19:00 UT on 19 April 1996.

to that of solar wind density variations incident on the bow
shock. Each pressure variation striking the magnetopause
should, in turn, launch a fast mode wave into the magne-
tosphere. Thus, observations by dayside geosynchronous
spacecraft provide an opportunity to determine which, if any,
of the solar wind monitors available on this day observed the
precise sequence of density and pressure variations that ac-
tually struck the magnetosphere. Past work indicates that the
dayside geosynchronous magnetic field strength responds di-
rectly and immediately to each and every one of the abrupt
(1–10 min) variations in the solar wind and foreshock dy-
namic pressure seen by spacecraft located directly upstream
of the subsolar bow shock (e.g. Sibeck et al., 1989a; Fairfield
et al., 1990).

The bottom panel of Fig. 10 presents GOES-8 geosyn-
chronous magnetic field strength observations from 16:00
to 19:00 UT on 19 April 1996. GOES-8 observed a se-
quence of three crater-like magnetic field strength vari-
ations, with depressions centered on 16:30, 17:00, and
18:15 UT bounded by transient magnetic field strength en-
hancements. Despite the similarity of these crater-like mag-
netic field strength structures to the density and magnetic
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field strength variations expected for foreshock cavities,
there is no one-to-one relationship between the geosyn-
chronous magnetic field strength variations and the density
(or flux) variations seen by any of the solar wind moni-
tors available on this day. We conclude that accurate pre-
dictions of the geosynchronous magnetic field require solar
wind observations from a monitor located immediately up-
stream from the subsolar bow shock, not far off the Sun-Earth
line nor far upstream at the L1 point.

5 Summary and conclusion

Processes within the foreshock introduce substantial varia-
tions into the incoming solar wind shortly before it interacts
with the bow shock and magnetosphere. Because energetic
ion fluxes should diminish exponentially and pitch angle dis-
tributions vary from isotropic to field-aligned with distance
upstream, theory predicts the perturbations to attain great-
est amplitudes immediately upstream from the bow shock.
The observations presented in this paper confirm these pre-
dictions. Geotail, located∼7 RE upstream from the nominal
bow shock observed strong, and sometimes repetitive, den-
sity and magnetic field strength perturbations in antiphase
with energetic ion flux variations. Interball-1,∼13 RE up-
stream from the bow shock, observed only weak perturba-
tions. IMP-8,∼23 RE upstream from the bow shock, ob-
served almost no foreshock related density or magnetic field
strength perturbations.

The pressure of the energetic ions perpendicular to the
magnetic field excavates the foreshock cavities. As theory
predicts, the flux of energetic ions diminished from Geo-
tail to IMP-8 at all energies and the energetic ion pitch an-
gle distributions were frequently nearly isotropic at Geotail,
but invariably field-aligned at IMP-8. Statistical studies have
demonstrated that the e-folding distances for flux decreases
range from 3.3 RE for 10 keV ions to 11.7 RE for 67.3 keV
ions (Trattner et al., 1994), and that the transition in the pitch
angle distributions of 50 keV ions from isotropic to field-
aligned transpires within the region 15 RE upstream from the
bow shock (Mitchell et al., 1983). We therefore conclude
that foreshock cavities with significant amplitudes can only
be observed within∼10 to 15 RE upstream from the bow
shock.

This conclusion is consistent with previously reported re-
sults. Sibeck et al. (1989a) and Fairfield et al. (1990) pre-
sented several case studies in which the IRM spacecraft ob-
served sizeable density and magnetic field strength variations
(δn/n=δB/B∼1). By contrast, Sibeck et al. (2001) reported
a statistical survey of IMP-8 observations indicating rela-
tively minor density and magnetic field strength variations
(δn/n=δB/B∼0.2). With an apogee of∼18 RE , the IRM
could only observe the foreshock in the immediate vicinity
of the subsolar bow shock where prominent foreshock cav-
ities are expected. IMP-8 observed the foreshock at radial
distances from Earth, ranging from 30 to 40 RE , where fore-
shock cavities should be less prominent.

The significance of the foreshock cavities lies in their abil-
ity to modify the solar wind parameters striking the dayside
magnetosphere. Murr and Hughes (2003) have recently
demonstrated a one-to-one relationship between foreshock
cavities and the isolated mesoscale whirls of ionospheric
convection seen on the edge of the polar cap and known as
traveling convection vortices. Because the foreshock cavi-
ties are common and their factor of 2 to 3 density variations
exceed those generally seen in the solar wind, we think it
likely that they also represent a major contributor to the ir-
reducible, and as yet inexplicable, large-amplitude fluctua-
tions in magnetopause location about its mean position (e.g.
Roelof and Sibeck, 1993). Pressure variations associated
with the cavities may trigger bursts of reconnection on the
dayside magnetopause (Elphic, 1992) or even generate signa-
tures that mimic reconnection-produced flux transfer events
(Sibeck, 1990), and the foreshock cavities must be a major
source of transient compressions and rarefactions in the day-
side magnetospheric magnetic field strength (e.g. Borodkova
et al., 1995; Sanny et al., 2001). Our comparison of IMP-
8, Interball-1, Geotail, and Wind observations indicates that
verifying these hypotheses will either require observations in
the subsolar foreshock or the ability to predict conditions in
that region from observations made further upstream or off
the Sun-Earth line.
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