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Abstract. It is now well known that amplitude modulated
HF transmissions into the ionosphere can be used to generate
ELF/VLF signals using the so-called “electrojet antenna”.
Although most observations of the generated ELF/VLF sig-
nals have been made on the ground, several low and high-
altitude satellite observations have also been reported (James
et al., 1990). One of the important unknowns in the physics
of ELF/VLF wave generation by ionospheric heating is the
volume of the magnetosphere illuminated by the ELF/VLF
waves. In an attempt to investigate this question further,
ground-satellite conjunction experiments have recently been
conducted using the four Cluster satellites and the HF heater
of the High-Frequency Active Auroral Research Program
(HAARP) facility in Gakona, Alaska. Being located on
largely closed field lines atL≈4.9, HAARP is currently also
being used for ground-to-ground type of ELF/VLF wave-
injection experiments, and will be increasingly used for this
purpose as it is now being upgraded for higher power opera-
tion. In this paper, we describe the HAARP installation and
present recent results of the HAARP-Cluster experiments.
We give an overview of the detected ELF/VLF signals at
Cluster, and a possible explanation of the spectral signature
detected, as well as the determination of the location of the
point of injection of the HAARP ELF/VLF signals into the
magnetosphere using ray tracing.
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1 Introduction

To radiate radio waves efficiently requires antennas whose
dimensions are of the order of the radio wavelength being
emitted. At very low frequencies (VLF), where wavelengths
range from 10 km to 1000 km, it is therefore not surpris-
ing that attempts have been made to exploit large-scale geo-
physical current systems as radiating elements. Stubbe and
Kopka (1977) suggested using a powerful High Frequency
(HF) heater, modulated at an audio frequency, to change the
D-region conductivity in the auroral zone in the vicinity of
the auroral electrojet and thus produce a huge oscillating
VLF dipole source within the ionosphere. The mechanism
of generation of the VLF waves using a powerful HF iono-
spheric heater involves the modification of the electron tem-
perature in the D- and lower E-regions of the ionosphere. The
modified electron temperature leads to changes in the Ped-
ersen and Hall conductivities and thus to changes in iono-
spheric current density. If the HF carrier is modulated in
a periodic way (either frequency or amplitude), the current
density is periodically changed. Under such circumstances,
the heated ionospheric area with its immediate surroundings
becomes a huge antenna radiating at a frequency correspond-
ing to the modulation frequency of the HF carrier.

In a number of experiments it has been demonstrated that
a carrier HF wave, modulated in amplitude by a VLF wave,
can have a higher Effective Radiated Power when the HF sig-
nal is in the X mode rather than the O mode. A significant
body of data from ground VLF observations at different heat-
ing facilities has been used to establish the characteristics of
downward radiation from the auroral radiator (Kapustin et
al., 1977; Stubbe et al., 1981, 1982; Ferraro et al., 1982;
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Fig. 1. Trajectories of the Cluster spacecraft during the dates when
the HAARP-Cluster experiment was performed.(a) Projection of
the spacecraft trajectories upon a meridional plane. Each color cor-
responds to a different day, as highlighted in the legend box. Mag-
netic coordinates are based on the centered dipole model.(b) Ge-
ographic projection of the spacecraft trajectories. Each color cor-
responds to a different spacecraft, as highlighted in the legend box.
The dashed line rectangles indicate the regions where the HAARP
signal was detected for the two successful passes. All the trajecto-
ries were in the south-to-north direction.

Barr et al., 1985, 1986; Rietveld et al., 1989). Also, Get-
mantsev et al. (1974) performed the first ground-based ob-
servation of radiation at combination frequencies under HF
heating, while Kotik and Trakhtengerts (1975) provided a
theoretical treatment of this effect. In contrast to the many
ground-based observations, space-based observations of HF-
generated ELF/VLF waves above the auroral electrojet are
few in number. In this grouping we find observations con-
cerning the heating facility of the Max-Planck Institut für
Aeronomie (MPAe Heating) and the spacecraft AUREOL 3
(Lefeuvre et al., 1985), ISIS 1 (James et al., 1984) and DE 1
(Inan and Helliwell, 1985; James et al., 1990), all of them
performed in December 1981. These experiments show that
the modulated auroral electrojet can sometimes radiate de-
tectable signals into the topside ionosphere and the magneto-
sphere. One of the important applications of the production
of intense VLF waves which can propagate into the mag-
netosphere is the use of these signals for wave-injection ex-
periments aimed at diagnostics studies of the magnetosphere
(Helliwell, 1975; Kapustin et al., 1977; Stubbe et al., 1981,
1982).

The present paper reports recent observations on the Clus-
ter spacecraft of electromagnetic ELF/VLF waves produced
through ELF/VLF modulation of auroral electrojet currents.
These observations were carried out over the ELF/VLF fre-
quency range of 1068 Hz to 4375 Hz on the Cluster satel-
lites SC3 and SC4, at a radial distance of 27 000 km to
29 000 km. Figure 1 shows the geographical location of the
Cluster passes during the times at which the experiment was
performed, from August 2001 to June 2003. The success-
ful receptions are highlighted in order to compare the ground
track of the satellites with the location of the HAARP HF
transmission facility near Gakona, Alaska. A numerical ray
tracing model was used to simulate the propagation of VLF
whistler mode waves from the ionosphere up to the space-
craft and to verify the propagation delay time at different fre-
quencies.

2 The Cluster experiment and the WBD instrument

The Cluster spacecraft orbits traverse large regions of the
magnetosphere. For the purpose of this paper, we focus on
the perigee passes, when the four Cluster spacecraft travel
closest to the Earth. The configuration of the four space-
craft near perigee can be either a tetrahedron or a “string of
pearls” (Escoubet et al., 1997). The inter-spacecraft sepa-
ration varied between 100 and 5000 km during the period
of observations presented here. The HAARP-Cluster ex-
periment was performed during passes around the magnetic
equator at mid-altitude (between 4 and 6 Re). The observa-
tions of the HAARP transmissions were performed using the
Cluster Wide Band (WBD) Plasma Wave Instrument (Gur-
nett et al., 1997). This instrument provides high-resolution
frequency-time measurements of plasma waves in the Earth’s
magnetosphere. A digital wide-band receiver is used to pro-
vide electric or magnetic field waveforms over a wide range
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of frequencies. The WBD instrument transmits band-limited
waveforms directly to the ground using a high-rate data-link.
This direct transmission allows the recording of wideband
waveforms for detailed high-resolution frequency-time anal-
ysis. Also, this technique has the advantage that the resolu-
tion can be targeted in post-processing to provide optimum
analysis of the phenomena of interest.

3 The High frequency Active Auroral Research Pro-
gram (HAARP)

The HAARP HF heater is located on a site near Gakona,
Alaska. The geographic coordinates of the HF antenna ar-
ray are approximately 62.4◦ (north) latitude, 145.2◦ (west)
longitude. The geomagnetic coordinates for the facility are
63.1◦ (north) latitude and 92.4◦ (west) longitude. The prin-
cipal instrument of the facility is a high power, HF phased-
array radio transmitter that is used to heat small, well-defined
volumes of the ionosphere. The phased array is designed
to transmit a narrow beam of high power radio signals in
the 2.8 to 10 MHz frequency range. At the time the exper-
iments were performed, the HAARP HF antenna consisted
of 48 elements arranged as a rectangular array of 8 columns
by 6 rows. Each element making up the antenna array con-
sists of four selectable dipole antennas, which are aligned
north-south and east-west. The dipoles are mounted on an
aluminum tower 72 feet high. There is one transmitter cab-
inet dedicated to each antenna mast. Each transmitter cabi-
net contains two identical transmitters, each of which is ca-
pable of producing a maximum output power of 10 kW. A
wire mesh ground screen is attached mechanically and elec-
trically to the tower at a height of 15 feet above the ground
(further information on the HAARP facility can be found at
the website: www.haarp.alaska.edu). The HAARP transmit-
ter had a total radiated power capability of 960 kW at the time
the campaign described in this paper was performed. The
ELF/VLF signal format shown in Fig. 2 was impressed upon
the HF carrier through amplitude modulation. Two different
HF carriers, 3.3 MHz and 5.8 MHz, were used, with switch-
ing between carriers occurring every 10 min. The HAARP
HF transmitter requires 30 s to switch between carriers, thus
the last half–minute of the 10-min cycle is used to change
carriers, without transmitting during that period of time. The
time required to change frequencies in the ELF/VLF band is
approximately 20µs.

4 The HAARP-Cluster campaign

The HAARP-Cluster campaign was conducted on six
different occasions, 13 August 2001, 26 November 2001,
26 January 2003, 7 July 2003, 10 March 2003 and 11 May
2003, in two cases of which (26 January 2003 and 11 May
2003) detectable ELF/VLF signals were observed on one or
more of the Cluster spacecraft. During these two dates the
transmission schedule was as follows:
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Fig. 2. Schematic spectrogram (to scale) of the transmission pat-
tern used by the HAARP HF facility to heat the ionosphere. The
ELF/VLF waves were AM modulated onto carrier frequencies of
3.3 MHz and 5.8 MHz, alternating between both. The term “Sinu-
soidal wave modulation” refers to the waveform used at each of
the frequencies transmitted. The transmitted HF wave was in the
X mode.

26 January 2003: 12:00–14:00 UT
11 May 2003: 05:30–07:00 UT

Figure 1 shows a detailed plot of the spacecraft orbital passes
during these six dates, showing their azimuthal (Fig. 1a) and
geographic (Fig. 1b) projection.

The HF carrier frequency was chosen to provide maxi-
mum heating in the D-region of the ionosphere (James et
al., 1984), taking into account the allocated frequencies at
which HAARP can transmit at its highest power. In this case
the chosen frequency was 3.3 MHz, but transmissions also
took place at 5.8 MHz to test if there are differences in the
emitted VLF radiation. According to Kapustin et al. (1977),
and Stubbe et al. (1981, 1982), the maximum VLF radiated
power can be achieved if the HF waves are polarized in the
extraordinary (X) mode; therefore, this particular polariza-
tion was chosen for HAARP transmissions. The HF beam
was oriented vertically in order to have a transmitted HF
wave with ak-vector as perpendicular as possible to theD

layer of the ionosphere. The HF carrier was modulated si-
nusoidally in amplitude with a pattern of ELF/VLF waves,
as shown in Fig. 2. The modulation pattern consists of two
parts: first, two tones are transmitted for 12 s each, one at
1824 Hz and the other one at 2298 Hz. These are followed
by a staircase pattern of 8 frequencies, with each frequency
being transmitted for 0.5 s. This 4-s pattern was repeated
continuously throughout the remaining part of the minute.
The one-min pattern was repeated throughout the duration of
each Cluster pass. The HF carrier frequency was switched
between 3.3 MHz and 5.8 MHz every 10 min, in order to in-
vestigate the efficiency of ELF/VLF generation at different
altitudes. After transmitting 9.5 min cycles at 3.3 MHz, 30 s
were required to change carrier frequency. Subsequent 9.5-
min cycles were then transmitted at 5.8 MHz. The ELF/VLF
modulation frequencies were chosen in the range in which
VLF generation was found in the past to be more efficient
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Fig. 3. WHISPER sounder electric field spectrograms for the two
dates studied. The spectrograms show the intensity of the electric
field. These three different days show a variety of electron density
structures, from a very irregular plasma on the first panel to a very
compressed plasmasphere on the second and third panels, where the
plasma is smoother. Panel(a) corresponds to data recorded on 26
January 2003. Panel(b) corresponds to data recorded on 11 May
2003.

(Stubbe et al., 1981). The actual chosen values were not
multiples of 60 Hz, to avoid interference from harmonics of
60 Hz power grids (Helliwell et al., 1975). The duration of
the pulses was chosen to be 0.5 s, considered long enough to
see temporal effects, such as rise time or possible triggered
emissions (Helliwell et al., 1974), while still allowing for the
sampling of different frequencies. The two initial long pulses
of 12-s duration were designed to be detected by the Spatio
Temporal Analysis of Field Fluctuations (STAFF) instrument
on Cluster (Cornilleau-Wehrlin et al., 1997). This instru-
ment uses a three-axis search coil magnetometer to measure
magnetic fluctuations at frequencies up to 4 kHz, a waveform
unit (up to either 10 Hz or 180 Hz) and a Spectrum Analyzer
(up to 4 kHz). The time resolution for a complete multi-
component waveform measurement varies between 0.125 s
and 4 s.

5 Simulation results: the ray-tracing technique

We performed ray-tracing calculations to determine the prop-
agation paths and to estimate the time delays of the HAARP
VLF signals received on Cluster. The ray-tracing method
used is that which was introduced by Haselgrove (1954)
and Yabroff (1961), with the original software implemen-
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Fig. 4. Electron density profiles derived from the WHISPER elec-
tric field measurements for the two dates studied. These are con-
structed from direct measurement of the plasma frequency using
WHISPER data at different magnetic latitudes and then projected
to the equator, assuming anR−4 variation of the electron density
with radial distance from the Earth.(a) Profile for 26 January 2003.
(b) Profile for 11 May 2003. The red full line is the electron den-
sity measured, while the red dashed line is the model. The blue line
represents the actual electron density profile used in the simulations.

tation undertaken by Kimura (1966). The actual version
of the Stanford ray-tracing program used for the computa-
tions presented here is described elsewhere (Inan and Bell,
1977). We used a geomagnetic field model based on a cen-
tered dipole with electron gyrofrequency of 880 kHz at the
ground on the magnetic equator. The electron and ion densi-
ties above 1000 km are represented by a field-aligned isother-
mal (T=1600◦ K) diffusive equilibrium model for regions
within the plasmasphere (L≤4). At higherL-shells the elec-
tron density profile was assumed to vary asR−4, whereR
is the radial distance from the Earth. At 1000 km the iono-
spheric composition was taken to be 90% O+, 8% H+ and
2% He+. The same composition was used in both cases
where the HAARP signal was detected in Cluster.

Data from the WHISPER resonance sounder instrument
(Décŕeau et al., 1997) was used to deduce the electron den-
sity profile. The WHISPER sounder on the Cluster space-
craft is designed to provide an absolute measurement of
the total plasma densityNo within the range 0.2–80/cm3,
which is the range of interest for the HAARP-Cluster ex-
periment. WHISPER performs the identification of the elec-
tron plasma frequency by analyzing the pattern of resonances
triggered in the medium by a pulse transmitter. This instru-
ment uses a resonance sounding technique, already proved
successful in the regions to be explored by previous experi-
ments (Etcheto et al., 1983; Trotignon et al., 1986). A Fast
Fourier Transform (FFT) calculation provides the wave anal-
ysis function of the instrument. In the basic nominal op-
erational mode, which is the one we present in this paper,
the density is measured every 28 s, the frequency and time
resolution for the wave measurements are about 300 Hz and
2.2 s. Figure 3 shows representative frequency-time spectro-
grams generated from measured data using WHISPER for
the two cases studied. The two panels show spectrograms
of the electric field along thez axis (i.e. in the spin plane of
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the spacecraft). Figure 3a displays theEz field on spacecraft
SC3, on 26 January 2003. Figure 3b consists of two spec-
trograms, both measurements of theEz field, the first one on
spacecraft SC3, and the second one on spacecraft SC4, for
the pass on 11 May 2003. Data shown in these three spec-
trograms were recorded using the WHISPER instrument in
the passive mode (D́ecŕeau et al., 1997). The plasma res-
onances (not shown here) that can be excited when WHIS-
PER is active are those at the electron plasma frequency,
the electron gyro-frequency and its harmonics, and the up-
per hybrid frequency. A number of Bernstein waves are also
often excited (Bernstein, 1958). In the passive mode, nat-
ural wave bands between two successive harmonics of the
electron gyro-frequency can be observed. We used these ac-
tive and passive measurements to obtain the electron den-
sity through the method specified by Canu et al. (2001) and
Trotignon et al. (2001, 2003). The density derived from the
local measurement provided by WHISPER along the space-
craft orbit was used to derive the density alongL shells using
anR−4 model for the electron density (Persoon et al., 1983;
Gallagher et al., 2000). Since the spacecraft cross the mag-
netosphere at differentL shells and magnetic longitudes, the
derived electron density is a function of the satellite position.
We can then project this electron density to the magnetic
equator, assuming that the electron density profile varies as
R−4, whereR is the radial distance from the Earth. The
projection is displayed in Fig. 4, which shows the resulting
density profiles at the equator for the two days. The results
are shown superimposed upon the electron density profile ob-
tained from the Carpenter and Anderson (1992) model. The
irregularities in the electron density profile are assumed to be
field-aligned enhancements of ionization and are included in
the ray-tracing code by multiplying the densities given by the
R−4 model, with a product of bell-shaped functions for each
enhancement:

N0 = NDE ·

m∏
i=1

{
1 + Ci · exp

(
−(L− Li)

2

2 ·1L2
i

)}
, (1)

where:
N0 = Plasma electron density at the equator
NDE = Plasma electron density derived from model
m = number of enhancements
Ci = enhancement at i-th duct
L = LocalL-Shell
Li = L-Shell at center of i-th duct
1Li = semi-width of i-th duct.

Following the measured densities obtained from WHIS-
PER, these enhancements or troughs were added for each
case, with the coefficientsCi , Li , and1Li chosen to fit
the data.

The density profiles obtained as described above are used
as inputs for the ray-tracing code. The smooth, solid line
represents the calculations based on the Carpenter and An-
derson (1992) model. Superimposed on top are the values
of electron density obtained from the WHISPER instrument
as projected to the equator. Figures 4a and b, respectively,
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show the resulting density profiles for 26 January 2003 and
11 May 2003. On this plot, we can see the equatorial density
profile over theL shell range for which the electron density
No≤80 el/cm3. For regions of higher electron density, we use
the model of Carpenter and Anderson (1992) to complete the
profile at lower altitudes (i.e.R<4), where no WHISPER
data is available. It should be noted that the electron density
model proposed by Carpenter and Anderson (1992) does not
reflect the actual density profile in detail, but rather specifies
an average profile, since the actual profile depends on the
maximumKp index of the previous 24 h. The maximumKp
indices for the three days used in the Carpenter and Anderson
model, are: 26 January 2003 – maxKp∼6, 11 May 2003 –
maxKp∼7. Figure 5 shows the variation of the geomagnetic
activity during the relevant time periods, including the dates
before and after the events of the experiments. This charac-
teristic is important in interpreting the results. We notice that
theKp index was very high during both successful passes,
reaching a local maximum at that time.

The results of the ray tracings are displayed in Fig. 6. The
red lines are the paths of the rays at 3.125 kHz for different
initial wave normal anglesψ at the point of injection into
the magnetosphere, at an altitude of 1000 km above the sur-
face of the Earth. Highlighted are the satellite trajectories
and the region of detection of the HAARP signal. Figure 6a
correspond to the 26 January 2003 case, when the signal was
detected only for 5 s, for which the region of illumination
is highlighted with a star (*). Figure 6b corresponds to the
11 May 2003 case, when the signal was detected for 15 min,
and the region of illumination is highlighted with a red dot-
ted line. The background color quantitatively represents the
electron density, derived using anR−4 model (Persoon et
al., 1983) to project the measured density obtained from the
WHISPER instrument along the satellite trajectory to other
latitudes different from the satellite path. According to these
simulations, the rays are injected into the magnetosphere
very close to the latitude of the HAARP facility, between 64◦

(on 11 May 2003) and 63◦ latitude (on 26 January 2003), at
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a distance of∼200 km east of HAARP. Figure 6a shows the
simulation for 26 January 2003 where we sampled the ini-
tial wavenormal angle in a range from−20◦<ψ<20◦. We
found that even a small change in the initial wave-normal an-
gle can cause the rays to diverge in latitude and not reach the
satellite. A refined calculation using smaller values ofψ(-
5◦<ψ<5◦) at the same latitude of injection shows that the
signals can reach the spacecraft only if the rays are confined
within a cone of±5◦ about the input wave normal angle of
0◦.

Following this method for the 11 May 2003 case we traced
different rays at different initial values ofψ to determine the
location of injection of the waves into the magnetosphere.
We find that the waves were most likely injected at latitude
of 64◦, as displayed in Fig. 6b. If we refine the calculation us-
ing smaller increments inψ(5◦<ψ<7◦), at the same latitude
of injection, we find that the signals can reach the spacecraft
only if the rays are confined within a cone of±1 ˚ about the
input wave normal angle of 6◦. In addition, it was found that
the injection latitude of the rays that reached Cluster was con-
fined to a 1◦ range. A comparison with this figure shows that
the maximum deviation from this value can be 0.5◦. There-
fore, we find that for f=3.125 kHz, the location of the injec-
tion point of the rays which reach the spacecraft is at latitude
of 63◦

±1◦ for 26 January 2003 and 64◦
±0.5◦ for 11 May

2003. The rays enter the magnetosphere∼200 km west of
the HAARP location, and we assume that the ELF/VLF wave
energy has propagated in the Earth-ionosphere wave guide in
order to reach the entry point. Thus, the intensity of the input
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Fig. 8. Detailed WBD spectrogram from the Cluster satellite pass
during 26 January 2003, at the time of detection (13:23:45 UT),
of the HAARP signal. The magnitude scale refers to electric field
intensity. Highlighted are the detected pulses and the separation be-
tween the two sideband waves in the detailed zoom-in. Information
about the location of the spacecraft, theL shell, Magnetic Local
Time (MLT) the radial distance to the Earth (Re) and magnetic lati-
tude (λm) is shown below.

waves does not directly give definitive information about the
intensity of the actual source of the ELV/VLF waves, since
propagation loss in the Earth-ionosphere wave guide must be
taken into account, as well as the efficiency of coupling of
the source radiation into the wave guide. The ray tracings
for both dates show that the extent of the illuminated region
(in the direction perpendicular to the magnetic field line in
the meridional plane) in the magnetosphere can vary from
∼6500 km, as we can see in Fig. 6b, to∼500 km as we can
notice in Fig. 6a. This difference in size of the correspond-
ing illuminated regions for both dates is directly related to
the possibility of the ray paths being “ducted” along the field
lines when the plasma density is very irregular (as in 26 Jan-
uary 2003, see Fig. 4a) and when the plasma density is not so
irregular (as in 11 May 2003, see Fig. 4b). Ray-tracing cal-
culations suggested that the propagation time of the signals
from the source to the spacecraft was∼0.18 s for 26 January
2003 and∼0.22 s for 11 May 2003.

6 Observations: the HAARP signal detected at Cluster
with the WBD instrument

As mentioned previously, the HAARP transmission was
detected on 26 January 2003 between 13:24:46 UT and
13:24:51 UT, on spacecraft SC4 and on 11 May 2003 be-
tween 06:30:00 UT and 06:52:00 UT on spacecraft SC3 and
between 06:12:00 UT and 06:27:00 UT on spacecraft SC4.
Thus, ELF/VLF waves generated by modulated electrojet
currents were observed on one-third of the satellite passes
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Fig. 9. WBD overview spectrogram from the Cluster satellite pass
during 11 May 2003, starting at 05:30:00 UT. The magnitude scale
refers to electric field intensity. The time and frequency range in
which the HAARP signal was detected during this date is indicated
by a dashed-line rectangle. Information about the location of the
spacecraft, theL shell, Magnetic Local Time (MLT) the radial dis-
tance to the Earth (Re) and magnetic latitude (λm) is shown below.

scheduled to observe them. There are several possible expla-
nations for this variability, the two most important ones be-
ing the intensity of the electrojet and the ambient ELF/VLF
wave activity level in the magnetosphere. Indeed, as noted in
previous similar experiments (Lefeuvre et al., 1985; James
et al., 1984; Inan and Helliwell, 1985), the intensity of the
ELF/VLF radiation is expected to be higher when the inten-
sity of the electrojet is higher. This condition imposes a de-
gree of uncertainty for the experiment, because it then de-
pends on external conditions that cannot be controlled. The
same argument can be applied to the second explanation. If
there are intense ELF/VLF natural plasma waves in the re-
gion of space within which the spacecraft moves at the time
of transmissions, the HAARP generated waves might be “ob-
scured” by these natural waves (by causing the receiver au-
tomatic gain setting to be lower), and not readily discernible
in the data.

Figure 7 shows an overview spectrogram of data recorded
using the WBD instrument during 26 January 2003. High-
lighted is the time of detection of the HAARP signal. Fig-
ure 8 shows a detailed spectrogram for the period of de-
tection of the signal on this date. Two of the sequences of
ELF/VLF pulses generated by the HAARP heater are visible
in this record. The two pulses detected here correspond to the
ones generated at 3.125 kHz and 3.375 kHz. Closer exami-
nation of the detected pulses shows that at both frequencies
there actually are two pulses roughly centered close to the
nominal frequency, separated in frequency by approximately
25 Hz. These sideband waves have been interpreted as being
lower hybrid (LH) waves possibly generated through linear
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mode coupling in the presence of small-scale plasma density
irregularities (Bell and Ngo, 1990; Bell et al., 2004).

Results from 11 May 2003 reveal more extensive sideband
wave structure. On this day, the signal was detected for at
least 15 min, and the natural ELF/VLF emissions that are
usually present in these regions of the magnetosphere were
not present, therefore providing a much better environment
for identification of the HAARP ELF/VLF signals. Figure 9
shows data recorded using the WBD instrument on 11 May
2003. Highlighted is the time of detection of the HAARP
signal. Figure 10 shows a detailed spectrogram of the period
of detection of the signal on this date. The full sequences of
ELF/VLF pulses generated by the HAARP heater over the
whole range of frequencies are clearly detected on Cluster.
Figure 10a shows the characteristics of the HAARP signals
detected during this period, including the long 12-s pulse at
1824 Hz, and the 2nd harmonics of some of the signals that
are generated by the HAARP HF heater. Figure 10b displays
a detailed spectrogram of the 12-s pulse at 1824 Hz. This
spectrogram reveals a periodic amplitude variation of 2-s pe-
riod, which is due to “spin fading”. As the antenna rotates,
its orientation with respect to the wave E-field changes, since
the signal in the receiver is proportional to the projection of
the wave E-field along the antenna. This effect produces a
periodic fade, called spin fading, affecting all of the mea-
surements that are performed using the electric antenna.

A very interesting feature that is also displayed in Fig. 10a,
b and c are the additional pulses of similar duration as the
original pulse, centered close to the nominal frequency, sep-
arated by approximately 25 Hz. These are similar to the side-
band waves shown in Fig. 8. These sideband waves can be
explained as the result of the antenna response to short wave-
length lower hybrid waves, as discussed in detail by Bell et
al. (2004). The value of the spacing between the sideband
waves can be seen from Fig. 11, where the power spectrum
is plotted every 0.1 s after 06:37:53 UT. It is very clear how
the spacing between sidebands is always∼25 Hz.

According to Helliwell et al. (1975), waves with frequen-
cies corresponding to the harmonics of the 60 Hz power line
frequency can be detected in space and subharmonics of
60 Hz are also observed. However these waves generally
endure for times much longer than the 0.5 s duration of the
HAARP generated ELF/VLF pulses. Thus we believe it to
be highly unlikely that the side band waves are related to
harmonic radiation from the power grid.

In order to verify that the sideband waves were not some-
how generated from the modulation of the electrojet by the
HAARP signal, we carried out ELF/VLF observations on the
ground near Chistochina in Alaska, at a distance of∼36 km
from the HAARP HF heater. The ELF/VLF receiver at this
site recorded the signal emitted from the ionosphere in the
band of interest. The results of these measurements are
shown in the spectrograms of Fig. 12. The data displayed in
this figure are measurements of the magnetic field as received
by two loop antennas oriented perpendicular with respect
to each other, respectively in the geographic north-south
and east-west directions. In both measurements the scale
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Fig. 10.Detailed WBD spectrograms from the Cluster satellite pass
during 11 May 2003.(a) An overview of the detected HAARP sig-
nal, including the harmonics generated by the HF heater. The whole
transmitted pattern at all frequencies is observed, as well as side-
band waves appearing around the stronger pulses.(b) An overview
of the detected HAARP signal at 1824 Hz, showing sideband waves
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inal frequency. Also notice the spin modulated baseband noise. The
magnitude scale refers to electric field intensity.
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Fig. 11. Detailed power spectrum of the 0.5-s pulse detected on
spacecraft SC3, at 06:37:53 UT. Each of the ten panels, from(a) to
(j) correspond to a different spectrum obtained at time intervals of
0.1 s. Highlighted in panels(c), (d), (e)and(f) is the separation be-
tween sidebands, of∼25 Hz. The magnitude scale refers to electric
field intensity.

reference is absolute in dB [pT]. This type of data provides
an indication of the strength of the ELF/VLF signal gener-
ated by the auroral electrojet antenna. However, the direc-
tional properties of the radiation are not well known, so that
the radiation directed upward into the magnetosphere may
be significantly different from that directed into the Earth-
ionosphere waveguide. Figure 12a displays the signal de-
tected in Chistochina during the 26 January 2003, pass. In
this case the magnetometer at the HAARP site showed evi-
dence of a very intense electrojet current overhead. At the
same time, very intense HAARP generated ELF/VLF waves
were detected at Chistochina. The same situation can be
noted in Fig. 12b, where the signals received on the ground
during the 11 May 2003 pass are as intense as the ones re-
ceived on 26 January 2003. In this case also, HAARP mag-
netometer data showed evidence of an intense electrojet cur-
rent overhead.

Finally, we should also mention that while the 12 pulses
at 1824 Hz and 2298 Hz were transmitted in order to be de-
tected by the STAFF instruments on Cluster, the HAARP
signal was not detected by this instrument, possibly due to
either the long integration times required or to the fact that
LH waves possess only very small magnetic fields.

7 Conclusions

The Cluster-HAARP experiments are opening new possibili-
ties in the field of magnetospheric probing using ELF/VLF
wave-injection. Ray-tracing simulations suggest that the
scale of the illuminated region in the magnetosphere can
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Fig. 12. Ground observations of the ELF/VLF HAARP generated
signal at Chistochina.(a) Measured signal during 26 January 2003,
starting at 13:20:10 UT.(b) Measured signal during 11 May 2003,
starting at 06:37:00 UT. Each panel in both displays corresponds to
a different magnetic loop antenna, one being oriented to the ge-
ographic north-south line and the other one oriented to the geo-
graphic east-west line. In both cases strong ELF/VLF signals were
recorded on the ground, indicating the presence of modulated elec-
trojet currents in the ionosphere. The magnitude scale refers to mag-
netic field intensity in pT.

vary from∼6500 km, (for the experiment on 11 May 2003)
to ∼500 km (for the experiment on 26 January 2003). We
clearly cannot make definitive conclusions about the extent
of the source region in the ionosphere, since the ground
track of the Cluster spacecraft orbits do not cross directly
over the HAARP illuminated region, but rather west of it
(∼200 km). The data obtained from the HAARP-Cluster
campaign provides experimental evidence of the excitation
of quasi-electrostatic lower hybrid waves (Bell et al., 2004)
by the HAARP generated electromagnetic whistler mode
waves as evidenced by the sideband waves detected with
most of the pulses on 11 May 2003. As the whistler
mode waves propagate through the highly irregular region
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immediately outside the plasmapause, they apparently con-
tinuously lose energy to the lower hybrid waves. This energy
loss may explain the lack of lightning-generated whistlers
in the region outside the plasmasphere, as pointed out by
Platino et al. (2002).

Ray-tracing simulations were used to determine some
of the characteristics of the HAARP generated ELF/VLF
waves, such as the latitude of the injection of the ELF/VLF
wave into the magnetosphere, and the estimated path and
time of travel from the Earth to the spacecraft. The re-
sults suggest that the rays were injected between 63◦

±1◦ and
64◦

±0.5◦ in latitude with wave-normal angles ranging from
−5◦ to 5◦ on the two days the HAARP-generated ELF/VLF
signals were detected. The propagation time of the wave
from the source to the spacecraft was predicted to be of about
0.18±0.01 s and 0.22±0.01 s for the two days. For the 26
January 2003 case, we compared the times of arrival mea-
sured on the received ELF/VLF signal at Cluster, with the
time of transmission at HAARP. Subtracting these two val-
ues we obtain a measured value of 0.18±0.01 s for the prop-
agation time from the ionosphere to the satellite. In this con-
nection, it should be noted that the propagation time of the
heater signal from the ground to the ionosphere is only a few
milliseconds and is thus negligible compared to the propaga-
tion time from the ionosphere to the spacecraft. Comparing
the measurements on the ground with those measured on the
spacecraft in the 11 May 2003 case we find a measured prop-
agation time of 0.22±0.01 s, in reasonable agreement with
the ray-tracing results. This measurement takes into account
the propagation time of the signal from the heated region to
the ground station, which is estimated to be 3 ms. The un-
certainty of the measured delay also has to take into account
the finite1t value used in preparation of the spectrogram,
which was 0.01 s for the ground-based data and 0.005 s for
the Cluster data.

There are some important factors to be considered for any
future experiments: TheKp magnetic indices were relatively
high on the two dates of successful detection of the HAARP
signals at the Cluster spacecraft. This fact suggests that high
magnetic activity might be a necessary condition for success-
ful detection of HAARP-generated ELF/VLF waves beyond
L∼4. This conclusion can be tested with statistical analy-
sis, which requires the completion of more successful passes.
High magnetic activity is generally associated with stronger
electrojet currents, and when these larger currents are mod-
ulated by HAARP, they may radiate more intense ELF/VLF
signals into the magnetosphere.

The other important factor noticed is the fact that the
electron densities on these two days were up to an order of
magnitude lower than the ones found for lowerKp indices
of ∼3 for theL-shells range covered by the Cluster passes
shown in Fig. 1a, i.e. 4<L<6. Evidence of ducting was not
found, and the densities were significantly different on both
days in terms of irregularities.

The HAARP HF heater used in these experiments is now
in the process of being expanded into an array four times as
large as the present array. The total radiated HF power will

be increased approximately by a factor of four. It is expected
that the expanded array will be able to more strongly modu-
late electrojet currents and to produce more intense ELF/VLF
waves. Thus, the possibility for magnetospheric probing by
HAARP-generated ELF/VLF waves can be expected to be
greatly enhanced.
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