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Abstract. A new mechanism for the ionospheric Alfvén res-
onator (IAR) excitation at middle latitudes is considered. It is
shown that the ionosphere wind system in this region is capa-
ble of sustaining the generation of geomagnetic perturbations
that can be detected by ground magnetometers. The general
IAR dispersion relation describing the linear coupling of the
shear Alfv́en and fast magnetosonic/compressional modes is
obtained. The dependence of the IAR eigenfrequencies and
damping rates on the perpendicular wave number and on the
ground conductivity during the day- and nighttime condi-
tions is analyzed both analytically and numerically. In or-
der to demonstrate the IAR excitation by neutral winds the
power spectra of the geomagnetic perturbation on the ground
surface are calculated. Furthermore, it is found that Kol-
mogorov spectra of the ionospheric turbulent neutral winds
and the IAR eigenfrequencies lie in the same frequency range
that make it possible to enhance the IAR excitation. The rele-
vance of the developed theoretical model to the ground-based
observations is stressed.

Key words. Ionosphere (Ionosphere-atmosphere interac-
tions; mid-latitude ionosphere; plasma waves and instabili-
ties)

1 Introduction

The low-frequency electromagnetic (EM) perturbations in
the frequency range of 10−3

−10 Hz are of special interest
in geophysical studies (e.g. Kangas et al., 1998). Nearly
all magnetospheric and ionospheric resonances fall in this
class. Among them are the MHD resonances of the mag-
netosphere as a whole, the field-line resonances and Shu-
mann resonances of the Earth-ionosphere cavity (f ∼8 Hz).
This frequency range is associated with the operation of the
so-called Alfv́en masers generating the ion-cyclotron waves
in the Earth’s magnetosphere (Andronov and Trakhtengertz,
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1964; Bespalov and Trakhtengertz, 1986) which define the
characteristic lifetime of the trapped radiation (Kennel and
Petschek, 1966).

A special credit has been paid in the past to the study of
the ionospheric Alfv́en resonator (IAR) that arises due to a
strong increase in the Alfv́en wave refractive index in the
ionosphere (Polyakov, 1976; Polyakov and Rapoport, 1981).
The resonator lower boundary coincides with the E-layer
where nearly all plasma parameters undergo a strong jump.
The upper boundary is located at a few thousands of kilo-
meters from the Earth’s surface due to the reflection of the
IAR eigenmodes caused by a nearly exponential decrease in
plasma density above the maximum of the F-layer. The latter
results in the violation of the WKB approximation and partial
wave reflections that form a resonance cavity in the topside
ionosphere. The same cavity serves as the waveguide for the
fast/compressional mode.

The existence of the IAR was well documented by ground-
based observations both in middle (Polyakov and Rapoport,
1981; Belyaev et al., 1987, 1990; Hickey et al., 1996;
Bösinger et al., 2002) and in high latitudes (Belyaev et al.,
1999; Demekhov et al., 2000). The resonator was also iden-
tified in the Freja and FAST data (e.g. Grzesiak, 2000;
Chaston et al., 1999, 2002, 2003). The basic mechanism
of the IAR excitation at high latitudes usually refers to the
development of the fast feedback instability induced by the
large-scale ionospheric shear flows (Lysak, 1991; Trakht-
engertz and Feldstein, 1991; Pokhotelov et al., 2000, 2001).
The energetics of this instability was reviewed by Lysak
and Song (2002). The nonlinear theory of the IAR was re-
cently developed by Pokhotelov et al. (2003, 2004) and On-
ishchenko et al. (2004).

It should be noted that the feedback instability can serve as
the basic mechanism of the IAR excitation at high latitudes
where the convection electric fields can reach quite strong
values. On the contrary, at middle latitudes other sources
of the free energy can come into play. For example, gen-
eration of the IAR can be associated with the thunderstorm
activity (e.g. Polyakov and Rapoport, 1981; Belyaev et al.,
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Fig. 1. A schematic drawing of a stratified medium model. The
plots of the Alfv́en velocity and the ionosphere/ground conductivi-
ties are shown in the right panel.

1987, 1990). In some cases the IAR manifests itself as the
anomalous ULF transients and can be observed in the upper
ionosphere on board the low-orbiting satellites above strong
atmospheric weather systems (Fraser-Smith, 1993). In due
time Sukhorukov and Stubbe (1997) considered the nonlin-
ear conversion of the lightning discharges’ energy into the
IAR eigenmodes.

We note that at middle latitudes there is a natural source
of free energy stored in the ionospheric neutral wind motions
which can excite the IAR similar to the operation of a po-
lice whistle. The consideration of this new mechanism is the
subject of the present study.

The paper is organized in the following fashion: Our
model and the basic equations describing the IAR in the
presence of the neutral winds are presented in Sect. 2. The
boundary conditions for the IAR are formulated in Sect. 3. In
Sect. 4 the dispersion relation for two coupled modes is ex-
amined, and the IAR eigenfrequencies are found. Section 5
is devoted to the study of excitation of the resonance cavity
by the high-altitude neutral winds. We complete the paper
with our discussion and conclusions in Sect. 6. The Appen-
dices A–C contain the details of our analytical calculations.

2 The model and basic equations

It is common knowledge that the ionospheric resonance cav-
ity is localized at altitudes below 1−2RE . At such small
altitudes the magnetic field line curvature is of little impor-
tance and thus neglected. On the contrary, the plasma num-
ber density, the collision frequencies, the plasma conductiv-
ity and other parameters exhibit strong variations inside the
IAR. A schematic drawing of our model is shown in Fig. 1.
The gyrotropic E-layer of the ionosphere is bounded byz=0

and z=l. Due to the high mobility of the electrons along
the magnetic field lines the parallel conductivity is high and
thusσ‖→∞. The latter condition shortcuts the wave paral-
lel electric field, i.e.Ez=0 at least when the waves’ length is
larger than the inertial electron skin depth. Furthermore, the
plasma is assumed to be uniform within each layer in the di-
rection perpendicular to the external magnetic field. For the
sake of simplicity we adopt the model of the vertical external
magnetic field in order to avoid the complexities connected
with magnetic field inclination.

We start from Ohm’s law for the conductive ionospheric
E-layer given by (e.g. Kelley, 1989)

j⊥ = σP E
′

⊥
+ σH ẑ×E

′

⊥
, (1)

whereσH andσP are the Hall and Pedersen conductivities,
E′

=E + v×B, E is the wave electric field,B is the external
magnetic field which is directed along the z-axis,v is the neu-
tral wind velocity,̂z=B/B and the subscript⊥ denotes the
component perpendicular toB. For clarity we consider that
the stationary convective electric field is absent, and the EM
perturbations are solely due to the neutral wind. Within the
altitudes of the E-layer the ratio of plasma to neutral number
densities is∼10−7

−10−9 for the day- and nighttime condi-
tions, respectively. Based on this value one can find that the
influence of the motions of the electrons and ions on the wind
motion is negligible. Therefore, we can consider the neutral
wind velocity v in the E-layer as a given function, that can
serve as a source for the EM perturbations.

The dynamics of the plasma number density variationsδn

in the ionospheric E-layer governs by

∂t

(
δn

n
−

δB‖

B

)
=

j‖

enl
+ ν

δn

n
, (2)

where, contrary to the high altitudes, the effects due to
the energetic electron precipitations are neglected. Further-
more,∂t≡∂/∂t , n≈1011 m−3 is the ambient plasma number
density, e is the magnitude of the electron charge,δB‖ is
the compressional variation of the magnetic field,l≈30 −

−40 km is the reduced scale of the E-layer,j‖ is the field-
aligned electric current andν≈6×10−3 s−1 is the recombi-
nation rate.

With the help of Amp̀ere’s law and the condition1·δB
one can verify that the field-aligned current scales as
j‖∝µ−1

0 (δB‖/l). For the wave frequencies of the order of
1 Hz the terms on the right-hand side of Eq. (2) are of two
orders smaller than those on the left and thus the variation of
the plasma density scales asδn/n∝δB‖/B. Using this rela-
tion and the explicit expression for the perpendicular electric
current Eq. (1) one can estimate the relative importance of
the plasma density variations in the Ampère’s law which is
controlled by the following dimensionless parameter

ε =
σP |E⊥|

δσP v0B
≈

n

δn

|E⊥|

Bv0
≈

vAI

v0

1

kl
, (3)

wherev0≈100 m/s is the typical wind velocity,δσP is vari-
ation of the ionospheric conductivity,vAI≈500 km/s is the
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Alfv én velocity in the E-layer andk is the perpendicular
wave number. Whenkl>1 the magnetic perturbations are
completely “screened” by the ionosphere and are not seen on
the ground. Since in what follows we will be interested solely
in ground measurements, we restrict our consideration to the
casekl≤1. In this particular caseε�1, and the variations
of the ionospheric plasma density that enter the Ampère’s
law can be neglected. They simply follow the compressional
variations of the magnetic field, i.e.δn/n≈δB‖/B. Thus, in
our approximation in the wave equations that will be derived
below, the Hall and Pedersen conductivities can be treated
as constant quantities. The opposite casekl≥1 has been re-
cently analyzed numerically by Streltsov and Mishin (2003),
in connection with interpretation of EM wave structures ob-
served by the Defence Meteorological Satellite Programme
(DMSP) during a magnetic storm within subauroral polar-
ization streams (Mishin et al., 2003).

To describe the EM perturbations we make use of the stan-
dard two-potential (8, 9) representation, that is,

E⊥ = −iω

(
k8

ω
− ik × ẑ9

)
, (4)

δB = ∂z

(
k × ẑ

ω
8 + ik9

)
+ k29ẑ . (5)

All perturbed quantities are considered to vary as
exp(−iωt+ik·r), whereω andk are the wave frequency and
the perpendicular wave vector,δB is the perturbation of the
magnetic field and∂z≡∂/∂z.

Since in our modelEz=0, the z-component of the vector
potential is connected through the z-derivative of8 by the
relationA=−iω−1∂z8 and thus eliminated from Eq. (5).

Using Eqs. (1)–(5), from Amp̀ere’s law we obtain a system
of two differential equations for8 and9 that describes the
coupling of the ionospheric MHD modes with neutral wind
motions

∂2
z 8 + iµ0ωσP 8 + µ0ω

2σH 9

=
Bµ0ω

k2

[
σP (k × v)z + σH (k · v)

]
, (6)

∂2
z 9 −

(
k2

− iµ0ωσP

)
9 + µ0σH 8 =

−
iBµ0

k2

[
σH (k × v)z − σP (k · v)

]
. (7)

In our model the regionz>l above the E-layer is supposed
to be the area consisting solely of cold collisionless plasma.
The plasma dielectric tensor in this region is assumed to be
diagonal with the componentsε‖ andε⊥. The Alfvén veloc-

ity can be expressed throughε⊥, i.e.vA=cε
−

1
2

⊥
, wherec is the

speed of light. In the ionospheric resonance cavity the Alfvén
velocity increases with the altitudez due to a strong decrease
in the ionosphere plasma density. Such a dependence can be
approximated by a simple analytical exospheric profile (e.g.
Greifinger and Greifinger, 1968), that is,

v2
A = v2

A0

{
ε2

+ exp[−2(z − l) /L]
}−1

, z ≥ l, (8)

wherevA0≈500 km/s is the Alfv́en velocity at the bottom of
the resonance cavity,ε≈0.01 is a small, dimensionless pa-
rameter andL≈103 km is the typical vertical scale of the
resonator.

The velocity profile Eq. (8) is quite close to the model
is ionospheric numerical profiles and can be considered as
representative. The use of such an analytical approximation
makes it possible to express the IAR eigenfunctions in terms
of Bessel functions and to obtain simple analytical expres-
sions for the eigenfrequencies and the IAR damping/growth
rates.

In order to make our consideration as transparent as possi-
ble, we choose a simplified approximation (e.g. Pokhotelov
et al., 2001). which describes the Alfvén velocity in terms of
a piece-wise function, so thatvA=vAI within the F-layer of
the ionosphere(l<z<h=l+L) andvA=vAM in the magneto-
sphere(z>h), wherevAI andvAM (vAM�vAI ) are constant
quantities (see Fig. 1), i.e.vAI≈vA0 andvAM≈vA0ε

−1.
For the altitudesz>l the conductivity tensor entering

Ampère’s law should be replaced by the tensor of dielectric
permittivity. Combining Ampere’s law and Eqs. (4)–(5) we
arrive at the wave equations for the shear Alfvén and fast
modes in the regionz>l

∂2
z 8 +

ω2

v2
A

8 = 0, (9)

∂2
z 9 − λ29 = 0, λ =

(
k2

− ω2/v2
A

) 1
2

. (10)

HerevA=vAI when l<z<h andvA=vAM whenz>h. The
solutions of these equations have to be continuous atz=h.
Whenz>h the solution of Eq. (9) in the form of an outgo-
ing Alfv én wave should be retained. Moreover,9 has to
be limited at infinity(z→∞). The solution of Eqs. (9) and
(10) that satisfy such boundary conditions are given in Ap-
pendix A. The boundary condition at the lower end,z=l, of
the IAR is considered in the next section.

The neutral atmosphere(−d<z<0) is considered as a vac-
uum region, and the solid Earth (z<−d) as a uniform con-
ductor with a constant conductivityσg. Since the resistance
between the ionosphere and the ground is much greater than
that of the ionosphere, one can neglect the field-aligned cur-
rent flowing from the ionosphere to the atmosphere, and at
z=0 (the boundary between the ionosphere and atmosphere)
we setjz(0)=0, which, according to Eq. (5), assumes that
∂z8=0. Thus,8 is a constant quantity in the atmospheric
layer which, for simplicity, we set to zero, and9 satisfies the
Laplace equation, that is,

∂2
z 9 − k29 = 0, −d < z < 0 . (11)

Similarly for the solid Earth (z<−d) we have

∂2
z 9 − æ29 = 0, (12)

where æ2
=k2

−iµ0ωσg.
The above obtained equations should be supplemented by

relevant boundary conditions that follow from Ampère’s law



2880 V. V. Surkov et al.: Excitation of the ionospheric resonance cavity

Fig. 2

1

2

3

η = Re x0

γ = Im x0

xM– xM

xg

xp

Re λM < 0

Re λM > 0

Fig. 2. A sketch of a complexx0 plane. 1 – a cut in the complex
plane that connects the bifurcation points ofλM . 2 – an integration
path for the inverse Fourier transform. 3 – a cut for æ. One of the
poles of the integrand is shown withxp.

and require that the scalar potentials,8 and9, and their first
derivatives,∂z8 and∂z9, be continuous at all boundaries,
that is, atz=−d, z=0, z=l andz=h. In greater detail they
are examined in Appendices A and B.

3 Magnetic field perturbation on the Earth’s surface

Since below the conductive slab8 vanishes the pertur-
bation of the magnetic and electric fields on the ground
can be expressed solely through9 at z=−d, that is,
δB=ik∂z9+k29ẑ andE⊥=ω9ẑ×k. Furthermore, accord-
ing to Eq. (12) on the ground∂z9 (−d) =æ9 (−d). Hence
the magnetic and electric fields on the solid Earth are

δB =

(
ikæ+ k2̂z

)
9(−d), E⊥ = ω̂z × k9(−d) . (13)

Substitution of the explicit expression for9 (−d) into
Eq. (13) gives

δB/B =
Q
(̂
z + ikæ/k2

)
β3
[
(is + x0αP ) (β1 + αP ) + x0α

2
H

] . (14)

Here we made use of the following abbreviations

Q=Lv−1
AI

[
(k·v)

(
α2

H + α2
P + β1αP

)
−(k×v)zβ1αP

]
(15)

s = (kL)
æ+ k tanh(kd)

k + æ tanh(kd)
− λIβ2, (16)

β1 =
1 + ε − (1 − ε) exp(2ix0)

1 + ε + (1 − ε) exp(2ix0)
, (17)

β2 =
λI + λM − (λI − λM) exp(2λI )

λI + λM + (λI − λM) exp(2λI )
, (18)

β3 = cosh(kd) +
æ

k
sinh(kd) , (19)

where x0=ωL/vAI is the dimensionless IAR frequency,
αP =6P /6w and αH =6H /6w stand for the dimension-
less height-integrated Pedersen and Hall conductivities, re-
spectively,6w=1/µ0vAI is the Alfvén parallel conductance,
ε=vAI /vAM , λI=(k2L2

−x2
0)1/2 andλM=(k2L2

−x2
0ε2)1/2.

4 The general IAR dispersion relation

The IAR eigenfrequencies are defined by the zeros of the
denominator in Eq. (14)

(is + x0αP ) (β1 + αP ) + x0α
2
H = 0 . (20)

To analyze this dispersion relation it is necessary to specify
the signs ofλM , λI and æ. The functionλM in Eq. (18)
has two bifurcation pointsx0=±xM , wherexM=kL/ε. To
specify the sign of this function we make a cut in the complex
planex0 shown in Fig. 2 with line 1. Ask is purely real, the
imaginary part ofλM equals zero along the cut that connects
two bifurcation points, as well as on the vertical line where
Rex0=0. In order to satisfy the so-called radiation condition
at infinity we choose the physical sheet of Riemann’s surface.
In this case ImλM>0 on the right semi-space and ImλM<0
on the left one. The real part ofλM is positive on the lower
semi-space (what does hemiplande mean?) and it has the
opposite sign in the upper space. The integration path for the
inverse Fourier transform is shown in Fig. 2 with line 2.

The functions on the left-hand side of Eq. (20) is an
even function ofλI . Thus, the bifurcations of the function
λI can be left out. The function æ has the only bifurcation
pointx0=xg, wherexg=−ik2L6w/σg. The cuts in the com-
plex planex0 are chosen to coincide with the lines on which
Reæ=0 (Fig. 2, line 3). In addition, we require that the con-
dition Reæ≥0 holds everywhere.

In what follows, we will show that the roots of Eq. (20) lie
in the lower part of the complex plane ofx0, where ReλM>0,
i.e. they are on the non-physical part of the complex plane.
We do not discuss this problem in more detail since it is of
importance solely in the regionz>h, i.e. in the magneto-
sphere, while our interest refers solely to the magnetic field
on the ground.

4.1 Shear Alfv́en mode. The zero Hall conductance

We start our analysis with the simplified case of the zero
Hall conductance,6H =0. The general dispersion relation
Eq. (20) in this case decouples into two modes. The first one
corresponds to the roots of the following equation

β1 + αP = 0. (21)

The eigenmodes of dispersion relation (21) do not depend on
k and correspond to the shear Alfvén mode. Indeed, Eq. (21)
can be rewritten as

exp(2ix0) =

(
1 + ε

1 − ε

)
(1 + αP )

(1 − αP )
, (22)

and thus coincides with Eq. (27) of Pokhotelov et al. (2001).
Decomposing the dimensionless frequency in Eq. (22) into
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its real and imaginary parts,x0=η+iγ , one finds the solution
of Eq. (22) in the form

η = π (n − 1) + ϑα, ϑα =
1

2
arg

(1 + αP )

(1 − αP )
, (23)

γ = −ε −
1

2
ln

∣∣∣∣1 + αP

1 − αP

∣∣∣∣ , (24)

wheren is an integer,n=1, 2, ..., ϑα=0 when 0≤αP <1 (in-
sulator) andϑα=π/2 whenαP >1 (conductor).

4.2 Fast mode. The zero Hall conductance

Another family of roots in Eq. (20) corresponds to the fast
mode that is described by

is + x0αP = 0. (25)

Similarly to the previous subsection we rewrite Eq. (25) as

exp(2λI ) =
(λM + λI )

(λM − λI )

(
αP + αg − iλI /x0

)(
αP + αg + iλI /x0

) , (26)

where

αg =

(
ikL

x0

)
æ+ k tanh(kd)

k + æ tanh(kd)
. (27)

The functionsλI , λM , αg and therefore the roots of Eq. (26)
depend onk, i.e. x0=x0 (k). The range of very smallk or
kL�1, is not of great importance for practical applications.
Nevertheless, we notice that the solution of Eq. (26) in this
region differs from that (see Eq. (22)) for the shear Alfvén
mode even ifk=0. These solutions coincide only when the
ground conductivity is ignored, i.e.σg=0.

Now we examine the opposite case of largek, or more pre-
ciselykL�1. In the first approximation we haveω=k/vAI

or x0=kL which corresponds to the ordinary dispersion rela-
tion for the fast mode in an uniform plasma. It follows from
this that in the first approximationλI=0. Notice that for-
mally the valueλI=0 satisfies Eq. (26) because in this case
both parts of Eq. (26) are equal to unity, but it does not satisfy
the original Eq. (25). Thus, in the second approximation, one
can find the solution of Eq. (26) in the form

x0 = kL + δ1 − iγ1 , (28)

whereδ1 andγ1 are the real parameters to be defined. More-
over,δ1 andγ1 are much smaller thankL. These parameters
represent small corrections due to the presence of the E-layer
with finite thickness and due to the ground conductivity.

Substitution of Eq. (28) into the expression forλI , gives

λI ≈ [2kL (−δ1 + iγ1)]
1/2 , |λI | � kL . (29)

As it follows from the analysis given below, the realλ1 and
imaginaryλ2 parts ofλI yield the conditionλ1�λ2. Hence,
Eq. (29) reduces to

λI = λ1 + iλ2 = (2kLδ1)
1/2
(

γ1

2δ1
+ i

)
. (30)

Taking into account that the roots of Eq. (26), shown in Fig. 2
by xp, are in that quarter of a complex plane where the real
λ1 and imaginaryλ2 parts ofλ are positive, we find thatδ1
andγ1 are positive as well.

All other functions in Eqs. (26) and (27) in this approxi-
mation should be taken atx0=kL. Hence,λM≈kL and

æ= æ0 =

(
k2

− i
kσg

6w

)1/2

.

The right-hand side of Eq. (26) can be expressed in terms of
a power series in a small parameterλI/kL. Thus, Eq. (26)
reduces to

exp(2λI ) = 1 +
2λI

kL

(
1 −

i

αP + α0

)
, (31)

where

α0 = i
æ0 + k tanh(kd)

k + æ0 tanh(kd)
. (32)

The functionα0 can be decomposed into its real and imagi-
nary parts,α0=α1+iα2. Equating the moduli and arguments
of the functions on both sides of Eq. (31) and then expand-
ing them in a power series of small parametersλ1/ (kL) and
λ2/ (kL), we obtain

λ1

(
1 −

a

kL

)
=

λ2b

kL
(33)

and

λ2

(
1 −

a

kL

)
= πn −

λ1b

kL
, (34)

wheren is an integer and

a = 1 −
α2

(αP + α1)
2
+ α2

2

, b =
αP + α1

(αP + α1)
2
+ α2

2

. (35)

Here the casen=0 is excluded sinceλ2 is a positive quantity.
The set of Eqs. (33) and (34) defines the functions of

soughtλ1 andλ2. Substitutingλ1 andλ2 into Eq. (30), one
can findδ1 andγ1. Finally, with help of Eq. (28), one obtains

xn
0 (k) = kL+

π2n2

2kL [1−a/ (kL)]2

{
1−

2bi

kL [1−a/ (kL)]

}
,(36)

wherea and b are given by Eq. (35). This equation de-
scribes the spectrum,ωn (k) =xn

0 (k) vAI/L, of the damped
IAR eigenmodes which corresponds to the fast modes when
kL�1.

4.3 Mode coupling. The role of the ionospheric Hall con-
ductivity

In the above consideration the shear and fast modes remained
uncoupled. It is a conventionally idealized model which can
be relevant for the nighttime conditions. However, during
daytime conditions, the situation may become more com-
plex since the effects due to finite Hall conductivity start to
play an important role. This can result in a strong mode cou-
pling. Nevertheless, as before the general dispersion relation
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analytical formulae.

Eq. (20) consists of two modes. Each mode consists of a
discrete set of normal modes. To demonstrate the basic fea-
tures of the fundamental mode(n=1), the numerical analy-
sis of the dispersion relation vs.k Eq. (20) has been carried
out. Figures 3a and b show the real and imaginary parts of
x0 as a function ofk (in inverse kilometers) for the daytime
conditions. A similar plot for the nighttime conditions is de-
picted in Figs. 3c and d. The numerical values for the vari-
ous magnetospheric, ionospheric and other parameters are:
vAI=500 km/s,vAM=5×103 km/s, L=500 km, d=100 km
andσg=2×10−3 S/m. For the daytime ionosphere (Figs. 3a
and b) the height-integrated conductivities are6P =5 Ohm−1

and 6H =7.5 Ohm−1, respectively, so thatαP =3.14 and
αH =4.71. For the nighttime conditions6P =0.2 Ohm−1 and
6H =0.3 Ohm−1 (Figs. 3c and d), so thatαP =0.126 and
αH =0.188.

The real part ofx0 defines the fundamental mode eigen-
frequency. The dimensionless eigenfrequencyη of the shear
Alfv én mode, shown in Figs. 3a and c with solid lines S,
practically does not depend onk. At the same time, the fast
mode shown in Figs. 3a and c with solid lines F exhibits a lin-
ear response tok. Below we will show that this mode tends
asymptotically to the dependencex0=kL or ω=kvAI , which
is typical for the fast mode in uniform plasma.

The imaginary part ofx0 or dimensionless attenuation co-
efficientγ for the fundamental mode is depicted in Figs. 3b
and d. One sees that both modes strongly depend onk. Inter-
estingly enough the attenuation of the shear mode (Figs. 3b
and d, solid lines S) is much stronger than that for the fast
mode (solid lines, F). Certain oscillations, seen in these fig-
ures, also distinguish the fast mode from the shear Alfvén
mode.

To clarify the mode properties, an explicit solution of the
dispersion relation Eq. (20) is required. The necessary ap-
proximate dependencies forx0 (k) are given in Appendix C.
For the shear Alfv́en mode during the daytime we have

x0 = π (n − 0.5) + iγ , (37)

and for the nighttime conditions

x0 = πn + iγ , (38)

wheren=1, 2, ....
In the first approximation the real part ofx0 thus does not

depend onk (Figs. 3a and c, the dashed lines, mode S). This
agrees with the numerical calculations of Eq. (20) shown in
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Figs. 3a and c with solid line. The imaginary part ofx0, i.e.
γ , given by Eq. (C3), can be rewritten as

γ = −ε −
1

4
ln

[
1 +

4(1 + ReG)

|G|
2

]
. (39)

whereG

G (η) = αP − 1 +
α2

H

is (η) /η + αP

, (40)

andη=π (n−1/2) or η=πn. For αH =0 Eq. (39) coincides
with Eq. (24). The approximate dependencies Eqs. (39) and
(40) (fundamental mode,n=1) shown in Figs. 3b and d with
the dashed lines (mode S) are close to numerical simulation
of Eq. (20).

Now let us consider the fast mode in the limit of largek.
The approximate solution is given in Appendix C. The de-
pendence (C13) is obtained in the same manner as it was
used in Sect. 4.2. As the parameterp1/ (kL) is neglected,
Eq. (C13) reduces to

xn
0 = kL +

π2n2

2kL{
1−

2[αP (1+Y ) +α1] i

kL
(
[αP (1+Y ) +α1]2 + [α2+Y tankL]2

)} , (41)

whereα1 andα2 stand for the real and imaginary parts ofα0,
respectively, and the functionY is

Y =
α2

H

α2
P + tan2 kL

. (42)

We note that whenαH =0, Eq. (41) coincides with Eq. (36).
The real and imaginary parts ofx0 for the fundamental mode
are shown in Fig. 3 with the dashed lines (F mode) (cf. nu-
merical calculations of Eq. (20) shown with solid lines for
F mode). The small peaks inγ , seen in Figs. 3b and c, are
due to the interference of the shear and compression modes.
They disappear whenαH =0 and the modes are decoupled.

It should be noted that the shear Alfvén mode attenuation
is much greater than that of the fast mode (Figs. 4 and 6). It
means that the excitation of the fast mode in the IAR is quite
possible and can play an important role in the formation of
the IAR spectrum.

5 Excitation of resonance cavity by high-altitude wind

In order to obtain the spectrum of the EM perturbations, a
specific form for the velocity distribution is required. There
are a number of causes that affect the velocity spectrum at
high altitudes, including the wind variations, internal gravity
wave propagation, diurnal and seasonal variations, etc. For
the sake of simplicity we assume that the neutral gas velocity
has the form

v = v0 + δv, δv = vm exp[ik0 · (r − Ut)] , (43)

wherev0 is the stationary neutral gas flow andδv is its vari-
ation, vm<v0. We consider that these variations propagate

horizontally with constant speedU parallel to the wave vec-
tor k0. The value ofU can be close to the velocity of inter-
nal gravity wave. In what follows we are interested solely
in velocity variationsδv. The temporal Fourier transform of
Eq. (43) is

δv (ω, r) =
vm exp(ik0r)
i (ω − k0 · U)

. (44)

A spatial Fourier transform of Eq. (44) has the pole which
corresponds tok=k0. Substitutingδv into Eqs. (14)–(15)
and performing an integration overk one obtains the inverse
Fourier transform of Eq. (14). As a result one can findδB as
a function ofω, i.e. the spectrum of the geomagnetic varia-
tions. In order to find the contribution of the polek=k0 to
the spectrum, one can formally replacek by k0 in Eqs. (14)–
(19).

For a large-scale flow pattern the neutral gas should be
considered practically incompressible, i.e.∇·δv=0 (Kelley,
1989). Hence,k0·δv=0 so thatk0 is orthogonal toδv. Fi-
nally, we arrive at

Q =
iL(k0 × vm)zβ1αP

vAI (ω − k0 · U)
. (45)

Substituting Eq. (45) into Eq. (14) one obtains the spec-
trum of geomagnetic variation caused by the wind motion
Eq. (43) in the lower ionosphere at 90− 120 km. In order
to illustrate the basic features of this spectrum, the numer-
ical calculations have been carried out. We note that the
power spectrum of the time-derivative of magnetic pertur-
bations, i.e.ω |δB|, is usually recorded in the in-situ mea-
surements. It is customary to normalize this spectrum by the
value1t1/2, where1t is the sample time (in s). The power
spectrum of horizontal component, i.e.ω |δB⊥| /(1t)1/2, in
T· Hz1/2, as the function of frequencyf =ω/2π is depicted
in Fig. 4. Hereω stands for the real part of the wave fre-
quency, the external magnetic field isB=5×10−5 T, and
other parameters are the same as in Fig. 3. Furthermore,
vm=50 m/s, U=500 m/s and1t=400 s. For the daytime
ionosphere (Fig. 4a) the height-integrated conductivities are
6P =5 Ohm−1 and6H =7.5 Ohm−1, whereas for the night-
time conditions (Fig. 4b) these values are6P =0.2 Ohm−1

and 6H =0.3 Ohm−1. In these figures the solid and dot-
ted lines correspond to the wave numbersk0=0.01 and
0.02 km−1, respectively.

According to Figs. 4a and b the decrease ink0 results
in the enhancement of the power spectra and the magni-
tude of the spikes. This follows from the fact that the
denominator in Eq. (14) containsβ3 (19), which includes
exp(k0d), so that ifk0d�1, the signals become practically
undetectable owing to their smallness on the ground. For
the daytime conditions and the wave numbers within 0.01–
0.02 km−1 the magnitude of the first spike is of the order
of 60–180 pT/Hz1/2. However, it is only a rough estima-
tion of the magnitude because the latter strongly depends
on k0, the source spectrum and on other parameters. The
spectrum oscillations seen in this figure are mainly due to
oscillations inβ1 in the numerator of Eq. (45). The poles
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Fig. 4. A normalized power spectrum of the horizontal magnetic field at the ground level.(a) – daytime conditions,(b) – nighttime
conditions. The solid line (1) and the dotted line (2) correspond tok0=0.01 and 0.02 km−1, respectively.

and zeros of this function are located close to the real axis
of ω. If ω is purely real, the maxima inβ1 lie approxi-
mately atx0≈π (n−0.5), wheren=1, 2..., or at the frequen-
ciesf ≈0.5(vAI /L) (n−0.5) =0.5(n−0.5) Hz. It should be
noted that these values are very close to the IAR eigenfre-
quencies (shear mode) for the daytime conditions Eq. (37).

Such a coincidence of the characteristic frequencies is typ-
ical only for the daytime conditions. The nighttime IAR
eigenfrequencies (shear mode)f =0.5n Hz (see Eq. (38))
correspond to the minima rather than to the maxima of the
spectrum in Fig. 4b.

Comparison of the day- and nighttime power spectrums
shows that, except for the first spike, the other spikes of the
daytime spectrum are smaller than those of the nighttime
spectrum. The nighttime conditions are thus more preferable
for the IAR spectrum observation. This conclusion agrees
with the results by B̈osinger et al. (2002), who have recently
reported the data of the first half year of operation of a sen-
sitive search coil magnetometer at a remote site in the island
of Crete, Greece (35.15◦ N, 25.20◦ E). It was shown that the
spectral resonance structures (SRS) observed at these lati-
tudes is a purely nighttime phenomenon.

In what follows we are mainly interested in the nighttime
power spectrum. The nighttime spectrum shown in Fig. 5
was obtained with the use of the same parameters as before
andL=103 km. Here the faster oscillations are seen in com-
parison with Fig. 4b, where the valueL=500 km was used in
a numerical simulation. The spikes in the nighttime spectrum
are due to the fast mode. In order to estimate the frequencies
of these spikes, we make use of an analytic approximation
for the fast mode eigenfrequencies (see Eq. (41))

fn ≈
vAI k0

2π

(
1 +

π2n2

2k2
0L2

)
,

where,

π2n2

2k2
0L2

� 1 . (46)

For L=103 km andk0=0.01 km−1 we obtainf1≈0.84 Hz,
f2≈0.95 Hz andf3≈1.15 Hz. This is close to the first three
spikes in Fig. 5 (line 1). The appearance of the sharp spikes

is due to the change inλI=
(
k2

0L2
− x2

0

)1/2
. The first sharp

spike arises as the frequencyω is greater than the threshold
valuek0vAI , so thatλI becomes purely imaginary. For exam-
ple, whenk0=0.01 and 0.02 km−1, the critical frequencies
f =k0vAI/ (2π) ≈0.8 and 1.6 Hz, respectively. This agrees
with the numerical simulation given in Figs. 4b and 5 with
lines 1 and 2.

Bösinger et al. (2002) have found that the average
frequency difference1f between two adjacent quasi-
harmonics in SRS is very small (0.2 Hz). Just the same aver-
age frequency difference can be seen in Fig. 5.

Interestingly enough the low frequency part of the night-
time spectrum does not contain the peaks, in spite of the fact
that excitation of the shear mode atf =0.5 Hz (L=500 km,
Fig. 4b) orf =0.25, 0.5 and 0.75 Hz (L=103 km, Fig. 5) may
be expected. This peculiarity of the spectra is due to a spe-
cific form of Q (Eq. (45)). We recall that this form ofQ
results from the fact that the wave vectork0 is perpendicular
to the wind velocityδv. In order to illustrate this we consider
the opposite case whenk0 is parallel toδv. ThenQ is given
by

Q = −
iL(k0 · vm)

(
α2

H + α2
P + β1αP

)
vAI (ω − k0 · U)

. (47)

Figure 6 shows the nighttime spectrum obtained with the help
of Eq. (47). For clarity the valueL=103 km and the above
parameters were used in a numerical simulation. The spikes
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Fig. 5. Same as in Fig. 4 but forL=103 km.
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Fig. 6. The nighttime power spectrum at the ground level in the case
when the wave vectork0 is parallel to the wind velocityδv.

at f =0.25, 0.5 and 0.75 Hz seen in the figure are due to the
shear Alfv́en mode, contrary to Fig. 5, where these spikes
are absent. Comparison of Figs. 5 and 6 shows that the low
frequency part of the spectrum substantially depends on the
neutral wind properties.

Finally, Fig. 7 illustrates the dependence of the spectrum
on the ground conductivity for the nighttime condition (here
k0=0.02 km−1). The solid line corresponds toσg=0 and the
dotted line corresponds toσg=10−2 S/m. As one sees from
Fig. 7, the presence of the finite ground conductivity results
in the enhancement of the several spectrum peaks.

Figures 4–7 show that the peaks of the shear Alfvén mode
arising in the low frequency part of the nighttime power spec-
trum in the form of single or multiple spikes at the frequen-
cies practically do not depend on the wave number. These
spikes can be associated with the ordinary IAR spectrum (cf.
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Fig. 7. Dependence of the nighttime power spectrum at the ground
level on the ground conductivity. The solid line 1 corresponds to
σg=0 and the dashed line 2 corresponds toσg=10−2 S/m.

Polyakov and Rapoport, 1981; Lysak, 1991; Trakhtengertz
and Feldstein, 1991; Pokhotelov et al., 2000, 2001).

Our numerical simulations show that the nighttime spec-
trum varies drastically due to the excitation of the fast mode
when the frequency exceeds a valuef0∼k0vAI/ (2π). The
strong spikes whose frequencies depend onk arise in the
frequency domainf >f0. The attenuation of the fast mode
is much smaller than that for the shear Alfvén wave. The
horizontal propagation of the fast mode in the ionospheric
waveguide in the F-layer has been studied by Greifinger and
Greifinger (1968), who noted that the wave propagation in
the ionospheric waveguide is more favorable during night-
time conditions. Our results agree with this conclusion in
spite of the fact that we consider the vertical propagation of
the two coupled modes across the waveguide rather than hor-
izontal spreading of the fast mode. Thus, we conclude that
excitation of the fast mode can play an important role in the
formation of the nighttime IAR spectrum.

6 Discussion and conclusions

It is of common knowledge that traditional mechanisms of
the IAR excitation, such as feedback instability, become less
important in the mid- and low-latitudes. In these regions of
the ionosphere the electric fields are basically generated by
neutral winds (Kelley, 1989). As a result, we have restricted
our consideration to high-altitude winds. In part, this mech-
anism is similar to acoustic autovibration in such a system
as “a police whistle”. Indeed, let us imagine a cylindrical
case/shell bounded from one end and opened from another. It
is known that an aerial flux externally tangent to the open end
of the shell results in excitation of the aerial column eigen-
modes. In such a case the energy flux coming from the ex-
ternal source is governed solely by the aerial column. The
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fluctuations of the tangent aerial flux whose frequencies are
close to the aerial column eigenfrequencies in the shell can
give rise to enhancement of the eigenmode magnitudes.

Our analysis shows that a similar scenario may operate
in the ionospheric resonance cavity. In this case the neutral
wind in the lower ionosphere can serve as an energy source
for the cavity excitation. First, the part of the gas kinetic
energy is transferred into the energy of the electric current
in the conductive ionospheric slab, which is then converted
into the energy of the shear and fast modes. Some of this
energy is lost/dissipated due to the ionospheric Joule heating
and wave energy leakage into the magnetosphere.

The fluctuations of the neutral wind can result in the en-
hancement of the energy flux flowing from the wind into the
resonance cavity if the fluctuation frequency range is close
to the IAR eigenfrequencies. Such fluctuations, which arise
from the gas turbulence, are usually observed in the vicin-
ity of the turbopause and they can occur in the E-layer. In
order to find the frequency range that is typical for the tur-
bulent pulsations, one needs a rough estimation of the neu-
tral wind parameters. The gas flow pattern is characterized
by the Reynolds number Re=1vλρ/ξ , whereρ is the neu-
tral gas mass density,1v denotes the variation of the mean
gas velocity andλ is the characteristic scale of the varia-
tions. The gas viscosityξ due to molecular collisions can
roughly be estimated asξ∼ (kBT m)1/2 /σc, wherekB is a
Boltzmann constant,T is the gas temperature,m denotes the
average ion mass andσc is the collisional cross section of
the neutral particles. At the altitudes of the E-layer (100–
130 km) the average ion mass ism≈27–28 units of proton
mass that approximately corresponds to nitrogen molecular
with σc∼0.8×10−18 m2. Using these parameters one can
find the rough estimationξ∼1.6×10−5 Pa· s. We note that
due to the interaction between eddies in the flow located be-
low turbopause, the effective viscosity can be much larger
than the molecular viscosity calculated above (Kelley, 1989).
Our estimation is rather relevant to the E-layer where the tur-
bulent mixing gradually decreases.

The neutral particle number densityN decreases drasti-
cally with the altitude so thatN∼

(
1×1019

−7×1017
)

m−3

within the height interval under consideration. Choos-
ing N=2×1018 m−3 as an average value one obtains
ρ=Nm≈9×10−8 kg/m3. The wind speed is subject to di-
urnal and seasonal variations. For example, the diurnal wind
variations increase with altitude from 10−30 m/s at 95 km up
to 100−150 m/s at 200 km. So the value1v∼ (10−100) m/s
seems to be a relevant estimation for the wind velocity fluctu-
ations at the altitudes of 100−130 km. Takingλ∼ (1−10) km
as a characteristic spatial scale of such fluctuations, one fi-
nally obtains Re∼60−6×103.

With this estimation in mind, one can assume that such a
great value of the Reynolds number exceeds the critical value
that is necessary for transition from the laminar to a turbu-
lent regime. The latter can give rise to the turbulence of the
gas flow. The Kolmogorov theory (cf. Landau and Lifshits,
1986) assumes that if a neutral flow is stirred at some wave-
lengthλ, certain structures will be formed in a so-called “in-

ertial subrange” ink space, where the energy will cascade to
larger and larger values ofk, i.e. from large to small scales.
The cascade is bounded from below by the valueλ−1 and
from above by the so-called Kolmogorov dissipative scale
km=λ−1Re3/4, where the influence of the molecular viscos-
ity becomes significant and the energy dissipation occurs. So
within the intervalλ−1

�k�λ−1Re3/4 the energy is trans-
ferred from eddy to eddy with no net energy gain or loss. In
an isotropic homogeneous medium the omnidirectional spec-
tral density of the mechanical energy of the turbulent flow
has a power law spectrum∝k−5/3. The typical frequencies
of turbulent pulsations are evaluated asω∼kv, wherev is the
smoothed mean velocity that slowly varies along the flow.
Hence, we find that Kolmogorov spectrum is localized in the
frequency range given by

v

λ
� ω �

v

λ
Re3/4,

where the lower margin corresponds to large-scale pulsations
whereas the upper one stands for the dissipative turbulence
scale, i.e. for the smallest pulsations in the turbulent flux.
For instance, taking the parametersv=100 m/s,1v=50 m/s
andλ=10 km one obtains 0.01�ω�4 Hz.

These estimations show that the typical frequency band of
the gas flow turbulence can be close to the eigenfrequencies
of the ionospheric resonance cavity that results in the most
effective transition of the gas kinetic energy into the hydro-
magnetic wave energy. The numerical calculations show that
the magnitude of the power spectrum can be detectable at
ground level in spite of the energy dissipation due to Joule
heating and wave leakage into the magnetosphere.

Our analysis shows that the IAR dispersion relation com-
prises of two modes. The first one corresponds to the or-
dinary shear Alfv́en wave propagating along the geomag-
netic field. Its spectrum practically does not depend on the
perpendicular wave numberk. However, the corresponding
damping rate increases with the increase ink. The second
mode corresponds to the fast mode and its eigenfrequency
and damping rate strongly depend onk. The latter is one
or two orders of magnitude smaller than that for the shear
Alfv én wave. For the actual plasma conditions both modes
are linearly coupled through the E-layer Hall conductivity.
In particular, the periodic enhancement of the damping rate
of the fast mode, seen in Figs. 3b and d whenk≈πn/L (n
is an integer), can be explained by this coupling. Except for
the first spike, the magnitude of the daytime power spectrum
is found to be lower than that of the nighttime spectrum. A
few small spikes in the low-frequency part of the nighttime
spectrum can be associated with the shear mode, whereas
the series of strong spikes whose frequency exceeds a certain
threshold value can be due to the fast mode. We can suppose
that, namely, the fast mode can play an important role in the
formation of the nighttime IAR spectrum.

Summarizing, we note that:
1. The IAR excitation at the mid-latitudes can be asso-

ciated with the turbulent motions of the neutral winds. The
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estimations show that this mechanism is capable of produc-
ing observable geomagnetic perturbations on the ground.

2. The IAR dispersion relation comprises of two coupled
modes, the shear Alfv́en wave and the fast mode. The eigen-
frequencies of the first mode practically do not depend on
the perpendicular wave numberk, whereas for the fast mode
they approximately follow the linear dependence onk. The
fast mode damping rate decreases with the increase ink while
the shear mode exhibits the opposite dependence.

3. The IAR power spectra contain the peaks both due to
the shear and fast modes. The day- and nighttime power
spectra have essentially different shapes and magnitudes
and thus strongly depend on the wind parameters and
ground/ionosphere conductivities. The nighttime IAR
excitation should be expected to be more intensive because
the peaks of the nighttime spectra are found to be greater
than those for the daytime conditions.

Appendix A

Following Pokhotelov et al. (2000) we introduce a dimen-
sionless frequencyx0=ωL/vAI . Whenz>h=l+L only out-
going wave solutions of the Eqs. (9) and (10) should be re-
tained

8 = C1 exp(ix0z/L) , (A1)

9 = C2 exp(λMz/L) , λM =

(
k2L2

− x2
0ε2

)1/2
, (A2)

whereC1 andC2 are arbitrary constants.
The sign ofλM in Eq. (A2) for the fast mode should be

chosen in a way to satisfy the so-called radiation condition
at the magnetospheric end. Hence, forx0>kL the imaginary
part ofλM has to be positive. The bifurcation points of this
function and the corresponding cut in the complexx0 plane
are shown in Fig. 2.

The next range of altitudes(l<z<h) is characterized by
the Alfvén velocityvA=vAI , wherevAI�vAM . In this case
the solutions of the Eqs. (9) and (10) are given by

8 = C3 exp(ix0z/L) + C4 exp(−ix0z/L) (A3)

9 = C5 exp(λI z/L) + C6 exp(−λI z/L) ,

λI =

(
k2L2

− x2
0

)1/2
, (A4)

whereC3 − C6 are arbitrary constant quantities.
Faraday’s law and the continuity ofδB andE at the bound-

aryz=h require that the scalar potentials,8 and9, as well as
their derivatives,∂z8 and∂z9, must be continuous atz=h.
Using these conditions and Eqs. (A1)–(A4) one can express
the constantsC3−C6 throughC1−C2. Then the solution of
the Eqs. (A3) and (A4) can be rewritten in the form(l<z<h)

8 =
C1

2
exp

(
ix0h

L

){
(1 + ε) exp

[
−ix0

(h − z)

L

]
+ (1 − ε) exp

[
ix0

h − z)

L

]}
(A5)

9 =
C2

2
exp

(
λMh

L

){(
1 −

λM

λI

)
exp

[
λI (h − z)

L

]
+

(
1 +

λM

λI

)
exp

[
−

λI (h − z)

L

]}
, (A6)

whereε=vAI/vAM . Similar conditions should be applied at
z=l+0. EliminatingC1 andC2 from Eqs. (A5) and (A6), one
obtains the boundary condition atz=l+0

∂z8 (l) =
ix0β1

L
8 (l) , (A7)

∂z9 (l) = λIβ29 (l) /L, (A8)

whereβ1 andβ2 are given by the Eqs. (17) and (18).

Appendix B

The solution of Eq. (11) decays at infinity(z→−∞) and
is (z<−d)

9 = C0 exp(æz) , (Reæ> 0) . (B1)

The solution of Eq. (12) can be written as(−d<z<0)

9 = C7 exp(−kz) + C8 exp(kz) . (B2)

The constantsC7 and C8 in Eq. (B2) can be expressed
throughC0 making an allowance for the continuity of9 and
∂z9 at the boundaryz=−d. This yields(−d<z<0)

9 =
C0

2
exp(−æd)

{(
1 +

æ

k

)
exp[k (z + d)]

+

(
1 −

æ

k

)
exp[−k (z + d)]

}
. (B3)

At the interfacez=0 between the atmosphere and the iono-
sphere we have

∂z9 (0) = k9 (0)
æ+ k tanh(kd)

k + ætanh(kd)
. (B4)

Since the atmosphere is an insulator the parallel electric cur-
rent jz flowing from the ionosphere to the atmosphere van-
ishes atz=0. Then from Ampere’s law we obtain

∂z8 (0) = 0 . (B5)

Similar to Lysak (1991) and Pokhotelov et al. (2000) we
use a thin E-layer approximation, i.e.kl�1. Integration of
Eq. (6) over E-layer gives

∂z8 (l) + i
x0αP

L
8 (l) = −

x2
0αH vAI

L2
9 (l)

+
x0B

Lk2

[
αP (k × v)z + αH (k · v)

]
, (B6)

whereαP =6P /6w andαH =6H /6w are the ratios of the
height-integrated Pedersen and Hall conductivities to the
wave conductivity6w=1/ (µ0vAI ) and all the functions are
taken atz=l−0. In addition, we have taken into account
Eq. (B5). For the sake of simplicity, the wind velocityv is
assumed to be independent of the z-coordinate.
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Then integration of Eq. (7) across the E-layer gives

∂z9 (l) − ∂z9 (0) + i
x0

L
αP 9 (l) = −

αH

vAI

8 (l)

−
iB

vAI k2

[
αH (k × v)z − αP (k · v)

]
. (B7)

In the thin E-layer approximation we have9 (l) =9 (0).
Substituting Eqs. (A7), (A8) and (B4) into Eqs. (B6)–(B7)
and rearranging, one obtains

8 (l) (β1 + αP )=iαH vAI

x0

L
9 (0)

−
iB

k2

[
αP (k × v)z + αH (k · v)

]
, (B8)

(ix0αP − s)9 (0) = −
αH L

vAI

8 (l)

−
iBL

vAI k2

[
αH (k × v)z − αP (k · v)

]
, (B9)

where s is given by Eq. (16). Eliminating8 (l) from
Eqs. (B8) and (B9), one obtains

9 (0) =

BL
[
(k · v)

(
α2

H + α2
P + β1αP

)
− (k × v)zβ1αP

]
k2vAI

[
(is + x0αP ) (β1 + αP ) + x0α

2
H

] . (B10)

From Eq. (B3) we find that

9 (−d) =
2k9 (0)[

(k + æ) exp(kd) + (k − æ) exp(−kd)
] . (B11)

Appendix C

For the shear Alfv́en wave Eq. (20) reduces to

exp(2ix0) = −

(
1 + ε

1 − ε

)[
1 +

2

G (x0)

]
, (C1)

where

G (x0) = αP − 1 +
α2

H

is (x0) /x0 + αP

. (C2)

WhenαH =0 Eq. (C1) coincides with Eq. (22). For the day-
time conditionsαP andαH are usually of the order of several
units. Then from Eq. (C2) it follows that|G| �1. Sinceε�1
we conclude that the right-hand side of Eq. (C1) is close to
−1. As before we seek the solution of Eq. (C1) in the form
x0=η+iγ . Equating the arguments of the complex values on
both sides of Eq. (C1), in the first approximation we find that
η=π (n−1/2), wheren=1, 2...

For the nighttime conditionsαP andαH are small and thus
G≈−1. Equating, as before, the arguments of both sides of
Eq. (C1), in the first approximation we obtain thatη=πn.

Equating the moduli of both sides of Eq. (C1) gives

γ = −ε −
1

2
ln

∣∣∣∣1 +
2

G (x0)

∣∣∣∣ . (C3)

It follows from the analysis and numerical calculation shown
in Fig. 4 thatγ�η. So we can substituteη for x0 in the
functionG in order to findγ in the next approximation.

Now let us study the fast mode. In this case Eq. (20) re-
duces to

exp(2λI ) =

(λM + λI )

(λM − λI )

[
αP + α2

H / (β1 + αP ) + αg − iλI /x0
][

αP + α2
H / (β1 + αP ) + αg + iλI /x0

] , (C4)

whereαg is defined in Eq. (27).
WhenαH =0 Eq. (C4) coincides with Eq. (26) of Sect. 4.2.

Again, whenkL�1 we apply the successive approximation
method to find the solution of Eq. (C4). The functionλI takes
the form Eq. (29) and other functions including in Eq. (C4)
should be taken in the first approximation atx0=kL. Hence,
λM=kL andαg is the same as that given by Eq. (32), i.e.
αg=α0. Taking into account thatx0 is real, the functionβ1
can be written as

β1 =
ε − i tankL

1 − iε tankL
≈ −i tankL . (C5)

Substituting these functions and Eq. (C5) into Eq. (C4), one
obtains that the right-hand side of Eq. (C4) can be expressed
in terms of the power series of a small parameterλI/ (kL)

exp(2λI ) =

1 +
2λI

kL

[
1 −

i

αP + α0 + α2
H / (αP − i tankL)

]
. (C6)

For αH =0 Eq. (C6) coincides with Eq. (31). Decomposing
λI andα0 into their real and imaginary parts, i.e.λI=λ1+iλ2
andα0=α1+iα2, equating the moduli and arguments of both
sides of Eq. (C7), we arrive at the equations forλ1 andλ2

λ1

(
1 −

p1

kL

)
=

λ2p2

kL
, (C7)

and

λ2

(
1 −

p1

kL

)
= πn −

λ1p2

kL
, (C8)

wheren is an integer and we made use of the following ab-
breviation

p1 = 1 − (α2 + Y tankL) /p3 , (C9)

p2 = [αP (1 + Y ) + α1] /p3 , (C10)

p3 = [αP (1 + Y ) + α1]2 + [α2 + Y tankL]2 , (C11)

Y =
α2

H

α2
P + tan2 kL

. (C12)

Substituting solution of Eqs. (C7) and (C8) into Eq. (30), one
obtains the equations forδ1 andγ1. Finally, one finds

xn
0 = kL+

π2n2

2kL [1−p1/ (kL)]2

{
1−

2ip2

kL [1−p1/ (kL)]

}
,(C13)

where p1 and p2 are given by Eqs. (C9)–(C12). When
6H =0 this solution coincides with that given by Eq. (36).
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